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The need to report effect size estimates revisited.  
An overview of some recommended measures of effect size 
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Recent years have witnessed a growing number of published 
reports that point out the need for reporting various effect 
size estimates in the context of null hypothesis testing (H0) 
as a response to a tendency for reporting tests of statistical 
significance only, with less attention on other important aspects 
of statistical analysis. In the face of considerable changes over 
the past several years, neglect to report effect size estimates 
may be noted in such fields as medical science, psychology, 
applied linguistics, or pedagogy. Nor have sport sciences 
managed to totally escape the grips of this suboptimal practice: 
here statistical analyses in even some of the current research 
reports do not go much further than computing p-values. The 
p-value, however, is not meant to provide information on the 
actual strength of the relationship between variables, and does 
not allow the researcher to determine the effect of one variable 
on another. Effect size measures serve this purpose well. While 
the number of reports containing statistical estimates of effect 
sizes calculated after applying parametric tests is steadily 
increasing, reporting effect sizes with non-parametric tests is 
still very rare. Hence, the main objectives of this contribution 
are to promote various effect size measures in sport sciences 
through, once again, bringing to the readers’ attention the 
benefits of reporting them, and to present examples of such 
estimates with a greater focus on those that can be calculated 
for non-parametric tests.
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What is already known on this topic?
Estimates of effect size allow the assessment of the 
strength of the relationship between the investigated 
variables. In practice, they permit an evaluation of the 
magnitude and importance of the result obtained. An 
effect size estimate is a measure worth reporting next 
to the p-value in null hypothesis testing. However, 
not every research report contains it. After the null 
hypothesis has been tested with the use of parametric 
and non-parametric tests (statistical significance 
testing), measures of effect size can be estimated.

A few remarks on statistical hypothesis testing

Studies in sport sciences have addressed a wide 
spectrum of topics. Empirical verification in these 

areas often makes use of correlation models as well 
as experimental research models. Just like other 
scholars conducting empirical research, researchers 
in sport sciences often rely on inferential statistics to 
test hypotheses. From the point of view of statistics, 
the hypothesis verification process often comes down 
to determining the probability value (p-value), and to 
deciding whether the null hypothesis (H0) is rejected 
(a test of statistical significance) [1, 2, 3, 4]. In the  
case of rejecting the null hypothesis (H0), a researcher 
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will accept an alternative hypothesis (H1), which is 
often referred to as the so-called substantive hypothesis 
as a researcher formulates it based on various criteria 
applicable to their own studies. Such an approach to 
hypothesis verification has its origin in Fisher’s approach 
(p-value approach) and the Neyman-Pearson framework 
to hypothesis testing that was developed later (fixed-α 
approach). Below, based on Aranowska and Rytel 
[5, p. 250], we present the two approaches (Table 1).
Rejecting the null hypothesis (H0) when it is in fact 
true is what Neyman and Pearson call making a Type 
I error (known as “false positive” or “false alarm”). To 
control for Type I error, or in other words, to minimize 
the chance of finding a difference that is not really there 
in the data, researchers set an appropriately low alpha 
level in their analyses. By contrast, failing to reject the 
null hypothesis (H0) when it is actually false (and should 
be rejected) is referred to as a Type II error (known as 
“false negative”). Here, increasing the sample size is an 
effective way of reducing the probability of obtaining 
a Type II error [1, 2, 3].
The presented approach to hypothesis testing has been 
a common practice in many disciplines. However, 
reporting the p-value alone and drawing inferences 
based on the p-value alone is insufficient. Hence, 
statistical analyses and research reports should be 
supplemented with other essential measures that carry 
more information about the meaningfulness of the 
results obtained.  

Why the p-value alone is not enough? – or On the 
need to report effect size estimates
Thanks to some of its advantages, the concept of 
statistical significance testing has prevailed in the 

empirical verification of hypotheses to the extent that 
many areas have still seen other vital statistical measures 
go largely unreported. In spite of recommendations 
not to limit research reports to presenting the null 
hypothesis testing and reporting the p-value only, to 
this day a relatively large number of published articles 
have not gone much beyond that. By way of illustration, 
a meta-analysis of research accounts published in one 
prestigious psychology journal in the years 2009 and 
2010 showed that almost half of the articles reporting 
an Analysis of Variance (ANOVA) did not contain any 
measure of effect size, and only a mere quarter of the 
surveyed research reports supplemented Student’s t-test 
analyses with information about the effect size [6]. Sport 
sciences have seen comparable practices every now and 
then. As already pointed out, giving the p-value only to 
support the significance of the difference between groups, 
or measurements, or the significance of a relationship is 
insufficient [7, 8]. The p-value alone merely indicates 
what the probability of obtaining a result as extreme as 
or more extreme than the one actually obtained, assuming 
that the null hypothesis is true [1]. In many circumstances, 
the computed p-value depends (also) on the standard error 
(SE) [9]. It is now well established that the sample size 
affects the standard error and, as a result of that, the 
p-value. As the size of a sample increases, the standard 
error becomes smaller, and the p-value tends to decrease. 
Due to this dependence on sample size, p-values are seen 
as confounded. Sometimes a result that is statistically 
significant mainly indicates that a huge sample size was 
used [10, 11]. For this reason, the value of the p-value 
does not say whether the observed result is meaningful or 
important in terms of (1) the magnitude of the difference 
in the mean scores of the groups on some measure, or (2) 

