GPU Architecture and Programming Model

Ji¥i Filipovi¢

Fall 2025

Ji¥i Filipovit GPU Architecture and Programming Model

CUDA hardware
€000

Differences among CUDA GPUs

New generations bring higher performance and new computing
capabilities.
@ compute capability describes richness of GPU instruction set
and amount of resources available (registers, number of
concurrently running threads, etc.)

@ raw performance grows with the number of cores on a GPU
Cards in the same generation differ in performance substantially
@ to produce more affordable cards

@ to minimize power consumption of mobile GPUs

Ji¥i Filipovit GPU Architecture and Programming Model

CUDA hardware
000

GPUs Available Today

Currently available GPUs

@ compute capability 1.0 - 12.0
o we will learn the differences later

@ 1-170 multiprocessors (19 GFlops - 105 TFLOPs)
e frequency of 800 MHz-1.836 GHz
e width and speed of data bus (64-8192 bit, 6.4 GB/s—8 TB/s)

Ji¥i Filipovit GPU Architecture and Programming Model

CUDA hardware
00e0

Generations of CUDA GPU

e Tesla (G80, G90, G200): c.c. 1.0, 1.1,1.2, 1.3

e do not confuse with Tesla computing cards
Fermi (GF100, GF110): c.c. 2.0, 2.1
Kepler (GK100, GK110): c.c. 3.0, 3.2, 3.5, 3.7
Maxwell (GM107, GM200): c.c. 5.0, 5.2, 5.3
Pascal (GP102, GP100): c.c. 6.0, 6.1, 6.2
Volta (GV100): c.c. 7.0
Turing (GT100): c.c. 7.5
Ampere (GA100): c.c. 8.0, 8.6 (Nvidia A100, GeForce 3xxx)
Ada Lovelance (AD102): c.c. 8.9 (GeForce 4xxx)
Hopper (GH100): c.c. 9.0 (Nvidia H100)

Blackwell (B300): 10.0, 10.3, 11.0, 12.0, 12.1 (Nvidia G300,
GeForce 5xxx)

Ji¥i Filipovit GPU Architecture and Programming Model

CUDA hardware
ocooe

Available products

GeForce graphics cards
@ mainstream solution for gaming
@ cheap, widely used, broad range of performance
o disadvantage — limited memory, limited double precision and
tensor performance

Professional Quadro/NVIDIA RTX graphics cards
@ larger memory
@ several times more expensive
Tesla/NVIDIA Ax/Hx/Bx
@ a solution specially designed for CUDA computing

e offers some HW features not present/limited in GeForce (large
memory, double/half precision, NVLink, ECC memory etc.)
speeding up some applications

@ expensive

Ji¥i Filipovit GPU Architecture and Programming Model

Parallelism
©000000000

GPU Parallelism

Parallel algorithms need to be designed w.r.t. the parallelism
available in the HW

e GPU: array of SIMT multiprocessors with distributed shared
memory

Decomposition for GPU

@ coarse-grained decomposition of the problem into the parts
that don’t need intensive communication

e fine-grained decomposition similar to vectorization (but SIMT
is more flexible)

Ji¥i Filipovit GPU Architecture and Programming Model

Parallelism
0®00000000

Task Hierarchy

Grid

Block (0, 0) ' Block (1,0) Block (2, 0)

Block (0, 1) Block (1,1) “Block (2, 1)

7 Block (1, 1)

Filipovi¢ GPU Architecture and Program

Parallelism
00®0000000

A multiprocessor of G80 has one unit executing an instruction
@ all 8 SPs have to execute the same instruction
@ new instruction is executed every 4 cycles

@ 32 threads (so called warp) need to execute the same
instruction, warp size is fixed for all existing CUDA hardware

How about code branching?

o if different parts of a warp perform different instructions, they
are serialized

@ decreases performance—should be avoided

The multiprocessor is thus (nearly) MIMD (Multiple-Instruction
Multiple-Thread) from programmer's perspective and SIMT
(Single-Instruction Multiple-Thread) from performance perspective.

