Name:

BASAL METABOLISM RATE (BMR)

The Harris–Benedict equations revised by Mifflin and St Jeor in 1990:^[4]

Men	BMR = $(10 \text{ x weight in kg}) + (6,25 \times \text{height in cm}) - (5 \times \text{age in years}) + 5$
Women	BMR = $(10 \text{ x weight in kg}) + (6,25 \times \text{height in cm}) - (5 \times \text{age in years}) - 161$

Your BMR is Kcal/day

TOTAL ENERGY EXPENDITURE (TEE)

Little to no <u>exercise</u>	Daily kilocalories needed = BMR x 1.2
Light exercise (1–3 days per week)	Daily kilocalories needed = BMR x 1.375
Moderate exercise (3–5 days per week)	Daily kilocalories needed = BMR x 1.55
Heavy exercise (6–7 days per week)	Daily kilocalories needed = BMR x 1.725
Very heavy exercise (twice per day, extra heavy workouts)	Daily kilocalories needed = BMR x 1.9

Your estimated TEE is Kcal/day

Conversion

1 MET = 3.5 ml/kg/min

1 MET = 1 kcal/kg/hr

METS to Kcal/min = multiply METS x 3.5 x body weight in kg then divide by 200

MET for physical activities are in 2011 compendium <u>https://sites.google.com/site/compendiumofphysicalactivities/compendia/2011%20Compendium%20of</u> <u>%20Physical%20Activities.pdf?attredirects=0&d=1</u>

Homework:

- 1) TEE during 1 week day (kcal)
- 2) TEE during 1 weekend day (kcal)
- 3) Energy income (nutrition) during 1 week day (kcal)
- 4) Energy income (nutrition) during 1 weekend day (kcal)
- 5) Compare the data

Check <u>http://nutritiondata.self.com/</u> for nutriotion facts