Table 1. Fisher’s and Neyman-Pearson’s approaches to hypothesis testing

The Fisher approach to hypothesis testing
(also known as the p-value approach)

 The Neyman-Pearson approach to hypothesis testing (also 
known as the fixed-α approach)

−	 formulate the null hypothesis (H0)
−	 select the appropriate test statistic and specify its 

distribution 
−	 collect the data and calculate the value of the test statistic 

for your set of data
−	 specify the p-value
−	 if the p-value is sufficiently small (according to the 

criterion adopted), then reject the null hypothesis. 
Otherwise, do not reject the null hypothesis.

−	 formulate two hypotheses: the null hypothesis (H0) and 
the alternative hypothesis (H1)

−	 select the appropriate test statistic and specify its 
distribution

−	 specify α (alpha) and select the critical region (R)
−	 collect the data and calculate the value of the test statistic 

for your set of data
−	 if the value of the test statistic falls in the critical 

(rejection) region, then reject the null hypothesis at  
a chosen significance level (α). Otherwise, do not reject 
the null hypothesis.
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the strength of the relationship between the investigated 
variables. Relying on the p-value alone for statistical 
inference does not permit an evaluation of the magnitude 
and importance of the obtained result [10, 12, 13].
In general terms, there are good enough reasons for 
researchers to supplement their reports of the null 
hypothesis testing (statistical significance testing: the 
p-value) with information about effect sizes. Given 
statistical measures, a large number of effect size 
estimates have been developed and used to this day. 
As reporting effect size estimates is beneficial in more 
than one way, below we list the benefits that seem most 
fundamental [6, 12, 14, 15, 16, 17, 18]:
1.	 They reflect the strength of the relationship 

between variables and allow for the importance 
(meaningfulness) of such a relationship to be 
evaluated. This holds both for relationships explored 
in correlational research and the magnitude of 
effects obtained in experiments (i.e. evaluating 
the magnitude of a difference). On the other hand, 
applying a test of significance only and stating the 
p-value may solely provide information about the 
presence or absence of a difference, its impact and 
relation, leaving aside its importance.

2.	 Effect size estimates allow the results from different 
sources and authors to be properly compared. The 
p-value alone, which depends on the sample size, 
does not permit such comparisons. Hence, the 
effect size is critical in research syntheses and meta-
analyses that integrate the quantitative findings from 
various studies of related phenomena.

3.	 They can be used to calculate the power of  
a statistical test (power statistics), which in turn 
allows the researcher to determine the sample size 
needed for the study.

4.	 Effect sizes obtained in pilot studies where the 
sample size is small may be an indicator of future 
expectations of research results.

Some recommended effect size estimates
In the present section we provide an overview of a number 
of effect size estimates for statistical tests that are most 
commonly used in sport sciences. Since parametric tests 
are frequently used, measures of effect size for parametric 
tests are described first. Then, we describe effect size 
estimates for non-parametric tests. Reporting measures of 
effect size for the latter is more of a rarity. Aside from that, 
in the overview below we omit the measures of effect size 
that are most popular and widely reported for parametric 

tests. In sport sciences examples of the most popular 
estimates of effect size include correlation coefficients 
for relationships between variables measured on an 
interval or ratio scale such as the Pearson’s correlation 
coefficient (r). Nor do we present effect size measures 
popular and widely used, among others, in sport sciences, 
calculated for relationships between ordinal variables 
such as the Spearman’s coefficient of correlation. Some 
measures of effect size presented below can be calculated 
automatically with the help of statistical software such as 
Statistica, the Statistical Package for the Social Sciences 
(SPSS), or R. Others can be calculated by hand in a quick 
and easy way.

