See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/278028617 Bridging the Gap: Investigating Effectiveness in Self-Defence CONFERENCE PAPER · JUNE 2015 READS 34 1 AUTHOR: Mario Staller 13 PUBLICATIONS 6 CITATIONS SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately. Available from: Mario Staller Retrieved on: 03 December 2015 Mario  S.  Staller   FROM  REALISM  TO  REPRESENTATIVENESS:   CHANGING  TERMINOLOGY  TO  INVESTIGATE  EFFECTIVENESS  IN  SELF-­DEFENCE     Physical  assaults  are  an  inherent  problem  of  society  (e.g.  Kajs,  Schumacher,  &  Vital,  2014;;   Tiesman,  Hendricks,  Konda,  &  Hartley,  2014).  One  strategy  in  order  to  prevent  violence  is  to   strengthen  the  capacities  to  defend  oneself  (Koss,  1990),  which  is  the  scope  of  various  self-­ defence   programs   and   systems.   While   training   in   self-­defence   facilitates   the   use   of   self-­ protective  strategies  in  real  life  situations,  it  is  important  to  document  if  individuals  learn  the   skills  taught  in  self-­defence  classes  and  if  they  are  able  to  perform  the  skills  when  these  are   required  (Gidycz  &  Dardis,  2014).  In  order  to  test  the  effectiveness  of  self-­defence  skills  in  an   ethically  acceptable  way,  instructors  and  scholars  have  to  design  environments,  in  which  valid   and  practically  relevant  results  about  the  performance  of  the  learner  can  be  obtained.  In  this   paper,   I   argue   to   abandon   the   term   “realistic”   environments   for   testing   and   learning   self-­ defence  skills.  Instead,  I  suggest  to  focus  on  representative  designs  of  such  tasks.  The  Trade-­ Off   Model   for   Self-­Defence   Simulation   Design   I   propose   helps   instructors   and   scholars   to   make  more  informed  decisions  on  designing  tasks  for  self-­defence  skill  testing  or  training.   The  Transferability  of  Self-­Defence  Skills   A  central  goal  of  self-­defence  training  is  to  increase  participants’  self-­defence  skills  (Brecklin,   2008).  Yet,  the  majority  of  studies  in  that  context  focuses  on  the  application  of  such  skills  in   simulated   assaults   (Ozer   &   Bandura,   1990),   the   demonstration   of   learned   techniques   (Henderson,   1997;;   Pava,   Bateman,   Appleton,   &   Glascock,   1991)   or   the   self-­perception   of   learned  skills  (Boe,  2015;;  Hollander,  2004;;  2014).  Only  a  few  studies  in  the  law  enforcement   domain  tried  to  investigate  the  participants’  actual  competence  to  deal  with  intense  violent   encounters   (Jager,   Klatt,   &   Bliesener,   2013;;   Renden,   Nieuwenhuys,   Savelsbergh,   &   Oudejans,  2015).     Renden  and  colleagues  (2015)  investigated  the  ability  to  manage  violence  on  duty  of  Dutch   police   officers   via   an   online   questionnaire   (n=922).   The   results   showed   that,   even   though   officers   performed   sufficiently   enough   to   manage   violent   situations,   they   seemed   neither   clearly   positive   nor   negative   about   the   usefulness   of   the   learned   skills.   Furthermore,   the   officers  indicated  a  wish  for  more  realistic  training.  Hence,  Renden  and  colleagues  (2015)   recommend  (a)  providing  more  training,  (b)  delivering  training  that  is  “more  comparable  to  the   high-­pressure  situations  that  officers  face  in  the  line  of  duty”  (p.  17)  and  (c)  considering  to   teach  more  reflex-­like  skills  that  are  easier  to  learn  and  execute.  In  another  study,  Jager  and   colleagues  (2013)  conducted  an  online  questionnaire  with  German  police  officers  from  North   Rhine-­Westfalia  (n  =  18.356)  in  order  to  map  the  victimization  of  police  officers  to  violence   while  on  duty.  