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ABSTRACT 

HOPKINS, W. G., S. W. MARSHALL, A. M. BATTERHAM, and J. HANIN. Progressive Statistics for Studies in Sports 
Medicine and Exercise Science. Med. Sci. Sports Exerc., Vol. 41, No. 1, pp. 3–12, 2009.  Statistical guidelines and expert 
statements are now available to assist in the analysis and reporting of studies in some biomedical disciplines.  We present here a 
more progressive resource for sample-based studies, meta-analyses and case studies in sports medicine and exercise science.  
We offer forthright advice on the following controversial or novel issues: using precision of estimation for inferences about 
population effects in preference to null-hypothesis testing, which is inadequate for assessing clinical or practical importance; 
justifying sample size via acceptable precision or confidence for clinical decisions rather than via adequate power for statistical 
significance; showing standard deviations rather than standard errors of the mean, to better communicate magnitude of differ-
ences in means and non-uniformity of error; avoiding purely non-parametric analyses, which cannot provide inferences about 
magnitude and are unnecessary; using regression statistics in validity studies, in preference to the impractical and biased limits 
of agreement; making greater use of qualitative methods to enrich sample-based quantitative projects; and seeking ethics ap-
proval for public access to the depersonalized raw data of a study, to address the need for more scrutiny of research and better 
meta-analyses.  Advice on less contentious issues includes: using covariates in linear models to adjust for confounders, to ac-
count for individual differences, and to identify potential mechanisms of an effect; using log transformation to deal with non-
uniformity of effects and error; identifying and deleting outliers; presenting descriptive, effect and inferential statistics in ap-
propriate formats; and contending with bias arising from problems with sampling, assignment, blinding, measurement error, 
and researchers' prejudices.  This article should advance the field by stimulating debate, promoting innovative approaches, and 
serving as a useful checklist for authors, reviewers and editors.  Key Words: ANALYSIS, CASE, DESIGN, INFERENCE, 
QUALITATIVE, QUANTITATIVE, SAMPLE 
 

In response to the widespread misuse of statistics in re-
search, several biomedical organizations have published 
statistical guidelines in their journals, including the Inter-
national Committee of Medical Journal Editors 
(www.icmje.org), the American Psychological Association 
(2), and the American Physiological Society (8).  Expert 
groups have also produced statements about how to publish 
reports of various kinds of medical research (Table 1).  
Some medical journals now include links to these state-
ments as part of their instructions to authors.   

 In this article we provide our view of best practice for 
the use of statistics in sports medicine and the exercise 
sciences.  The article is similar to those referenced in Table 
1 but includes more practical and original material. It 
should achieve three useful outcomes.  First, it should 
stimulate interest and debate about constructive change in 
the use of statistics in our disciplines.  Secondly, it should 

help legitimize the innovative or controversial approaches 
that we and others sometimes have difficulty including in 
publications.  Finally, it should serve as a statistical check-
list for researchers, reviewers and editors at the various 
stages of the research process. Not surprisingly, some of the 

TABLE 1.  Recent statements of best practice for reporting various kinds 
of biomedical research. 
Interventions (experiments) 

 

CONSORT: Consolidated Standards of Reporting Trials (1,22).  See 
consort-statement.org for statements, explanations and extensions to 
abstracts and to studies involving equivalence or non-inferiority, clus-
tered randomization, harmful outcomes, non-randomized designs, and 
various kinds of intervention. 

Observational (non-experimental) studies 

 

STROBE: Strengthening the Reporting of Observational Studies in 
Epidemiology (27,28).  See strobe-statement.org for statements and 
explanations, and see HuGeNet.ca  for extension to gene-association 
studies. 

Diagnostic tests 
 STARD: Standards for Reporting Diagnostic Accuracy (5,6). 
Meta-analyses 

 

QUOROM: Quality of Reporting of Meta-analyses (21).  MOOSE: 
Meta-analysis of Observational Studies in Epidemiology (25).  See 
also the Cochrane Handbook (at cochrane.org) and guidelines for 
meta-analysis of diagnostic tests (19) and of gene-association studies 
(at HuGeNet.ca). 
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reviewers of this article disagreed with some of our advice, 
so we emphasize here that the article represents neither a 
general consensus amongst experts nor editorial policy for 
this journal. Indeed, some of our innovations may take 
decades to become mainstream. 

Most of this article is devoted to advice on the various 
kinds of sample-based studies that comprise the bulk of 
research in our disciplines.  Table 2 and the accompanying 
notes deal with issues common to all such studies, arranged 
in the order that the issues arise in a manuscript.  This table 
applies not only to the usual studies of samples of indi-
viduals but also to meta-analyses (in which the sample 
consists of various studies) and quantitative non-clinical 

case studies (in which the sample consists of repeated ob-
servations on one subject).  Table 3, which should be used 
in conjunction with Table 2, deals with additional advice 
specific to each kind of sample-based study and with clini-
cal and qualitative single-case studies.  The sample-based 
studies in this table are arranged in the approximate de-
scending order of quality of evidence they provide for cau-
sality in the relationship between a predictor and dependent 
variable, followed by the various kinds of methods studies, 
meta-analyses, and the single-case studies. For more on cau-
sality and other issues in choice of design for a study, see 
Reference (14). 

 
TABLE 2. Generic statistical advice for sample-based studies. 
ABSTRACT 
• State why you studied the effect(s). 
• State the design, including any randomizing and blinding. 
• Characterize the subjects who contributed to the estimate of the ef-

fect(s) (final sample size, sex, skill, status…). 
• Ensure all numbers are either in numeric or graphical form in the Re-

sults section of the manuscript.   
• Show magnitudes and confidence intervals or limits of the most impor-

tant effect(s).  Avoid P values.  [Note 1] 
• Make a probabilistic statement about clinical, practical, or mechanistic 

importance of the effect(s).  
• The conclusion must not be simply a restatement of results. 
INTRODUCTION 
• Explain the need for the study.   