Ji¥i Filipovit GPU Architecture and Programming Model

Parallelism
000@000000

GPU Architecture

Filipovi¢ GPU Architecture and Programming Model

Parallelism
0000®00000

SIMT reconvergence

At the end of divergent code, a point of reconvergence is set by
the compiler

@ creates barrier for threads within the warp
@ guarantees threads synchronization after divergent code

@ we have to take the reconvergence points in mind — they can
create deadlocks, which do not arise in true MIMD

@ Volta's and newer GPUs' threads are scheduled independently,
thus they can be programmed as a true MIMD processor

Ji¥i Filipovit GPU Architecture and Programming Model

Parallelism
00000@0000

SIMT reconvergence

We try to serialize some region of code by the following construct:

volatile __shared__ int s = O0;
while (s != threadIdx.x) {};
// serialized region

s++;

Thanks to reconvergence point, there is a deadlock (reconvergence

point is placed before the incrementation of s).
Fix:

volatile __shared__ int s = 0;
while (s < blockDim.x) {
if (threadIdx.x = s) {
// serialized region
s++;
}
}

GPU Architecture and Programming Model

Parallelism
0000008000

SIMT prior Volta

X; Y;
if (threadidx.x < 4) {
Aj
B;
} else {
X3
Y3

reconverge

N

» Time

Filipovi¢ GPU Architecture and Programming Model

Parallelism
0000000800

SIMT Volta and newer

if (threadidx.x < 4) {

A;
B;

} else {
X;
g

}

Z;

Time

if (threadIdx.x < 4) {

Y
B;
} else {
X;
Y3
}
Z;
__syncwarp(Q > Time

Filipovi¢ GPU Architecture and Programming Model

Parallelism
0000000080

Thread Properties

GPU threads are very lightweight compared to CPU threads.
@ their run time can be very short (even tens of instructions)
@ there should be many of them
@ they should not use large amount of resources

Threads are aggregated into blocks

@ all threads of the block always run on the same multiprocessor
(multiple blocks can run at one multiprocessor)

@ having sufficient number of blocks is substantial to achieve
good scalability

Number of threads and thread blocks per multiprocesor is limited.

Ji¥i Filipovit GPU Architecture and Programming Model

Parallelism
000000000e

Memory Latency Masking

Memory has latency
@ global memory has high latency (hundreds of cycles)
@ registers and shared memory have read-after-write latency
Memory latency hiding is different from CPU
@ no instructions are executed out of order (but ILP can be
exploited by forcing finalization of load instruction just before
loaded data are needed)
@ no or limited cache
When a warp waits for data from memory, another warp can be
executed
@ allows memory latency hiding
@ requires execution of more threads than the number of GPU
cores
@ thread execution scheduling and switching is implemented
directly in HW without overhead

Ji¥i Filipovit GPU Architecture and Programming Model

Memory Hierarchy
°

Thread-Local Memory

Registers

@ the fastest memory, directly usable in instructions

@ local variables in a kernel and variables for intermediate results
are placed automatically into the registers
o if there is sufficient number of registers
o if the compiler can determine static array indexing

@ thread scoped

Ji¥i Filipovit GPU Architecture and Programming Model

Memory Hierarchy
°

Thread-Local Memory

Registers

@ the fastest memory, directly usable in instructions

@ local variables in a kernel and variables for intermediate results
are placed automatically into the registers

o if there is sufficient number of registers
o if the compiler can determine static array indexing

@ thread scoped
Local memory

@ data that doesn't fit into the registers go into the local
memory

@ local memory is stored in DRAM = slow, high latency

@ thread scoped

Ji¥i Filipovit GPU Architecture and Programming Model

Memory Hierarchy
[1]

Shared Memory

Shared memory
@ as fast as registers for c. c. 1.x, for newer GPUs little bit
slower

e if memory bank conflicts are avoided
e instructions can use only one operand in shared memory
(otherwise explicit load/store is needed)

@ declared using __shared__in C for CUDA

@ a variable in shared memory can have dynamic size
(determined at startup), if declared as extern withou size
specification

@ block scoped

Ji¥i Filipovit GPU Architecture and Programming Model

Memory Hierarchy
oe

Shared Memory

Static shared memory declaration

__shared__ float myArray|[128];

Dynamic allocation

extern __shared__ char myArray[];
float *arrayl = (float*)myArray;
int %array2 = (intx)&arrayl1[128];
short karray3 = (shortx*)&array2[256];

It creates an array arrayl of float type with size 128, array2 of
int type sized 256, and array3 of floating size. Total size has to
be specified at kernel startup.

myKernel<<<grid, block, n>>>();

GPU Architecture and Programming Model

Global

Memory Hierarchy
©0000

Memory

Global memory

an order of magnitude lower bandwidth compared to shared
memory

latency in order of hundreds of GPU cycles
addressing needs to be coalesced to get optimum performance
application-scoped

cached in some architectures, e.g. L1 cache (128 bytes/row)
and L2 cache (32 bytes/row) in Fermi architecture

Can be dynamically allocated using cudaMalloc or statically
allocated using __device__ declaration.