Subsequent  interviews  (n  =  36)  with  participants  of  that  study,  who  experienced   physical  violence  on  the  streets,  revealed  that  the  attacks  on  the  street  differed  substantially   from  the  ones  they  were  confronted  with  in  the  training  environment.  One  officer  described  the   difference  between  the  incident  and  the  training  experience  as  follows:  “The  attackers  don’t   stand  around  and  attack  you  stupidly;;  they  charge  at  you.  It’s  chaos.  It  looks  different”  (Jager   et  al.,  2013,  p.  346,  translated  from  German).  Additionally,  attacked  officers  perceived  the   surprising  character  and  the  aggressiveness  of  the  situations  as  very  demanding.  Based  on   these  results  and  the  participants’  notion  that  training  should  be  designed  more  realistically,   Jager  and  colleagues  (2013)  recommend  practicing  self-­defence  skills  in  training  situations,   which  resemble  real  incidents.     Both   studies   reveal   that   the   performance   of   self-­defence   skills   is   different   in   training   (the   learning   environment)   as   compared   to   a   real   incident   (the   criterion   environment).   This   difference  between  the  learning  environment  and  the  criterion  environment  is  fundamental  to   the   understanding   of   the   acquisition   of   self-­defence   skills.   The   development   of   skills   that   transfer  into  the  real  world  is  the  underlying  goal  of  self-­defence  training.  This  transfer  refers   to  the  dependency  of  current  or  future  behaviour  on  prior  experience  (Thorndike  &  Woodworth,   1901).  In  the  context  of  perceptual  motor  skills,  including  self-­defence  skills,  transfer  involves   the  capability  to  use  prior  experiences  from  perceptual  motor  skill  performance  and  learning   trials  in  self-­defence  situations  (training  sessions  or  real  incidents)  and  then  to  adapt  these   experiences  to  similar  or  dissimilar  contexts  (Collard,  Oboeuf,  &  Ahmaidi,  2007).  Therefore,   the  effectiveness  of  training  programs  refers  to  the  transferability  of  self-­defence  skills  from   the  learning  environment  to  the  criterion  environment,  where  optimal  performance  is  needed   (see  figure  1).       Figure  1:  Representativeness  in  Self-­Defence   Transferability   of   skills   to   real   incidents   can   only   be   measured   through   the   analysis   of   performance  in  the  criterion  environment.  Corresponding  studies  focus  only  on  self-­reports  of   participants  (Jager  et  al.,  2013;;  Renden  et  al.,  2015).  What  is  missing  and  what  future  studies   should  address  are  analyses  of  performance  in  real  incidents  based  on  objective  data  like   video  footage  (e.g.  CCTV,  body-­cams).  A  major  drawback  of  analysing  performance  in  the   criterion  environment  is  the  delayed  feedback,  since  it  is  ethically  impermissible  to  actively   seek  violent  confrontations  in  order  to  capture  performance  after  new  skills  have  been  taught.   Therefore,  the  performance  of  self-­defence  skills  has  to  be  tested  in  a  testing  environment  that   simulates  the  criterion  environment.  Valid  results  about  the  transferability  of  self-­defence  skills   can  only  be  obtained  if  the  testing  environment  is  representative  to  the  criterion  environment   (red   arrow).   The   same   is   true   for   the   learning   environment:   the   more   representative   the   learning  environment,  the  better  the  transfer  of  skills  from  that  environment  to  performance   situations  (Broadbent,  Causer,  Williams,  &  Ford,  2015).   