- Justify choice of a particular population of subjects.   
- Justify choice of design here, if it is one of the reasons for doing the 

study. 
• State an achievable aim or resolvable question about the magnitude of 

the effect(s).  Avoid hypotheses. [Note 1] 
METHODS 
Subjects 
• Explain the recruitment process and eligibility criteria for acquiring the 

sample from a population.   
- Justify any stratification aimed at proportions of subjects with certain 

characteristics in the sample. 
• Include permission for public access to depersonalized raw data in 

your application for ethics approval. [Note 2] 
Design 
• Describe any pilot study aimed at measurement properties of the vari-

ables and feasibility of the design. 
• To justify sample size, avoid adequate power for statistical signifi-

cance. Instead, estimate or reference the smallest important values for 
the most important effects and use with one or more of the following 
approaches, taking into account any multiple inferences and quantifi-
cation of individual differences or responses [Notes 3, 4]:  
- adequate precision for a trivial outcome, smallest expected outcome, 

or comparison with a published outcome;  
- acceptably low rates of wrong clinical decisions;  
- adequacy of sample size in similar published studies;   
- limited availability of subjects or resources (in which case state the 

smallest magnitude of effect your study could estimate adequately). 
• Detail the timings of all assessments and interventions. 
• See also Table 3 for advice on design of specific kinds of study. 
Measures 
• Justify choice of dependent and predictor variables in terms of practi-

cality and measurement properties specific to the subjects and condi-
tions of the study.  Use variables with the smallest errors. 

• Justify choice of potential moderator variables: subject characteristics 
or differences/changes in conditions or protocols that could affect the 

outcome and that are included in the analysis as predictors to reduce 
confounding and account for individual differences. 

• Justify choice of potential mediator variables: measures that could be 
associated with the dependent variable because of a causal link from a 
predictor and that are included in an analysis of the mechanism of the 
effect of the predictor.  [Note 5] 

• Consider including open-ended interviews or other qualitative methods, 
which afford serendipity and flexibility in data acquisition.  
- Use in a pilot phase aimed at defining purpose and methods, during 

data gathering in the project itself, and in a follow-up assessment of 
the project with stakeholders. 

Analysis 
• Describe any initial screening for miscodings, for example using stem-

and-leaf plots or frequency tables. 
• Justify any imputation of missing values and associated adjustment to 

analyses. 
• Describe the model used to derive the effect.  [Note 6] 

- Justify inclusion or exclusion of main effects, polynomial terms and in-
teractions in a linear model.   

- Explain the theoretical basis for use of any non-linear model.  
- Provide citations or evidence from simulations that any unusual or in-

novative data-mining technique you used to derive effects (neural 
nets, genetic algorithms, decision trees, rule induction) should give 
trustworthy estimates with your data.  

- Explain how you dealt with repeated measures or other clustering of 
observations. 

• Avoid purely non-parametric analyses. [Note 7] 
• If the dependent variable is continuous, indicate whether you dealt with 

non-uniformity of effects and/or error by transforming the dependent 
variable, by modeling different errors in a single analysis, and/or by per-
forming and combining separate analyses for independent groups.  
[Note 8] 

• Explain how you identified and dealt with outliers, and give a plausible 
reason for their presence. [Note 9] 

• Indicate how you dealt with the magnitude of the effect of linear con-
tinuous predictors or moderators, either as the effect of 2 SD, or as a 
partial correlation, or by parsing into independent subgroups. [Note 10] 

• Indicate how you performed any subsidiary mechanisms analysis with 
potential mediator variables, either using linear modeling or (for inter-
ventions) an analysis of change scores.  [Note 5] 

• Describe how you performed any sensitivity analysis, in which you in-
vestigated quantitatively, either by simulation or by simple calculation, 
the effect of error of measurement and other potential sources of bias 
on the magnitude and uncertainty of the effect statistic(s).   

• Explain how you made inferences about the true (infinite-sample) value 
of each effect.  [Note 1] 
- Show confidence intervals or limits.   
- Justify a value for the smallest important magnitude, then base the in-

ference on the disposition of the confidence interval relative to sub-
stantial magnitudes. 

- For effects with clinical or practical application, make a decision about 
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utility by estimating chances of benefit and harm. 
- Avoid the traditional approach of statistical significance based on a 

null-hypothesis test using a P value. 
- Explain any adjustment for multiple inferences. [Note 3] 

• Include this statement, when appropriate: measures of centrality and 
dispersion are mean ± SD.   
- Add the following statement, when appropriate: for variables that 

were log transformed before modeling, the mean shown is the back-
transformed mean of the log transform, and the dispersion is a coef-
ficient of variation (%) or ×/÷ factor SD. 

- The range (minimum-maximum) is sometimes informative, but be-
ware that it is strongly biased by sample size. 

- Avoid medians and other quantiles, except when parsing into sub-
groups. 

- Never show standard errors of means.  [Note 11] 
• See also Table 3 for advice on analysis of specific kinds of study. 
RESULTS 
Subject Characteristics 
• Describe the flow of number of subjects from those who were first 

approached about participation through those who ended up providing 
data for the effects. 

• Show a table of descriptive statistics of variables in important groups 
of the subjects included in the final analysis, not the subjects you first 
recruited.   
- For numeric variables, show mean ± SD.  [Note 11] 
- For nominal variables, show percent of subjects. 
- Summarize the characteristics of dropouts (subjects lost to follow-up) 

if they represent a substantial proportion (>10%) of the original sam-
ple or if their loss is likely to substantially bias the outcome.  Be pre-
cise about which groups they were in when they dropped out and 
why they dropped out. 

• See also Table 3 for advice on reporting subject characteristics in 
specific kinds of study. 

Outcome Statistics 
• Avoid all exact duplication of data between tables, figures, and text.   
• When adjustment for subject characteristics and other potential con-

founders is substantial, show unadjusted and adjusted outcomes. 
• Use standardized differences or changes in means to assess qualita-

tive magnitudes of the differences, but there is generally no need to 
show the standardized values. [Note 1] 

• If the most important effect is unclear, provide a qualitative interpreta-
tion of its uncertainty. (For example, it is unlikely to have a small bene-
ficial effect and very unlikely to be moderately beneficial.)  State the 
approximate sample size that would be needed to make it clear. 

• See also Table 3 for advice on outcome statistics in specific kinds of 
study. 

Numbers 
• Insert a space between numbers and units, with the exception of % 

and °.  Examples: 70 ml.min-1.kg-1; 90%. 
• Insert a hyphen between numbers and units only when grammatically 

necessary: the test lasted 4 min; it was a 4-min test. 
• Ensure that units shown in column or row headers of a table are con-

sistent with the data in the cells of the table. 
• Round up numbers to improve clarity. 

- Round up percents, SD, and the “±” version of confidence limits to 
two significant digits.  A third digit is sometimes appropriate to con-
vey adequate accuracy when the first digit is "1"; for example, 12.6% 
vs 13%.  A single digit is often appropriate for small percents (<1%) 
and some subject characteristics. 

- Match the precision of the mean to the precision of the SD.  In these 
properly presented examples, the true values of the means are the 
same, but they are rounded differently to match their different SD: 
4.567 ± 0.071, 4.57 ± 0.71, 4.6 ± 7.1, 5 ± 71, 0 ± 710, 0 ± 7100.   