Ji¥i Filipovit GPU Architecture and Programming Model

Memory Hierarchy
0®000

Constant Memory

Constant memory
@ read-only
@ cached

@ cache hit is as fast as registry (under certain constraints),
cache miss is as fast as global memory

o limited size (64 kB for GPUs currently available)

@ application-scoped

Ji¥i Filipovit GPU Architecture and Programming Model

Memory Hierarchy
00000

Constant Memory

Declared using __constant__ keyword; the following function is
used for copying data to constant memory:

cudaError_t cudaMemcpyToSymbol(const char #*symbol,
const void *src, size_t count, size_t offset,
enum cudaMemcpyKind kind)

Data are copied from system memory
(cudaMemcpyHostToDevice) or global memory
(cudaMemcpyDeviceToDevice) from src into symbol. The
copied block has count bytes. Copied with offset into the
symbol memory.

GPU Architecture and Programming Model

Memory Hierarchy
00000

Texture Memory

Texture memory

@ cached, 2D locality

@ read-only for cache coherency reasons
@ high latency
°

several addressing modes

e normalization into [0, 1] range
e truncation or overflowing of coordinates

@ possible data filtering
e linear interpolation or nearest value

e this functionality is “for free” (implemented in HW)

More details are available in CUDA Programming Guide.

Ji¥i Filipovit GPU Architecture and Programming Model

Memory Hierarchy
0000

Data Cache

Read-only data cache
@ c.c. 3.5 or higher
@ the same hardware as texture cache (up to Pascal), or shared
memory (Volta and newer)
@ straightforward usage

@ compiler automatically uses data cache, when it recognize
that data are read-only
e we can help with const and __restrict__
e usage can be forced by __1dg()

Ji¥i Filipovit GPU Architecture and Programming Model

Memory Hierarchy
[1]

System-Local Memory

System RAM
@ connected to GPU via PCle

@ CPU (host) and GPU (device) memory transfers are
complicated by virtual addressing

@ itis

possible to allocate so called page-locked memory areas
overall system performance can be reduced

limited size

data are transferred faster over PCle

allows for parallel kernel run and data copying

allows for mapping of host address space onto the device

allows for write-combining access (data are not cached by
CPU)

Ji¥i Filipovit GPU Architecture and Programming Model

Memory Hierarchy
oe

Page Locked Memory

cudaMallocHost () is used instead of malloc() to allocate the
memory; the memory is freed using cudaFreeHost ()

@ cudaHostAllocPortable flag ensures page-locked memory
for all CPU threads

@ cudaHostAllocWriteCombined flag turns off caching for
CPU allocated memory

@ cudaHostAllocMapped flag sets host memory mapping in the
device address space

Ji¥i Filipovit GPU Architecture and Programming Model

Synchronization

Synchronization within the Block

Within block

@ native barrier synchronization
o all threads have to enter it (beware of conditions!)
e one instruction only, very fast if it doesn't degrade parallelism
o C for CUDA call __syncthreads()
e Fermi extensions: count, and, or

@ shared memory communication
e threads can exchange data
e barrier ensures that data are ready

@ synchronization latency hiding similar as for memory
e multiple blocks on multiprocessor

Ji¥i Filipovit GPU Architecture and Programming Model

Synchronization

Block Synchronization

Among blocks
@ global memory is visible for all blocks
@ poor support for synchronization
@ no global barrier for GPUs prior Pascal architecture and CUDA

8.0
e atomic operations on global memory
o global barrier can be implemented using multiple kernel calls

Ji¥i Filipovit GPU Architecture and Programming Model

Matrix Multiplication
©0000

Matrix Multiplication

We want to multiply matrices A a B and store the result into C.
For sake of simplicity, we only assume matrices sized n x n.