The  Simulation  of  Reality  of  Self-­Defence  Tasks   Practitioners  and  scholars  in  the  self-­defence  domain  regularly  refer  to  “realistic”  or  “reality-­ based”  training  with  regards  to  the  design  of  corresponding  learning  or  testing  environments   (Armstrong,  Clare,  &  Plecas,  2014;;  Dzida,  Hartunian,  &  Santiago,  2010;;  Hoff,  2012;;  Murray,   2004;;  Oudejans,  2008;;  Wagner,  2005;;  Wollert,  Driskell,  &  Quali,  2011).  Yet,  there  are  various   definitions   and   explanations   to   what   the   term   “realism”   exactly   refers   to   in   the   context   of   learning   environments.   For   example,   Armstrong   and   colleagues   (2014)   define   realistic   environments  as  an  environment,  that  “replicates  what  an  officer  would  expect  to  encounter   in   a   real-­life   situation”   (p.   52),   whereas   Hoff   (2012)   states   that   the   “more   realistic   the   environment,  the  greater  the  benefit”  (p.  21)  without  giving  further  explanations  what  “realistic”   refers  to.  In  the  context  of  scenario  based  training,  Wollert  and  colleagues  (2011)  point  out   that  a  scenario  is  a  simulation  of  reality  and  that  in  order  “to  be  realistic  it  must  ‘feel  right’  to   the  user”  (p.  47).  Furthermore,  they  use  the  term  “scenario  fidelity”  in  order  to  describe  “how   accurately  the  scenario  reflects  realistic  conditions”  (p.  47).  To  accommodate  for  the  evasive   nature  of  the  term,  they  introduced  three  dimensions:  equipment,  sensory  and  psychological   fidelity.  Yet,  these  dimensions  do  not  emphasize  the  functional  properties  of  the  simulation   that  align  with  learning  or  testing  objectives.  Scholars  in  the  medical  domain  also  suggest   abandoning  the  mere  term  of  “fidelity”  in  simulation  design,  due  to  its  imprecise  nature  and  its   lack  of  emphasis  regarding  functional  task  alignment  (Hamstra,  Brydges,  Hatala,  Zendejas,  &   Cook,  2014).   At  this  point  it  is  worth  noticing  the  skill  transfer  can  be  fostered  in  many  activities  during  a   training  session  and  not  necessarily  through  the  means  of  scenario-­based  training  (Staller,   2015;;  Staller  &  Zaiser,  2015).  Nevertheless,  a  simulation  of  reality  (via  scenario  based  training)   is  the  only  viable  way  to  test  the  effectiveness  of  technical  and  tactical  solutions  to  problems   encountered  in  the  field  (see  figure  2).  Deliberate  testing  learned  self-­defence  skills  in  the  field   is   ethically   impermissible,   whereas   the   testing   in   ideal   conditions   leads   to   the   erroneous   assumption  that  generated  (technical  and  tactical)  solutions  work  in  the  field.  Therefore,  the   simulation  of  reality  has  to  include  conditions  that  are  prevalent  in  violent  encounters,  such  as   surprising  attacks,  aggressiveness  and  high  amounts  of  pressure  (Jager  et  al.,  2013;;  Jensen   &  Wrisberg,  2014;;  Miller,  2008).       Figure  2:  The  Testing  of  Generated  Solutions  for  Self-­Defence  Problems   At  the  same  time  the  scenario  designer  has  to  ensure  the  safety  of  the  participants  by  omitting   the  real-­world  features  that  bear  the  risk  of  injuring  participants  (Murray,  2004;;  Wollert  et  al.,   2011).   For   example,   practicing   self-­defence   techniques   in   highly   dynamic   and   surprising   situations  using  real  guns  or  knifes  bears  the  risk  of  serious  injury  if  the  learner  makes  a   mistake.  Another  option  would  be  to  work  with  real  guns  or  real  knife,  but  to  drastically  reduce   the  speed,  the  dynamics  and  the  surprising  character  of  the  situation  (Staller,  2015).   The  Concept  of  Realistic  Training  is  Flawed   This   example   illustrates   the   imprecise   nature   of   the   term   “realistic”   in   training   or   testing   environments.   