Effect size estimates used with parametric tests
The Student’s t-test for independent samples is 
a parametric test that is used to compare the means of 
two groups. After the null hypothesis is tested, one can 
easily and quickly calculate the value of the point-biserial 
correlation coefficient with the help of the Student’s t-test 
(provided that the t-value comes from comparing groups 
of relatively similar size). This coefficient is similar to the  
classical correlation coefficient in its interpretation. Using 
this coefficient one can calculate the popular r2 (η2). The 
formula used in computing the point-biserial correlation 
coefficient is presented below [1, 6, 19]:

r t
t df

=
+

2

2

r t
t df

2 2
2

2= =
+

η

t  –	 value of Student’s t-test,   df – the number  
of degrees of freedom (n1 – 1 + n2 – 1);  
n1, n2 – the number of observations in groups 
(group 1, group 2)

r  –	 point-biserial correlation coefficient
r2 (η2)  –	 the index assumes values from 0 to 1 and 

multiplied by 100% indicates the percentage 
of variance in the dependent variable 
explained by the independent variable

Often used here are the effect size measures from the 
so-called d family of size effects that include, among 
others, two commonly used measures: Cohen’s d and 
Hedges’ g. Below we provide a formula for calculating 
Cohen’s d [1, 19, 20, 21]:
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d x x
=

−1 2

σ
d  –	 Cohen’s index

x1 2,   –	 means of the first and second sample
σ  –	 standard deviation of a population

Normally, we do not know the population standard 
deviation and we estimate it based on the sample. 
Given that, it is possible here to use the estimate of 
standard deviation of the total population. In this case, 
to estimate the effect size one can compute the g 
coefficient that uses the weighted pooled standard 
deviation [22]:

g x x
n s n s

n n

=
−

−( ) + −( )
+ −

1 2

1 1

2

2 2

2

1 2

1 1

2

n1, n2  –	 the number of observations in groups (group 1, 
group 2)

s1, s2   –	 standard deviation in groups (group 1, group 2)
rough arbitrary criteria for Cohen’s d and Hedges’ g 
values: d or g of 0.2 is considered small, 0.5 medium, 
and 0.8 large [21]

When it comes to the dependent-samples Student’s 
t-test, it is possible to compute the correlation 
coefficient r. For this purpose, the above-presented 
formula for calculating r for independent samples is 
adopted. However, the r coefficient “is no longer the 
simple point-biserial correlation, but is instead the 
correlation between group membership and scores 
on the dependent variable with indicator variables 
for the paired individuals partialed out” [23, p. 447]. 
Additionally, once the dependent-samples Student’s 
t-test has been used, it is possible to calculate the effect 
size estimate g, where [1, 22]:

g D
SS
n

D

=

−1

D    –	 mean difference score
SSD  –	 sum of squared deviations (i.e. the sum of squares 

of deviations from the mean difference score)
	
In turn, to compare more than two groups on ratio variables 
or interval variables, Analysis of Variance (ANOVA) is 
used, be it one-way or multi-factor ANOVA (provided that 

the samples meet the criteria). The effect size estimates 
used here are the coefficient η2 or ω2. To compute the 
former (η2), we may use the ANOVA output from popular 
statistical software packages such as Statistica or SPSS. 
Below we present the formula [1, 6, 24]:

η2 =
SS
SS
ef

t

SSef   –	 sum of squares for the effect
SSt    –	 total sum of squares
 η2    –	 the index assumes values from 0 to 1 and 

multiplied by 100% indicates the percentage of 
variance in the dependent variable explained by 
the independent variable

One of the disadvantages of η2 is that the value of each 
particular effect is dependent to some extent on the 
size and number of other effects in the design [25]. 
A way out of this problem is to calculate the partial 
eta-squared statistic ( ),ηp

2  where a given factor is seen 
as playing a role in explaining the portion of variance 
in the dependent variable provided that other effects 
(factors) present in the analysis have been excluded [6]. 
The formula is presented below [1, 6, 24]:

ηp
ef

ef er

SS
SS SS

2 =
+

SSef     –	 sum of squares for the effect
SSer   –	 sum of squared errors

In the same way, one can calculate the effect size for 
within-subject designs (repeated measures). However, 
both coefficients η2 and ( )ηp

2

 are biased and they estimate 
the effect for a given sample only. Therefore, we should 
compute the coefficient ω2  that is relatively unbiased. To 
calculate it by hand one can use the ANOVA output that 
contains values of mean square (MS), sum of squares 
(SS), and degrees of freedom (df). For between-subject 
designs the following formula applies [24]:

ω2 =
−

+
df MS MS
SS MS

ef ef er

t er

( )

MSef    –  mean square of the effect
MSer  –  mean square error
SSt     –  the total sum of squares
 dfef      –  degrees of freedom for the effect
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For within-subject designs ω2 is calculated using the 
formula [24]:

ω2 =
−

+
df MS MS
SS MS

ef ef er

t sj

( )

MSef    –	 mean square of the effect
MSer  –	 mean square error
MSsj   –	 mean square for subjects
 dfef     –	 degrees of freedom for the effect

The partial omega-squared ( )ωp
2 is computed in the 

same way both for the between-subject designs and 
within-subject designs (repeated measures) using the 
formula below [24]:

ωp
ef ef er

ef ef ef er

df MS MS
df MS n df MS

2 =
−

+ −
( )

( )

Both η2 and ω2 are interpreted similarly to R2. Hence, 
these measures multiplied by 100% indicate the 
percentage of variance in the dependent variable 
explained by the independent variable.
 