- Similarly, match the precision of an effect statistic to that of its confi-
dence limits. 

• Express a confidence interval using “to” (e.g., the effect was 3.2 units; 
90% confidence interval -0.3 to 6.7 units) or express confidence limits 

using “±” (3.2 units; 90% confidence limits ±3.5 units).   
- Drop the wording “90% confidence interval/limits” for subsequent ef-

fects, but retain consistent punctuation (e.g., 2.1%; ±3.6%).  Note that 
there is a semicolon or comma before the “±” and no space after it for 
confidence limits, but there is a space and no other punctuation each 
side of a “±” denoting an SD.  Check your abstract and results sec-
tions carefully for consistency of such punctuation. 

- Confidence limits for effects derived from back-transformed logs can 
be expressed as an exact ×/÷factor by taking the square root of the 
upper limit divided by the lower limit.  Confidence limits of measure-
ment errors and of other SD can be expressed in the same way, but 
the resulting ×/÷factor becomes less accurate as degrees of freedom 
fall below 10.   

• When effects and confidence limits derived via log transformation are 
less than ~±25%, show as percent effects; otherwise show as factor ef-
fects.  Examples: -3%, -14 to 6%;  17%, ±6%;  a factor of 0.46, 0.18 to 
1.15;  a factor of 2.3, ×/÷1.5. 

• Do not use P-value inequalities, which oversimplify inferences and 
complicate or ruin subsequent meta-analysis. 
- Where brevity is required, replace with the ± or ×⁄÷ form of confidence 

limits.  Example: “active group 4.6 units, control group 3.6 units 
(P>0.05)” becomes “active group 4.6 units, control group 3.6 units 
(95% confidence limits ±1.3 units)”. 

- If you accede to an editor’s demand for P values, use two significant 
digits for P≥0.10 and one for P<0.10. Examples: P=0.56, P=0.10, 
P=0.07, P=0.003, P=0.00006 (or 6E-5). 

Figures 
• Use figures sparingly and only to highlight key outcomes.   
• Show a scattergram of individual values or residuals only to highlight 

the presence and nature of unusual non-linearity or non-uniformity. 
- Most non-uniformity can be summarized non-graphically, succinctly 

and more informatively with appropriate SD for appropriate subgroups.   
- Do not show a scattergram of individual values that can be summa-

rized by a correlation coefficient. (Exception: validity studies.) 
• Use line diagrams for means of repeated measurements. Use bar 

graphs for single observations of means of groups of different subjects. 
• In line diagrams and scattergrams, choose symbols to highlight similari-

ties and differences in groups or treatments. 
- Make the symbols too large rather than too small.   
- Explain the meaning of symbols using a key on the figure rather than 

in the legend.   
- Place the key sensibly to avoid wasting space. 
- Where possible, label lines directly rather than via a key. 

• Use a log scale for variables that required log transformation when the 
range of values plotted is greater than ~×1.25.   

• Show SD of group means to convey a sense of magnitude of effects.  
[Note 11] 
- For mean change scores, convey magnitude by showing a bar to the 

side indicating one SD of composite baseline scores. 
• In figures summarizing effects, show bars for confidence intervals rather 

than asterisks for P values.  
- State the level of confidence on the figure or in the legend. 
- Where possible, show the range of trivial effects on the figure using 

shading or dotted lines.  Regions defining small, moderate and large 
effects can sometimes be shown successfully. 

DISCUSSION 
• Avoid restating any numeric values exactly, other than to compare your 

findings with those in the literature.   
• Avoid introducing new data. 
• Be clear about the population to which your effect statistics apply, but 

consider their wider applicability.   
• Interpret a mechanisms analysis cautiously.  [Note 5]   
• Assess the possible bias arising from the following sources: 

- confounding by non-representativeness or imbalance in the sampling 
or assignment of subjects, when the relevant subject characteristics 
could affect the dependent variable and have not been adjusted for by 
inclusion in the model; 
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- random or systematic error in a continuous variable or classification 
error in a nominal variable; [Note 12] 

- choosing the largest or smallest of several effects that have overlap-

ping confidence intervals; [Note 3] 
- your prejudices or desire for an outcome, which can lead you to filter 

data inappropriately and misinterpret effects. 
 

Note 1 
Inferences are evidence-based conclusions about the 

true nature of something. The traditional approach to infer-
ences in research on samples is an assertion about whether 
the effect is statistically significant or “real”, based on a P 
value.  Specifically, when the range of uncertainty in the 
true value of an effect represented by the 95% confidence 
interval does not include the zero or null value, P is <0.05, 
the effect “can’t be zero”, so the null hypothesis is rejected 
and the effect is termed significant; otherwise P is >0.05 
and the effect is non-significant.  A fundamental theoretical 
dilemma with this approach is the fact that the null hy-
pothesis is always false; indeed, with a large enough sam-
ple size all effects are statistically significant.  On a more 
practical level, the failure of this approach to deal ade-
quately with the real-world importance of an effect is evi-
dent in the frequent misinterpretation of a non-significant 
effect as a null or trivial effect, even when it is likely to be 
substantial.  A significant effect that is likely to be trivial is 
also often misinterpreted as substantial. 

A more realistic and intuitive approach to inferences is 
based on where the confidence interval lies in relation to 
threshold values for substantial effects rather than the null 
value (4).  If the confidence interval includes values that 
are substantial in some positive and negative sense, such as 
beneficial and harmful, you state in plain language that the 
effect could be substantially positive and negative, or more 
simply that the effect is unclear.  Any other disposition of 
the confidence interval relative to the thresholds represents 
a clear outcome that can be reported as trivial, positive or 
negative, depending on the observed value of the effect.  
Such magnitude-based inferences about effects can be 
made more accurate and informative by qualifying them 
with probabilities that reflect the uncertainty in the true 
value: possibly harmful, very likely substantially positive, 
unclear but likely to be beneficial, and so on.  The qualita-
tive probabilistic terms can be assigned using the following 
scale (16):  <0.5%, most unlikely, almost certainly not; 0.5-
5%, very unlikely; 5-25%, unlikely, probably not; 25-75%, 
possibly; 75-95%, likely, probably; 95-99.5%, very likely; 
>99.5%, most likely, almost certainly. Research on the 
perception of probability could result in small adjustments 
to this scale. 