Both   situations   can   be   described   realistic   in   one   aspect,   but   unrealistic   in   another  aspect.  It  seems  that  in  most  cases  practitioners  refer  to  the  physical  resemblance  of   the  training  setting  as  being  resembling  reality  or  not.  Yet,  from  a  learning  perspective,  the   “functional  alignment  with  the  learning  task,  the  instructional  design,  and  the  instructor  likely   have   far   greater   impact   on   immediate   learning,   retention   and   transfer   to   new   settings”   (Hamstra  et  al.,  2014,  p.  389).   Based  on  these  observations,  I  argue  to  abandon  the  term  “realistic”  (and  related  terms  like   “reality-­based”)   and   shift   the   emphasis   to   representativeness   in   learning   and   testing   environments.   In   the   sport   research   domain,   representative   tasks   allow   the   performer   to   search   the   environment   for   reliable   information,   integrate   this   information   with   existing   knowledge   and   complete   an   appropriate   action   (Broadbent   et   al.,   2015).   The   representativeness  of  a  given  task  consists  of  two  critical  components:    functionality  of  the   task  and  action  fidelity  (Broadbent  et  al.,  2015;;  Pinder,  Davids,  Renshaw,  &  Araújo,  2011).   The  former  refers  to  whether  the  constraints  a  performer  is  exposed  to  and  must  act  upon  in   the   task   are   the   same   as   in   the   performance   environment.   The   latter   requires   that   the   performer   is   allowed   to   complete   a   response   that   is   the   same   as   in   the   performance   environment.   Central   to   these   ideas   is   the   relationship   between   perceptual-­cognitive   and   motor  processes  as  well  as  emotional  responses  associated  with  the  task  (Broadbent  et  al.,   2015;;  Headrick,  Renshaw,  Davids,  Pinder,  &  Araújo,  2015;;  Pinder  et  al.,  2011).   Self-­defence  environmental  constraints  that  the  performer  must  act  upon  (functionality)  can   be   categorized   in   (a)   physical,   (b)   perceptual-­cognitive   and   (c)   affective   components.   The   physical  design  refers  to  components  that  mainly  influence  the  intensity  of  attacks  and  attacker   behaviour,   which   the   defender   has   to   cope   with   (functionality).   This   is   connected   to   the   intensity   of   executed   motor   skills   of   the   defender   (action   fidelity).   Perceptual-­cognitive   components  impact  the  difficulty  of  decisions,  which  skill  to  perform  and  how  to  perform  it   (functionality).  Therefore,  such  constraints  mainly  put  load  on  the  perception,  decision-­making   and  problem  solving  abilities  of  the  performer  (action  fidelity).  Finally,  affective  components   influence  the  emotional  state,  under  which  the  defender  has  to  perform  (functionality).  This   allows   the   performer   to   experience   the   emotions   associated   with   the   task   and   how   this   impacted  their  thoughts  and  actions.  Performers  are  able  to  learn  (learning  environment)  or   test  (testing  environment)  their  coping  skills  with  these  emotional  demands  (action  fidelity).   The  matrix  in  table  1  shows  aspects  of  functionality  and  action  fidelity,  related  to  the  physical,   perceptual-­cognitive  and  affective  design  components.   