Cij = k=1 Aik Bkj

C language:
for (int i = 0; i < n; i4++)
for (int j = 0; j < n; j++)
C[l*n + _]] = 0.0;
for (int k = 0; k < n; k++4)
Cli*xn + j] += A[i*n 4+ k] * B[kxn + j];

povit GPU Architecture and Programming Model

Matrix Multiplication
0@000

Parallelization

for (int i = 0; i < n; i++4)
for (int j = 0; j < n; j++)
Cli*n + j] = 0.0;
= 0; k < n; kt+)

for (int k

Cli*n + j] += A[i%n + k] = B[kxn + j];
}
Multiple ways of parallelization

@ choose one loop
@ choose two loops
@ parallelize all the loops

GPU Architecture and Programming Model

Matrix Multiplication
[e]e] Yolo)

Parallelization

Parallelization of one loop

@ doesn’t scale well, it is necessary to use big matrices (we need
tens thousands of threads for good GPU utilization)

GPU Architecture and Programming Model

Matrix Multiplication
[e]e] Yolo)

Parallelization

Parallelization of one loop

@ doesn’t scale well, it is necessary to use big matrices (we need
tens thousands of threads for good GPU utilization)

Parallelization of two loops

@ scales well, number of threads grows quadratically w.r.t. n

GPU Architecture and Programming Model

Matrix Multiplication
[e]e] Yolo)

Parallelization

Parallelization of one loop

@ doesn’t scale well, it is necessary to use big matrices (we need
tens thousands of threads for good GPU utilization)

Parallelization of two loops
@ scales well, number of threads grows quadratically w.r.t. n
Parallelization using inner loop

@ complicated, synchronization needed when writing into C!

Ji¥i Filipovit GPU Architecture and Programming Model

Matrix Multiplication
[e]e] Yolo)

Parallelization

Parallelization of one loop

@ doesn’t scale well, it is necessary to use big matrices (we need
tens thousands of threads for good GPU utilization)

Parallelization of two loops

@ scales well, number of threads grows quadratically w.r.t. n
Parallelization using inner loop

@ complicated, synchronization needed when writing into C!

Best way is thus to parallelize loops over i and j.

Ji¥i Filipovit GPU Architecture and Programming Model

Matrix Multiplication
[ee]e] To)

First Kernel

We can form the block and grid as 2D array.

__global__ void mmul(float *A, float *B, float *C, int n){
int x blockIdx.x*xblockDim.x 4+ threadIdx.x;
int y = blockIdx.y*blockDim.y + threadIdx.y,;

float tmp = O0;
for (int k¥ = 0; k < n; k++)
tmp += A[y*n+k] * B[kxntx];

Cly*n + x] = tmp;

}

Note similarity to math description — parallel version is more
intuitive than the serial one!

ilipovit GPU Architecture and Programming Model

Matrix Multiplication
0000e

Performance

What will be the performance of our implementation?

ilipovit GPU Architecture and Programming Model

Matrix Multiplication
0000e

Performance

What will be the performance of our implementation?
Let's look at GeForce GTX 280

@ available 622 GFLOPS for matrix multiplication
e memory bandwidth is 142 GB/s

Ji¥i Filipovit GPU Architecture and Programming Model

Matrix Multiplication
0000e

Performance

What will be the performance of our implementation?
Let's look at GeForce GTX 280

@ available 622 GFLOPS for matrix multiplication
e memory bandwidth is 142 GB/s
Flop-to-word ratio of our implementation

@ in one step over k, we read 2 floats (one number from A and
B) and perform two arithmetic operations

@ one arithmetic operation corresponds to transfer of one float

@ global memory offers throughput of 35.5 billion floats per
second if one warp transfers one float from one matrix and 16
floats from the other matrix, we can achieve 66.8 GFLOPS

@ 66.8 GFLOPS is very far from 622 GFLOPS

Ji¥i Filipovit GPU Architecture and Programming Model

Matrix Multiplication
©00000

How to Improve It7

We hit the limit of global memory. GPUs have faster types of
memory, can we use them?