Use of thresholds for moderate and large effects allows 
even more informative inferential assertions about magni-
tude, such as probably moderately positive, possibly asso-
ciated with small increase in risk, almost certainly large 
gain, and so on.  As yet, only a few effect statistics have 
generally accepted magnitude thresholds for this purpose.  
Thresholds of 0.1, 0.3 and 0.5 for small, moderate and 
large correlation coefficients suggested by Cohen (7) can 
be augmented with 0.7 and 0.9 for very large and ex-
tremely large; these translate approximately into 0.20, 0.60, 
1.20, 2.0 and 4.0 for standardized differences in means (the 
mean difference divided by the between-subject SD) and 
into risk differences of 10%, 30%, 50%, 70% and 90% (see 

newstats.org/effectmag.html). The latter applied to chances 
of a medal provide thresholds for change in an athlete’s 
competition time or distance of 0.3, 0.9, 1.6, 2.5 and 4.0 of 
the within-athlete variation between competitions (17 and 
WGH, unpublished observations).  Magnitude thresholds for 
risk, hazard and odds ratios require more research, but a risk 
ratio as low as 1.1 for a factor affecting incidence or preva-
lence of a condition should be important for the affected 
population group, even when the condition is rare. Thresh-
olds have been suggested for some diagnostic statistics (20), 
but more research is needed on these and on thresholds for 
the more usual measures of validity and reliability. 

An appropriate default level of confidence for the confi-
dence interval is 90%, because it implies quite reasonably 
that an outcome is clear if the true value is very unlikely to 
be substantial in a positive and/or negative sense.   Use of 
90% rather than 95% has also been advocated as a way of 
discouraging readers from reinterpreting the outcome as 
significant or non-significant at the 5% level (24).  In any 
case, a symmetrical confidence interval of whatever level is 
appropriate for making only non-clinical or mechanistic 
inferences.  An inference or decision about clinical or prac-
tical utility should be based on probabilities of harm and 
benefit that reflect the greater importance of avoiding use of 
a harmful effect than failing to use a beneficial effect.  Sug-
gested default probabilities for declaring an effect clinically 
beneficial are <0.5% (most unlikely) for harm and >25% 
(possible) for benefit (16). A clinically unclear effect is 
therefore possibly beneficial (>25%) with an unacceptable 
risk of harm (>0.5%).  These probabilities correspond to a 
ratio of ~60 for odds of benefit to odds of harm, a suggested 
default when sample sizes are sub- or supra-optimal (16). 
Note that even when an effect is unclear, you can often 
make a useful probabilistic statement about how big or 
small it could be, and your findings should contribute to a 
meta-analysis. 

Magnitude-based inferences as outlined above represent 
a subset of the kinds of inference that are possible using so-
called Bayesian statistics, in which the researcher combines 
the study outcome with uncertainty in the effect prior to the 
study to get the posterior (updated) uncertainty in the effect.  
A qualitative version of this approach is an implicit and im-
portant part of the Discussion section of most studies, but in 
our view specification of the prior uncertainty is too subjec-
tive to apply the approach quantitatively.  Researchers may 
also have difficulty accessing and using the computational 
procedures.  On the other hand, confidence limits and prob-
abilities related to threshold magnitudes can be derived 
readily via a spreadsheet (16) by making the same assump-
tions about sampling distributions that statistical packages 
use to derive P values.  Bootstrapping, in which a sampling 
distribution for an effect is derived by resampling from the 
original sample thousands of times, also provides a robust 
approach to computing confidence limits and magnitude-
based probabilities when data or modeling are too complex 
to derive a sampling distribution analytically. 
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Note 2 
Public Access to depersonalized data, when feasible, 

serves the needs of the wider community by allowing more 
thorough scrutiny of data than that afforded by peer review 
and by leading to better meta-analyses. Make this state-
ment in your initial application for ethics approval, and 
state that the data will be available indefinitely at a website 
or on request without compromising the subjects’ privacy. 

Note 3 
Multiple Inferences. Any conclusive inference about 

an effect could be wrong, and the more effects you investi-
gate, the greater the chance of making an error.  If you test 
multiple hypotheses, there is inflation of the Type I error 
rate:  an increase in the chance that a null effect will turn 
up statistically significant. The usual remedy of making the 
tests more conservative is not appropriate for the most im-
portant pre-planned effect, it is seldom applied consistently 
to all other effects reported in a paper, and it creates prob-
lems for meta-analysts and other readers who want to as-
sess effects in isolation.  We therefore concur with others 
(e.g., 23) who advise against adjusting the Type I error rate 
or confidence level of confidence intervals for multiple 
effects.   

For several important clinical or practical effects, you 
should constrain the increase in the chances of making 
clinical errors.  Overall chances of benefit and harm for 
several interdependent effects can be estimated properly by 
bootstrapping, but a more practical and conservative ap-
proach is to assume the effects are independent and to es-
timate errors approximately by addition.  The sum of the 
chances of harm of all the effects that separately are clini-
cally useful should not exceed 0.5% (or your chosen 
maximum rate for Type 1 clinical errors; Note 4); other-
wise you should declare fewer effects useful and acknowl-
edge that your study is underpowered.  Your study is also 
underpowered if the sum of chances of benefit of all effects 
that separately are not clinically useful exceeds 25% (or 
your chosen Type 2 clinical error rate). When your sample 
size is small, reduce the chance that the study will be 
underpowered by designing and analyzing it for fewer ef-
fects.    

A problem with inferences about several effects with 
overlapping confidence intervals is misidentification of the 
largest (or smallest) and upward (or downward) bias in its 
magnitude. In simulations the bias is of the order of the 
average standard error of the outcome statistic, which is 
approximately one-third the width of the average 90% con-
fidence interval (WGH, unpublished observations). Ac-
knowledge such bias when your aim is to quantify the larg-
est or smallest of several effects. 

Note 4 
Sample Sizes that give acceptable precision with 90% 

confidence limits are similar to those based on a Type 1 
clinical error of 0.5% (the chance of using an effect that is 
harmful) and a Type 2 clinical error of 25% (the chance of 
not using an effect that is beneficial).  The sample sizes are 
approximately one-third those based on the traditional ap-
proach of an 80% chance of statistical significance at the 
5% level when the true effect has the smallest important 

value.  Until hypothesis testing loses respectability, you 
should include the traditional and new approaches in appli-
cations for ethical approval and funding.  

Whatever approach you use, sample size needs to be 
quadrupled to adequately estimate individual differences or 
responses and effects of covariates on the main effect.  Lar-
ger samples are also needed to keep clinical error rates for 
clinical or practical decisions acceptable when there is more 
than one important effect in a study (Note 3).  See Refer-
ence (12) for a spreadsheet and details of these and many 
other sample-size issues. 