Table  1:  Functionality  and  Action  Fidelity  in  Self-­Defence  Simulations     functionality   action  fidelity   physical   •   speed  /  level  of  force  of  the   attack   (Staller,  2015)   •   spatial  structure  of  the  attack   (Staller,  2015)   •   contact-­level  of  the  attack   (Staller,  2014)   •   speed  of  the  defence     (Staller,  2015)   •   spatial  structure  of  the  defence     (Staller,  2015)   •   contact-­level  of  the  defence   (Pfeiffer,  2014)   perceptual-­ cognitive   •   valid  cues   (Staller,  2014)   •   surprises  (Jensen  &  Wrisberg,   2014)   •   information  processing   (Staller  &  Zaiser,  2015)   •   problem-­solving     (Staller  &  Zaiser,  2015)   affective   •   anxiety  /  pressure     (Nieuwenhuys,  Caljouw,  Leijsen,   Schmeits,  &  Oudejans,  2009;;   Renden  et  al.,  2014)   •   emotion-­laden     (Headrick  et  al.,  2015)   •   pain-­avoidance     (Nieuwenhuys,  Savelsbergh,  &   Oudejans,  2011)     Even  though  the  functionality  of  the  task  is  related  to  the  action  fidelity  of  the  performer,  it  can   be  worth  disconnecting  them  for  learning  and  safety  reasons.  For  example,  in  order  to  allow   the  performer  to  learn  recognizing  cues  that  reveal  an  immediate  attack,  the  attacker  may  be   allowed  to  attack  very  fast  with  a  low  level  of  contact  (functionality  –  physical  design).  At  the   same  time,  the  defender  may  be  allowed  to  defend  very  fast  with  no  level  of  contact  (action   fidelity   –   physical   design).   While   high   levels   in   every   category   cannot   be   achieved   simultaneously  without  compromising  health  and  safety  issues  (Wollert  et  al.,  2011),  the  matrix   allows   to   adjust   single   categories   for   optimal   training   effects   and   thus   enables   trainers   to   precisely  design  representative  learning  and  testing  environments.   Health  and  Safety  in  Testing  and  Learning  Environments   The  designer  of  the  learning  or  testing  environment  has  to  ensure  the  safety  of  participants  as   well  as  safety  of  training  partners  or  role  players.  Since  performance  mistakes  are  going  to   happen,  the  instructor  has  to  make  sure  that  mistakes  do  not  occur  or,  if  they  occur,  that  they   have  no  serious  consequences  (e.g.  injuries,  death).  This  can  be  achieved  by  (a)  a  reduction   of   intensity,   (b)   a   reduction   of   task   complexity   or   (c)   environmental   changes.   Changes   in   intensity  refer  to  measures  that  focus  on  making  self-­defence  and  combat  techniques  less   dangerous  in  testing  or  training  settings.  Possible  options  include  the  reduction  of  permissible   contact  (as  defender  or  as  attacker),  the  exclusion  of  target  areas  or  the  reduction  in  speed   and  applied  force.  The  reduction  of  task  complexity  aims  at  lowering  the  load  of  perceptual-­ cognitive  processes  of  the  performer.  By  reducing  surprises,  ambiguity  and  available  options,   the  probability  of  mistakes  in  the  decision-­making  component  in  self-­defence  performance   decreases,   leaving   the   performer   more   attentional   resources   for   the   associated   motor   processes.   Finally,   environmental   changes   refer   to   measures   by   the   task   designer,   which   reduce  the  risk  of  injury  by  altering  the  physical  structure  of  the  training  or  testing  environment.   This  can  be  achieved,  for  example,  by  using  different  forms  of  safety  gear,  using  weapon   replica   that   are   less   dangerous   than   original   weapons   or   modifying   the   training   area   by   providing  mats  or  removing  sharp  or  dangerous  devices.   Since  the  design  of  any  activity  in  self-­defence  training  has  to  take  into  account  the  individual   (Staller  &  Zaiser,  accepted),  the  described  safety  options  have  to  be  tailored  to  the  participant.   For  example,  a  role  player  attacks  a  participant  with  gloves  and  reduced  force  in  his  punches   (environmental  change;;  reduction  in  intensity),  whereas  a  more  skilled  participant  is  attacked   with   full   force   and   lighter   gloves   (lesser   level   of   environmental   change;;   no   reduction   in   intensity).  