Ji¥i Filipovit GPU Architecture and Programming Model

Matrix Multiplication
©00000

How to Improve It7

We hit the limit of global memory. GPUs have faster types of
memory, can we use them?

For computation of one C element, we have to read one row from
A and one column from B, that are in the global memory.

Ji¥i Filipovit

GPU Architecture and Programming Model

Matrix Multiplication
©00000

How to Improve It7

We hit the limit of global memory. GPUs have faster types of
memory, can we use them?

For computation of one C element, we have to read one row from
A and one column from B, that are in the global memory.

Is it really necessary to do that separately for each element of C?

@ we read the same A row for all the elements in the same row
of C

@ we read the same B column for all the elements in the same
column of C

@ we can read some data only once from the global memory into
the shared memory and then read them repeatedly from the
shared memory

Ji¥i Filipovit GPU Architecture and Programming Model

Matrix Multiplication
0®0000

Tiled Algorithm

If we access the matrix in tiles, we can amortize transfers from the
global memory:

@ we will compute a x a tile of C matrix

@ we read tiles of the same size of matrices A and B into the
shared memory iteratively

@ the tiles will be multiplied and added to C

@ ratio of arithmetic operations to data transfers is a times
better

Natural mapping on GPU parallelism
@ each tile of C will be computed by a thread block
@ shared memory locality ensured

@ no inter-block synchronization needed

Ji¥i Filipovit GPU Architecture and Programming Model

Matrix Multiplication
00@000

Tiled Algorithm

How big thread blocks?

o if equal to the tile size, it is limited by the size of shared
memory

@ limited by the number of threads that can run on GPU

@ the reasonable block size is 16 x 16

multiple of warp size

one block will have reasonable 256 threads

one block needs 2 KB of shared memory

the memory will not limit the performance substantially
(16-25.5 = 568 GFLOPS, which is quite close to 622 GFLOPS)

Ji¥i Filipovit GPU Architecture and Programming Model

Matrix Multiplication
000@00

Algorithm

Algorithm schema

@ each thread block have tiles As and Bs in the shared memory

o tiles of A and B matrices will be multiplied iteratively, the
results will get accumulated in Csub variable

e threads in a block read tiles into As and Bs cooperatively
e each thread mutliplies rows in As and columns in Bs for its
element of Csub matrix

@ each thread stores one element of the matrix into the matrix
C in global memory

Beware of synchronization

@ the blocks need to be read completely before the
multiplication starts

@ before we read new blocks, operation on previous data needs
to be completed

Ji¥i Filipovit GPU Architecture and Programming Model

Matrix Multiplication
0000e0

Second Kernel

__global__ void mmul(float *A, float *B, float *C, int n){
int bx = blockIdx.x;
int by = blockIdx.y;
int tx = threadldx.x;
int ty = threadIdx.y;
_shared__ float As[TILE_SIZE][TILE_SIZE];
_shared__ float Bs[TILE_SIZE][TILE_SIZE];

O

float Csub = 0.
for (int b = 0;
asfoy][ee] =
Beloy][] =
_syncthreads (

£;
b < n/TILE_SIZE; b4+){

A[(ty + by*TILE_SIZE)*n + b*TILE_SIZE4tx];
B[(ty + b*TILE_SIZE)*n + bx*TILE_SIZE4tx];
)i

for (int k = 0; k < TILE_SIZE; k++)
Csub += As[ty][k]*Bs[k][tx];
_syncthreads ();

C[(ty + by*BLOCK)*n + bx*TILE_SIZE4+tx] = Csub;

ilipovit GPU Architecture and Programming Model

Matrix Multiplication
00000e

Performance

@ theoretical limitation of the first kernel is 66.8 GFLOPS,
measured performance is 36.6 GFLOPS

@ theoretical limitation of the second kernel is 568 GFLOPS,
measured performance is 198 GFLOPS

@ how to get closer to the maximum performance of the card?

@ we need to understand HW and its limitation better and
optimize the algorithms accordingly

@ topics for the next lectures

Ji¥i Filipovit GPU Architecture and Programming Model

	CUDA hardware
	Various GPUs

	Parallelism
	Parallelism

	Memory Hierarchy
	Thread-Local
	Block Local
	GPU Local
	System Local

	Synchronization
	Synchronization

	Matrix Multiplication
	Naive Algorithm
	Better Algorithm