Note 5 
Mechanisms.  In a mechanisms analysis, you deter-

mine the extent to which a putative mechanism variable 
mediates an effect through being in a causal chain linking 
the predictor to the dependent variable of the effect.  For an 
effect derived from a linear model, the contribution of the 
mechanism (or mediator) variable is represented by the re-
duction in the effect when the variable is included in the 
model as another predictor.  Any such reduction is a neces-
sary but not sufficient condition for the variable to contrib-
ute to the mechanism of the effect, because a causal role can 
be established definitively only in a separate controlled trial 
designed for that purpose. 

For interventions, you can also examine a plot of change 
scores of the dependent variable vs those of potential media-
tors, but beware that a relationship will not be obvious in the 
scattergram if individual responses are small relative to 
measurement error.  Mechanism variables are particularly 
useful in unblinded interventions, because evidence of a 
mechanism that cannot arise from expectation (placebo or 
nocebo) effects is also evidence that at least part of the ef-
fect of the intervention is not due to such effects. 

Note 6 
Linear Models.  An effect statistic is derived from a 

model (equation) linking a dependent (the “Y” variable) to a 
predictor and usually other predictors (the “X” variables or 
covariates).  The model is linear if the dependent can be 
expressed as a sum of terms, each term being a coefficient 
times a predictor or a product of predictors (interactions, 
including polynomials), plus one or more terms for random 
errors.  The effect statistic is the predictor’s coefficient or 
some derived form of it.  It follows from the additive nature 
of such models that the value of the effect statistic is for-
mally equivalent to the value expected when the other pre-
dictors in the model are held constant. Linear models there-
fore automatically provide adjustment for potential con-
founders and estimates of the effect of potential mechanism 
variables. A variable that covaries with a predictor and de-
pendent variable is a confounder if it causes some of the 
covariance and is a mechanism if it mediates it.  The reduc-
tion of an effect when such a variable is included in a linear 
model is the contribution of the variable to the effect, and 
the remaining effect is independent of (adjusted for) the 
variable. 

The usual models are linear and include: regression, 
ANOVA, general linear and mixed for a continuous de-
pendent; logistic regression, Poisson regression, negative 
binomial regression and generalized linear modeling for 



 8

events (a dichotomous or count dependent); and propor-
tional-hazards regression for a time-to-event dependent.  
Special linear models include factor analysis and structural 
equation modeling. 

For repeated measures or other clustering of observa-
tions of a continuous dependent variable, avoid the prob-
lem of interdependence of observations by using within-
subject modeling, in which you combine each subject's 
repeated measurements into a single measure (unit of 
analysis) for subsequent modeling; alternatively, account 
for the interdependence using the more powerful approach 
of mixed (multilevel or hierarchical) modeling, in which 
you estimate different random effects or errors within and 
between clusters. Avoid repeated-measures ANOVA, 
which sometimes fails to account properly for different 
errors.  For clustered event-type dependents (proportions or 
counts), use generalized estimation equations. 

Note 7 
Non-parametric Analysis.  A requirement for deriv-

ing inferential statistics with the family of general linear 
models is normality of the sampling distribution of the out-
come statistic.  Although there is no test that data meet this 
requirement, the central-limit theorem ensures that the 
sampling distribution is close enough to normal for accu-
rate inferences, even when sample sizes are small (~10) 
and especially after a transformation that reduces any 
marked skewness in the dependent variable or non-
uniformity of error. Testing for normality of the dependent 
variable and any related decision to use purely non-
parametric analyses (which are based on rank transforma-
tion and do not use linear or other parametric models) are 
therefore misguided. Such analyses lack power for small 
sample sizes, do not permit adjustment for covariates, and 
do not permit inferences about magnitude.  Rank transfor-
mation followed by parametric analysis can be appropriate 
(Note 8), and ironically, the distribution of a rank-
transformed variable is grossly non-normal. 

Note 8 
Non-uniformity of effect or error in linear models can 

produce incorrect estimates and confidence limits.  Check 
for non-uniformity by comparing standard deviations of the 
dependent variable in different subgroups or by examining 
plots of the dependent variable or its residuals for differ-
ences in scatter (heteroscedasticity) with different pre-
dicted values and/or different values of the predictors. 

Differences in standard deviations or errors between 
groups can be taken into account for simple comparisons of 
means by using the unequal-variances t statistic.  With 
more complex models use mixed modeling to allow for and 
estimate different standard deviations in different groups or 
with different treatments. For a simpler robust approach 
with independent subgroups, perform separate analyses 
then compare the outcomes using a spreadsheet (15). 

Transformation of the dependent variable is another ap-
proach to reducing non-uniformity, especially when there 
are differences in scatter for different predicted values.  For 
many dependent variables, effects and errors are uniform 
when expressed as factors or percents; log transformation 
converts these to uniform additive effects, which can be 

modeled linearly then expressed as factors or percents after 
back transformation. Always use log transformation for 
such variables, even when a narrow range in the dependent 
variable effectively eliminates non-uniformity. 

Rank transformation eliminates non-uniformity for most 
dependent variables and models, but it results in loss of pre-
cision with a small sample size and should therefore be used 
as a last resort.  To perform the analysis, sort all observa-
tions by the value of the dependent variable, assign each 
observation a rank (consecutive integer), then use the rank 
as the dependent variable in a liner model.  Such analyses 
are often referred to incorrectly as non-parametric. 

Use the transformed variable, not the raw variable, to 
gauge magnitudes of correlations and of standardized dif-
ferences or changes in means. Back-transform the mean 
effect to a mean in raw units and its confidence limits to 
percents or factors (for log transformation) or to raw units at 
the mean of the transformed variable or at an appropriate 
value of the raw variable (for all other transformations). 
When analysis of a transformed variable produces impossi-
ble values for an effect or a confidence limit (e.g., a nega-
tive rank with the rank transformation), the assumption of 
normality of the sampling distribution of the effect is vio-
lated and the analysis is therefore untrustworthy. Appropri-
ate use of bootstrapping avoids this problem. 

Note 9 
Outliers for a continuous dependent variable represent a 

kind of non-uniformity that appears on a plot of residuals vs 
predicteds as individual points with much larger residuals 
than other points. To delete the outliers in an objective fash-
ion, set a threshold by first standardizing the residuals (di-
viding by their standard deviation).  The resulting residuals 
are t statistics, and with the assumption of normality, a 
threshold for values that would occur rarely (<5% of the 
time is a good default) depends on sample size.  Approxi-
mate sample sizes and thresholds for the absolute value of t 
are:  <~50, >3.5;  ~500, >4.0;  ~5000, >4.5;  ~50,000, >5.0.  
Some packages identify outliers more accurately using sta-
tistics that account for the lower frequency of large residuals 
further away from the mean predicted value of the depend-
ent.  