Because  of  the  different  skill  level  of  the  defenders,  the  risk  of  mistakes  stays  the   same.  The  more  skilled  the  instructor,  the  better  will  be  his  estimation  about  the  probability  of   mistakes  and  injuries.   The  Trade-­Off  Model  of  Self-­Defence  Simulation  Design   The   analysis   of   representativeness   and   health   and   safety   in   the   context   of   self-­defence   simulation  design  leads  to  the  conclusion  that  these  two  concepts  are  of  competitive  nature.   The   more   health   and   safety   features   are   implemented   in   a   certain   learning   or   testing   environment,  the  more  the  level  of  overall  representativeness  will  decline  and  vice  versa.  The   Trade-­Off  Model  of  Self-­Defence  Simulation  Design  (see  figure  3)  illustrates  this  relationship   between   representativeness   and   health   and   safety   together   with   the   skill   level   or   the   participants  and  conveys  its  implications  for  the  design  of  effective  self-­defence  learning  and   testing  environments.     Figure  3:  The  Trade-­Off  Model  of  Self-­Defence  Simulation  Design   The  different  components  of  representativeness  and  the  different  components  of  health  and   safety  in  self-­defence  learning  and  testing  environments  enable  the  designer  to  make  informed   and  precise  decisions  about  he  “trade-­off”  between  the  two  competing  concepts.  Since  a  100%   level   of   overall   representativeness   cannot   be   achieved   (this   would   be   the   criterion   environment,  in  which  it  is  ethically  impermissible  to  perform),  the  instructor  may  design  a  task,   in   which   a   higher   level   of   representativeness   can   be   achieved   in   one   component,   while   representativeness  would  be  reduced  in  another  component,  in  order  to  ensure  health  and   safety  of  the  participants.  For  example,  if  the  attacker  attacks  with  a  real  knife,  which  reflects   a   high   level   of   representativeness   regarding   the   affective   constraints   under   which   the   individual  performs,  the  designer  may  consider  reducing  speed  in  the  task,  which  reduces  the   intensity  of  the  attack,  in  order  to  ensure  health  and  safety.   Conclusion   The  effective  design  of  testing  environments  in  self-­defence  simulations  is  paramount  to  the   testing  of  effectiveness  of  self-­defence  skills.  The  imprecise  nature  and  the  multidimensional   use   of   terms   like   “realism”   and   “reality-­based”   leads   to   difficulties   in   designing   such   environments.  Therefore,  I  argue  to  shift  the  emphasis  from  a  realistic  to  a  representative   design  of  testing  environments.  This  provides  the  instructor  with  a  more  precise  tool  to  make   informed   decisions   about   the   trade-­off   between   representativeness   and   health   and   safety   when  he  or  she  designs  tasks  for  the  testing  of  self-­defence  skills.  It  has  to  be  reiterated  that   a  full  level  of  representativeness  cannot  be  achieved  without  posing  at  least  some  risk  to  the   health   and   safety   of   the   participants.   The   proposed   Trade-­Off   Model   of   Self-­Defence   Simulation  Design  can  be  applied  in  the  design  of  any  learning  environment  that  aims  at  the   development  of  transferable  skills.     References   Armstrong,  J.,  Clare,  J.,  &  Plecas,  D.  (2014).  Monitoring  the  impact  of  scenario-­based  use-­ of-­force  simulations  on  police  heart  rate:  Evaluating  the  Royal  Canadian  Mounted  Police   Skills  Refresher  Program.  Western  Criminology  Review,  15(1),  51–59.   Boe,  O.  (2015).  Does  practicing  close  combat  improve  the  perceived  ability  to  perform   better?  