Note 10 
Effect of Continuous Predictors.  The use of two 

standard deviations (SD) to gauge the effect of a continuous 
predictor ensures congruence between Cohen's threshold 
magnitudes for correlations and standardized differences 
(Note 1). Two SD of a normally distributed predictor also 
corresponds approximately to the mean separation of lower 
and upper tertiles (2.2 SD). The SD is ideally the variation 
in the predictor after adjustment for other predictors; the 
effect of 2 SD in a correlational study is then equivalent to, 
and can be replaced by, the partial correlation (the square 
root of the fraction of variance explained by the predictor 
after adjustment for all other predictors). 

A grossly skewed predictor can produce incorrect esti-
mates or confidence limits, so it should be transformed to 
reduce skewness.  Log transformation is often suitable for 
skewed predictors that have only positive values; as simple 
linear predictors their effects are then expressed per factor 
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or percent change of their original units. Alternatively, a 
skewed predictor can be parsed into quantiles (usually 2-5 
subgroups with equal numbers of observations) and in-
cluded in the model as a nominal variable or as an ordinal 
variable (a numeric variable with integer values).  Parsing 
is also appropriate for a predictor that is likely to have a 
non-linear effect not easily or realistically modeled as a 
polynomial. 

Note 11 
SEM vs SD.  The standard error of the mean (SEM = 

SD/√(group sample size)) is the sampling variation in a 
group mean, which is the expected typical variation in the 
mean from sample to sample.  Some researchers argue that, 
as such, this measure communicates uncertainty in the 
mean and is therefore preferable to the SD.  A related 
widespread belief is that non-overlap of SEM bars on a 
graph indicates a difference that is statistically significant 
at the 5% level.  Even if statistical significance was the 
preferred approach to inferences, this belief is justified 
only when the SEM in the two groups are equal, and for 
comparisons of changes in means, only when the SEM are 
for means of change scores.  Standard error bars on a time-
series graph of means of repeated measurements thus con-
vey a false impression of significance or non-significance, 
and therefore, to avoid confusion, SEM should not be 
shown for any data.  In any case, researchers are interested 
not in the uncertainty in a single mean but in the uncer-
tainty of an effect involving means, usually a simple com-
parison of two means.  Confidence intervals or related in-
ferential statistics are used to report uncertainty in such 
effects, making the SEM redundant and inferior.  

The above represents compelling arguments for not us-
ing the SEM, but there are even more compelling argu-
ments for using the SD.  First, it helps to assess non-
uniformity, which manifests as different SD in different 
groups.  Secondly, it can signpost the likely need for log 
transformation, when the SD of a variable that can have 
only positive values is of magnitude similar to or greater 

than the mean.  Finally and most importantly, the SD com-
municates the magnitude of differences or changes between 
means, which by default should be assessed relative to the 
usual between-subject SD (Note 1).  The manner in which 
the SEM depends on sample size makes it unsuitable for any 
of these applications, whereas the SD is practically unbiased 
for sample sizes ~10 or more (9). 

Note 12 
Error-related Bias.  Random error or random misclas-

sification in a variable attenuates effects involving the vari-
able and widens the confidence interval.  (Exception: ran-
dom error in a continuous dependent variable does not at-
tenuate effects of predictors on means of the variable.)  Af-
ter adjustment of the variable for any systematic difference 
from a criterion in a validity study with subjects similar to 
those in your study, it follows from statistical first principles 
that the correction for attenuation of an effect derived di-
rectly from the variable’s coefficient in a linear model is 
1/v2, where v is the validity correlation coefficient; the cor-
rection for a correlation with the variable is 1/v.  In this con-
text, a useful estimate for the upper bound of v is the square 
root of the short-term reliability correlation. 

When one variable in an effect has systematic error or 
misclassification that is substantially correlated with the 
value of the other variable, the effect will be biased up or 
down, depending on the correlation.  Example:  a spurious 
beneficial effect of physical activity on health could arise 
from healthier people exaggerating their self-reported activ-
ity.   

Substantial random or systematic error of measurement 
in a covariate used to adjust for confounding results in par-
tial or unpredictable adjustment respectively and thereby 
renders untrustworthy any claim about the presence or ab-
sence of the effect after adjustment. This problem applies 
also to a mechanisms analysis involving such a covariate. 

 
TABLE 3. Additional statistical advice for specific sample-based and single-case designs. 

INTERVENTIONS 
Design 
• Justify any choice between pre-post vs post-only and between parallel-

group vs crossover designs.  Avoid single-group (uncontrolled) de-
signs if possible.  See Reference (3) for more. 

• Investigate more than one experimental treatment only when sample 
size is adequate for multiple comparisons. [Note 4] 

• Explain any randomization of subjects to treatment groups or treat-
ment sequences, any stratification (balancing of numbers in subject-
characteristic subgroups), and any minimization of differences of 
means of subject characteristics in treatment groups.  State 
whether/how randomization to groups or sequences was concealed 
from researchers.   

• Detail any blinding of subjects and researchers. 
• Detail the timing and nature of assessments and interventions. 
Analysis 
• Indicate how you included, excluded or adjusted for subjects who 

showed substantial non-compliance with protocols or treatments or 
who were lost to follow-up. 

• In a parallel-groups trial, estimate and adjust for the potential con-
founding effect of any substantial differences in mean characteristics 

between groups. 
- In pre-post trials in particular, estimate and adjust for the effect of 

baseline score of the dependent variable on the treatment effect. Such 
adjustment eliminates any effect of regression to the mean, whereby a 
difference between groups at baseline arising from error of measure-
ment produces an artifactual treatment effect. 

Subject Characteristics 
• For continuous dependent and mediator variables, show mean and SD 

in the subject-characteristics table only at baseline. 
Outcome Statistics: Continuous Dependents 

(For event-type dependents, see the section below on prospective co-
hort studies.) 

• Baseline means and SD that appear in text or a table can be duplicated 
in a line diagram summarizing means and SD at all assay times 

• Show means and SD of change scores in each group.   
• Show the unadjusted and any relevant adjusted differences between 

the mean changes in treatment and control (or exposed and unex-
posed) groups, with confidence limits. 

• Show the standard error of measurement derived from repeated base-
line tests and/or pre-post change scores in a control group. 

• Include an analysis for individual responses derived from the SD of the 
change scores.  In post-only crossovers this analysis requires an as-
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sumption about, or separate estimation of, error of measurement over 
the time between treatments. 

Discussion 
• If there was lack or failure of blinding, estimate bias due to placebo 

and nocebo effects (outcomes better and worse than no treatment 
arising purely from expectation with the experimental and control 
treatments respectively). 

COHORT STUDIES 
Design 
• Describe the methods of follow-up. 
Analysis 
• Indicate how you included, excluded or adjusted for subjects who 

showed substantial non-compliance with protocols or treatments or 
who were lost to follow-up. 

• Adjust effects for any substantial difference between groups at base-
line. 

Outcome Statistics: Event Dependents 
(For continuous dependents, see the section above on interventions.) 

• When the outcome is assessed at fixed time points, show percentage 
of subjects in each group who experienced the event at each point.   

• When subjects experience multiple events, show raw or factor means 
and SD of counts per subject. 

• When the outcome is time to event, display survival curves for the 
treatment or exposure groups. 

• Show effects as the risk, odds or hazard ratios adjusted for relevant 
subject characteristics.   
- Present them also in a clinically meaningful way by making any ap-

propriate assumptions about incidence, prevalence, or exposure to 
convert the ratios to risks (proportions affected) and risk difference 
between groups or for different values of predictors, along with confi-
dence limits for the risk ratio and/or risk difference (18).   

- Adjusted mean time to event and its ratio or difference between 
groups is a clinically useful way to present some outcomes. 

Discussion 
• Take into account the fact that confounding can bias the risk ratio by 

as much as ×⁄÷2.0-3.0 in most cohort and case-control studies (26). 
CASE-CONTROL STUDIES 
Design 
• Explain how you tried to choose controls from the same population 

giving rise to the cases.   
• Justify the case:control ratio. (Note that >5 controls per case or >5 

cases per control give no useful increase in precision.)   
• Case-crossovers: describe how you defined the time windows for 

assessing case and control periods. 
Outcome Statistics 
• Present risk-factor outcomes in a clinically meaningful way by convert-

ing the odds ratio (which is a hazard ratio with incidence density sam-
pling) to a risk ratio and/or risk difference between control and ex-
posed subjects in an equivalent cohort study over a realistic period 
(18). 

Discussion 
• See the Discussion point on confounding in cohort studies. 
• Estimate bias due to under-matching, over-matching or other mis-

matching of controls. 
CROSS-SECTIONAL STUDIES  
Outcome Statistics 
• Show simple unadjusted effects and effects adjusted for all other pre-

dictors in the model. 
STRUCTURAL EQUATION MODELING 
Analysis 
• Specify the measurement and structural models using a path diagram.   
• Explain the estimation method and the strategy for assessing good-

ness of fit. 

• Demonstrate that all parameters were estimable.  
MEASUREMENT STUDIES: VALIDITY 
Design 
• Justify the cost-effectiveness of the criterion measure, citing studies of 

its superiority and measurement error. 
Analysis 
• Use linear or non-linear regression to estimate a calibration equation, a 

standard error of the estimate, and a validity correlation coefficient.   
- For criterion and practical measures in the same metric, use the cali-

bration equation to estimate bias in the practical measure over its 
range.   

- Do not calculate limits of agreement or present a Bland-Altman plot. 
[Note 13] 

MEASUREMENT STUDIES: DIAGNOSTIC TESTS 
Design 
• Document the diagnostic accuracy of the method or combination of 

methods used as the reference standard. 
Analysis 
• Calculate the following diagnostic measures, all of which can be useful:  

the validity correlation coefficient, the kappa coefficient, sensitivity, 
specificity, positive and negative predictive values, positive and nega-
tive diagnostic likelihood ratios, and diagnostic odds ratio.   

• For a continuous measure, calculate area under the ROC curve and 
give the above diagnostic measures for an appropriate threshold. 

MEASUREMENT STUDIES: RELIABILITY 
Design 
• Justify number of trials, raters, items of equipment and/or subjects 

needed to estimate the various within and between standard deviations. 
• Justify times between trials to establish effects due to familiarization 

(habituation), practice, learning, potentiation, and/or fatigue. 
Analysis 
• Assess habituation and other order-dependent effects in simple reliabil-

ity studies by deriving statistics for consecutive pairs of measurements. 
• The reliability statistics are the change in the mean between measure-

ments, the standard error of measurement (typical error), and the ap-
propriate intraclass correlation coefficient (or the practically equivalent 
test-retest Pearson correlation).   
- Do not abbreviate standard error of measurement as SEM, which is 

confused with standard error of the mean.   
- Avoid limits of agreement.  [Note 13] 

• With several levels of repeated measurement (e.g., repeated sets, dif-
ferent raters for the same subjects) use judicious averaging or prefera-
bly mixed modeling to estimate different errors as random effects. 

MEASUREMENT STUDIES: FACTOR STRUCTURE 
Design 
• Describe any pilot work with experts and subjects to develop or modify 

wording in any exploratory factor analysis. 
Analysis 
• Specify the analytic approach (principal components or principal axes), 

the criteria used to extract factors, the rotation method and factor-
loading cutoffs for selection of variables for each factor, and the com-
munalities to justify exclusion of items from the instrument. 

• For confirmatory factor analysis use an appropriate structural equation 
model. 

• For each factor calculate the square root of Cronbach’s alpha, which is 
an upper bound for the validity correlation. 

META-ANALYSES 
Design 
• Describe the search strategy and inclusion criteria for identifying rele-

vant studies.   
• Explain why you excluded specific studies that other researchers might 

consider worthy of inclusion. 
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Analysis 
• Explain how you reduced study-estimates to a common metric.   

- Conversion to factor effects (followed by log transformation) is often 
appropriate for means of continuous variables.  

- Avoid standardization (dividing each estimate by the between-subject 
SD) until after the analysis, using an appropriate between-subject 
composite SD derived from some or all studies. 

- Hazard ratios are often best for event outcomes. 
• Explain derivation of the weighting factor (inverse of the sampling 

variance, or adjusted sample size if sufficient authors do not provide 
sufficient inferential information). 

• Avoid fixed-effect meta-analysis.  State how you performed a random-
effect analysis to allow for real differences between study-estimates. 
With sufficient studies, adjust for study characteristics by including 
them as fixed effects, and account for any clustering of study-
estimates by including extra random effects. 

• Use a plot of standard error or 1/√(sample size) vs study-estimate or 
preferably the t statistic of the solution of each random effect to ex-
plore the possibility of publication bias and to identify outlier study-
estimates.  