Procedia  -­  Social  and  Behavioral  Sciences,  190,  409–415.   http://doi.org/10.1016/j.sbspro.2015.05.018   Brecklin,  L.  R.  (2008).  Evaluation  outcomes  of  self-­defense  training  for  women:  A  review.   Aggression  and  Violent  Behavior,  13(1),  60–76.  http://doi.org/10.1016/j.avb.2007.10.001   Broadbent,  D.  P.,  Causer,  J.,  Williams,  A.  M.,  &  Ford,  P.  R.  (2015).  Perceptual-­cognitive  skill   training  and  its  transfer  to  expert  performance  in  the  field:  Future  research  directions.   European  Journal  of  Sport  Science,  15(4),  322–331.   http://doi.org/10.1080/17461391.2014.957727   Collard,  L.,  Oboeuf,  A.,  &  Ahmaidi,  S.  (2007).  Motor  skills  transfer  from  gymnastics  to   swimming.  Perceptual  and  Motor  Skills,  105(1),  15–26.   http://doi.org/10.2466/pms.105.1.15-­26   Dzida,  S.,  Hartunian,  A.,  &  Santiago,  J.  (Eds.).  (2010).  The  ultimate  guide  to  reality-­based   self-­defense.  Valencia,  CA:  Black  Belt  Books.   Gidycz,  C.  A.,  &  Dardis,  C.  M.  (2014).  Feminist  self-­defense  and  resistance  training  for   college  students:  A  critical  review  and  recommendations  for  the  future.  Trauma,   Violence,  &  Abuse,  15(4),  322–333.  http://doi.org/10.1177/1524838014521026   Hamstra,  S.  J.,  Brydges,  R.,  Hatala,  R.,  Zendejas,  B.,  &  Cook,  D.  A.  (2014).  Reconsidering   fidelity  in  simulation-­based  training.  Academic  Medicine,  89(3),  387–392.   http://doi.org/10.1097/ACM.0000000000000130   Headrick,  J.,  Renshaw,  I.,  Davids,  K.,  Pinder,  R.  A.,  &  Araújo,  D.  (2015).  The  dynamics  of   expertise  acquisition  in  sport:  The  role  of  affective  learning  design.  Psychology  of  Sport   and  Exercise,  16,  83–90.  http://doi.org/10.1016/j.psychsport.2014.08.006   Henderson,  M.  C.  (1997).  Women's  self-­defense  training:  An  applied  analysis  of  self-­efficacy   theory.  Dissertation  Abstracts  International:  Section  B:  The  Sciences  and  Engineering,   Vol  57(12-­B),  Jun  1997,  7727.   Hoff,  T.  (2012).  Training  for  deadly  force  encounters.  FBI  Law  Enforcement  Bulletin,  (3),  20– 24.   Hollander,  J.  A.  (2004).  “I  can  take  care  of  myself”:  The  impact  of  self-­defense  training  on   women’s  lives.  Violence  Against  Women,  10(3),  205–235.   http://doi.org/10.1177/1077801203256202   Hollander,  J.  A.  (2014).  Does  self-­defense  training  prevent  sexual  violence  against  women?   Violence  Against  Women,  20(3),  252–269.  http://doi.org/10.1177/1077801214526046   Jager,  J.,  Klatt,  T.,  &  Bliesener,  T.  (2013).  NRW-­Studie:  Gewalt  gegen  Polizeibeamtinnen   und  Polizeibeamte  [NRW-­study:  Violence  against  police-­officers].  Christian-­Albrechts-­ Universität,  Kiel.   Jensen,  P.  R.,  &  Wrisberg,  C.  A.  (2014).  Performance  under  acute  stress:  A  qualitative  study   of  soldiers’  experiences  of  hand-­to-­hand  combat.  International  Journal  of  Stress   Management,  21(4),  406–423.  http://doi.org/10.1037/a0037998   Kajs,  L.  T.,  Schumacher,  G.,  &  Vital,  C.  A.  (2014).  Physical  assault  of  school  personnel.  The   Clearing  House:  a  Journal  of  Educational  Strategies,  Issues  and  Ideas,  87(3),  91–96.   http://doi.org/10.1080/00098655.2014.891879   Koss,  M.  P.  (1990).  The  women's  mental  health  research  agenda:  Violence  against  women.   American  Psychologist,  45(3),  374–380.  http://doi.org/10.1037/0003-­066X.45.3.374   Miller,  R.  (2008).  Meditations  on  violence.  Wolfboro,  NH:  YMAA  Publication  Center.   Murray,  K.  R.  (2004).  Training  at  the  speed  of  life,  volume  one:  The  definitive  textbook  for   military  and  law  enforcement  reality  based  training.  Gotha,  FL:  Armiger  Publications.   Nieuwenhuys,  A.,  Caljouw,  S.  R.,  Leijsen,  M.  R.,  Schmeits,  B.  A.  J.,  &  Oudejans,  R.  R.  D.   (2009).  