• To gauge the effect of 2 SD of predictors [Note 10] representing mean 
subject characteristics, use an appropriate mean of the between-
subject SD from selected or all studies, not the SD of the study means.  

Study Characteristics 
• Show a table of study characteristics, study-estimates, inferential in-

formation (provided by authors) and confidence limits (computed by 
you, when necessary).   
- If the table is too large for publication, make it available at a website 

or on request.   
- A one-dimensional plot of effects and confidence intervals (“forest 

plot”) represents unnecessary duplication of data in the above table. 
• Show a scatterplot of study-estimates with confidence limits to empha-

size a relationship with a study characteristic. 
SINGLE-CASE STUDIES: QUANTITATIVE NON-CLINICAL 
Design 
• Regard these as sample-based studies aimed at an inference about 

the value of an effect statistic in the population of repeated observa-
tions on a single subject.   

• Justify the choice of design by identifying the closest sample-based 
design.   

• Take into account within-subject error when estimating “sample size” 
(number of repeated observations). 

• State the smallest important effect, which should be the same as for a 
usual sample-based study.   

Analysis 
• Account for trends in consecutive observations with appropriate predic-

tors.   
- Check for any remaining autocorrelation, which will appear as a trend 

in the scatter of a plot of residuals vs time or measurement number.   
- Use an advanced modeling procedure that allows for autocorrelation 

only if there is a trend that modeling can’t remove. 
• Make it clear that the inferences apply only to your subject and possibly 

only to a certain time of year or state. 
• Perform separate single-subject analyses when there is more than one 

case.  With an adequate sample of cases, use the usual sample-based 
repeated-measures analyses. 

SINGLE-CASE STUDIES: CLINICAL 
Case Description 
• For a difficult differential diagnosis, justify the use of appropriate tests 

by reporting their predictive power, preferably as positive and negative 
diagnostic likelihood ratios. 

Discussion 
• Where possible, use a quantitative Bayesian (sequential probabilistic) 

approach to estimate the likelihoods of contending diagnoses. 
SINGLE-CASE STUDIES: QUALITATIVE 
Methods 
• State and justify your ideological paradigm (e.g., grounded theory). 
• Describe your methods for gathering the information, including any 

attempt to demonstrate congruence of data and concepts by triangula-
tion (use of different methods). 

• Describe your formal approach to organizing the information (e.g., di-
mensions of form, content or quality, magnitude or intensity, context, 
and time (10)).   

• Describe how you reached saturation, when ongoing data collection and 
analysis generated no new categories or concepts.   

• Describe how you solicited feedback from respondents, peers and ex-
perts to address trustworthiness of the outcome. 

• Analyze a sufficiently large sample of cases or assessments of an indi-
vidual by coding the characteristics and outcomes of each case (as-
sessment) into variables and by following the advice for the appropriate 
sample-based study. [Note 14] 

Results and Discussion 
• Address the likelihood of alternative interpretations or outcomes. 
• To generalize beyond a single case or assessment, consider how dif-

ferences in subject or case characteristics could have affected the out-
come. 

 

Note 13 
Limits of Agreement.  Bland and Altman introduced 

limits of agreement (defining a reference interval for the 
difference between measures) and a plot of subjects' differ-
ence vs mean scores of the measures (for checking relative 
bias and non-uniformity) to address what they thought 
were shortcomings arising from misuse of validity and 
reliability correlation coefficients in measurement studies.  
Simple linear regression nevertheless provides superior 
statistics in validity studies, for the following reasons: the 
standard error of the estimate and the validity correlation 
can show that a measure is entirely suitable for clinical 
assessment of individuals and for sample-based research, 
yet the measure would not be interchangeable with a crite-
rion according to the limits of agreement;  the validity cor-
relation provides a correction for attenuation (see Note 12), 
but no such correction is available with limits of agree-
ment;  the regression equation provides trustworthy esti-

mates of the bias of one measure relative to the other, 
whereas the Bland-Altman plot shows artifactual bias for 
measures with substantially different errors (11);  regression 
statistics can be derived in all validity studies, whereas lim-
its of agreement can be derived from difference scores in 
only a minority of validity studies (“method-comparison” 
studies, where both measures are in the same units); finally, 
limits of agreement in a method-comparison study of a new 
measure with an existing imprecise measure provide no use-
ful information about the validity of the new measure, 
whereas the regression validity statistics can be combined 
with published validity regression statistics for the impre-
cise measure to correctly estimate validity regression statis-
tics for the new measure.  

Arguments have also been presented against the use of 
limits of agreement as a measure of reliability (13). Addi-
tionally, data generally contain several sources of random 
error, which are invariably estimated as variances in linear 
models then combined and expressed as standard errors of 
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measurement and/or correlations. Transformation to limits 
of agreement is of no further clinical or theoretical value. 

Note 14 
Qualitative Inferences. Some qualitative researchers 

believe that it is possible to use qualitative methods to gen-
eralize from a sample of qualitatively analyzed cases (or 
assessments of an individual) to a population (or the indi-
vidual generally).  Others do not even recognize the legiti-
macy of generalizing. In our view, generalizing is a fun-
damental obligation that is best met quantitatively, even 
when the sample is a series of qualitative case studies or 
assessments.  

 

Chris Bolter, Janet Dufek, Doug Curran-Everett, Patria Hume, 
George Kelley, Ken Quarrie, Chris Schmid, David Streiner and Martyn 
Standage provided valuable feedback on drafts, as did nine reviewers on 
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with a for-profit organization that would benefit from this study; publication 
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Editor-in-Chief ’s note: This article by Hopkins et al. should be consid-
ered invited commentary by the authors. The article has undergone peer 
review by eight other scientists, each an acknowledged expert in experi-
mental design, statistical analysis, data interpretation, and reporting, and 
the authors have undertaken extensive revision in response to those 
reviews and my own reviews. The majority of reviewers recommended 
publication of the article, but there remain several specific aspects of the 
discussion, on which authors and reviewers strongly disagreed. Therefore, 
the Associate Editors and I believe that our scientific community has not 
yet achieved sufficient ‘‘consensus’’ to establish formal editorial policy 
about appropriate reporting of research design, data analysis, and results. 
However, we also believe that Dr. Hopkins and his colleagues have pre-
sented a thoughtful, provocative framework of ‘‘progressive’’ recommen-
dations, which merit consideration and discussion. Readers are advised 
that the recommendations remain the authors’ opinion and not the jour-
nal’s editorial policy, and we encourage your feedback.  
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