Quantifying  police  officers'  arrest  and  self-­defence  skills:  Does  performance   decrease  under  pressure?  Ergonomics,  52(12),  1460–1468.   Nieuwenhuys,  A.,  Savelsbergh,  G.  J.  P.,  &  Oudejans,  R.  R.  D.  (2011).  Shoot  or  don't  shoot?   Why  police  officers  are  more  inclined  to  shoot  when  they  are  anxious.  Emotion.   http://doi.org/10.1037/a0025699   Oudejans,  R.  R.  D.  (2008).  Reality-­based  practice  under  pressure  improves  handgun   shooting  performance  of  police  officers.  Ergonomics,  51(3),  261–273.   Ozer,  E.  M.,  &  Bandura,  A.  (1990).  Mechanisms  governing  empowerment  effects:  A  self-­ efficacy  analysis.  Journal  of  Personality  and  Social  Psychology,  58(3),  472–486.   Pava,  W.  S.,  Bateman,  P.,  Appleton,  M.  K.,  &  Glascock,  J.  (1991).  Self-­defense  training  for   visually  impaired  women.  Journal  of  Visual  Impairment  &  Blindness.   Pfeiffer,  R.  (2014,  October).  Abstoppen  =  Durchziehen.  Paper  presented  at  the  Conference   “Kampfkunst  und  Kampfsport  in  Lehre  und  Forschung  2013”,  Ludwigsburg.   Pinder,  R.  A.,  Davids,  K.,  Renshaw,  I.,  &  Araújo,  D.  (2011).  Representative  learning  design   and  functionality  of  research  and  practice  in  sport.  Journal  of  Sport  &  Excercise   Psychology,  33,  146–155.   Renden,  P.  G.,  Landman,  A.,  Geerts,  S.  F.,  Jansen,  S.  E.  M.,  Faber,  G.  S.,  Savelsbergh,  G.   J.  P.,  &  Oudejans,  R.  R.  D.  (2014).  Effects  of  anxiety  on  the  execution  of  police  arrest   and  self-­defense  skills.  Anxiety,  Stress  and  Coping,  27(1),  100–112.   http://doi.org/10.1080/10615806.2013.810213   Renden,  P.  G.,  Nieuwenhuys,  A.,  Savelsbergh,  G.  J.  P.,  &  Oudejans,  R.  R.  D.  (2015).  Dutch   police  officers'  preparation  and  performance  of  their  arrest  and  self-­defence  skills:  A   questionnaire  study.  Applied  Ergonomics,  49(c),  8–17.   http://doi.org/10.1016/j.apergo.2015.01.002   Staller,  M.  S.  (2015).  Entscheiden  und  Handeln:  Didaktische  Überlegungen  im  polizeilichen   Einsatztraining  anhand  eines  Reglermodells  für  motorische  und  kognitive  Anforderungen   [Decision  making  and  action  –  Didactical  considerations  in  the  police  use  of  force   training  based  on  a  model  for  physical  and  cognitive  requirements].  Polizei  &   Wissenschaft,  (2),  24–36.   Staller,  M.  S.  (2014).  Developing  expertise  in  self-­defence:  An  interpretative   phenomenological  analysis  (Unpublished  master’s  dissertation).  Leeds  Metropolitan   University,  Leeds.   Staller,  M.  S.,  &  Zaiser,  B.  (2015).  Developing  Problem  Solvers:  New  Perspectives  on   Pedagogical  Practices  in  Police  Use  of  Force  Training.  The  Journal  of  Law  Enforcement,   4(3),  1–15.   Staller,  M.  S.,  &  Zaiser,  B.  (accepted).  Auf  dem  Weg  zur  Expertise  als  Einsatztrainer:  Selbst-­ bestimmtes  Lernen  im  Rahmen  der  regelmäßigen  Dienstverrichtung  [On  the  way  to   expertise  as  a  police  use-­of-­force  trainer:  Self-­directed  learning  on  the  job].  Polizei  &   Wissenschaft,  (4),  XX-­XX.   Thorndike,  E.  L.,  &  Woodworth,  R.  S.  (1901).  The  influence  of  improvement  in  one  mental   function  upon  the  efficiency  of  other  functions  I.  Psychological  Review,  8(3),  247–261.   http://doi.org/10.1037/h0074898   Tiesman,  H.  M.,  Hendricks,  S.,  Konda,  S.,  &  Hartley,  D.  (2014).  Physical  assaults  among   education  workers.  Journal  of  Occupational  and  Environmental  Medicine,  56(6),  621– 627.  http://doi.org/10.1097/JOM.0000000000000147   Wagner,  J.  (2005).  Reality-­based  personal  protection.  Valencia,  CA:  Black  Belt  Books.   Wollert,  T.  N.,  Driskell,  J.  E.,  &  Quali,  J.  (2011).  Stress  exposure  training  guidelines:   Instructor  guide  to  reality-­based  training.  Homeland  Security.