Effect size estimates used with non-parametric tests
Now we turn to non-parametric tests. Various effect 
size estimates can be quickly calculated for the Mann-
Whitney U-test: a non-parametric statistical test used 
to compare two groups. In addition to the U-value, 
the Mann-Whitney test report (output) contains the 
standardized Z-score which, after running the Mann-
Whitney U-test on the data, can be used to compute the 
value of the correlation coefficient r. The interpretation 
of the calculated r-value coincides with the one for 
Pearson’s correlation coefficient (r). Also, the r-value 
can be easily converted to r2. The formulae for 
calculating r and r2 by hand are presented below [6]:

  
r Z

n
=

r Z
n

2 2
2

= =η

Z  –	 standardized value for the U-value
r  –	 correlation coefficient where r assumes the 

value ranging from –1.00 to 1.00
r2 (η2)      –	 the index assumes values from 0 to 1 and 

multiplied by 100% indicates the percentage 
of variance in the dependent variable 
explained by the independent variable

n    – 	 the total number of observations on which 
Z is based

Following the computation of the Mann-Whitney 
U-statistic, one can also calculate the Glass rank-biserial 
correlation using average ranks from two sets of data  
(
_
R1, 

_
R2) and sample size in each group. Some statistical 

packages next to the test score produce the sum of ranks 
that can be used to calculate mean ranks. To interpret the 
calculated value one can draw on the interpretation of 
the classical Pearson’s correlation coefficient (r). Here 
the following formula applies [1]:

r R R
n n

=
−
+

2 1 2

1 2

( )

_
R1  –	 mean rank for group 1_
R2  –	 mean rank for group 2 
n1   –	 sample size (group 1)
n2   – 	 sample size (group 2)
r   –	 correlation coefficient where r assumes the value 

ranging from –1.00 to 1.00

For another non-parametric test, the Wilcoxon signed-
rank test for paired samples, again, the Z-score may be 
used to calculate correlation coefficients employing the 
formula given below (where n is the total number of 
observations on which Z is based) [6].

r Z
n

=

On the other hand, once the Wilcoxon signed-rank test 
has been computed, one can also calculate the rank-
biserial correlation coefficient using the formula [1]:

r
T R R

n n
=

−
+








+ +

4
2

1

1 2

( )

R1    –  	sum of ranks with positive signs (sum of ranks 
of positive values)

R2    –  	 sum of ranks with negative signs (sum of ranks 
of negative values)

T    – 	 the smaller of the two values (R1 or R2)
n    – 	 the total sample size
r     – 	 correlation coefficient (which is the same as r 

coefficient in its interpretation)
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For the Kruskal-Wallis H-test, a non-parametric test 
adopted to compare more than two groups, the eta-
squared measure (η2) can be computed. The formula 
for calculating the η2 estimate using the H-statistic is 
presented below [26]:

ηH
H k
n k

2 1
=

− +
−

H  –	 the value obtained in the Kruskal-Wallis test (the 
Kruskal-Wallis H-test statistic)

η2  –	 eta-squared estimate assumes values from 0 to 1 
and multiplied by 100% indicates the percentage 
of variance in the dependent variable explained 
by the independent variable

k  – 	 the number of groups
n  –	 the total number of observations

In addition, once the Kruskal-Wallis H-test has been 
computed, the epsilon-squared estimate of effect size 
can be calculated, where [1]:

E H
n nR

2

2 1 1
=

− +( ) / ( )

 H   –	 the value obtained in the Kruskal-Wallis test (the 
Kruskal-Wallis H-test statistic)

  n   –	 the total number of observations
ER

2   –	 coefficient assumes the value from 0 (indicating 
no relationship) to 1 (indicating a perfect 
relationship)

Also, for the Friedman test, a non-parametric 
statistical test employed to compare three or more 
paired measurements (repeated measures), an effect 
size estimate can be calculated (and  is referred to 
as W) [1]:

W
N k

w=
−

χ2

1( )

W   –	 the Kendall’s W test value
χw

2  – 	 the Friedman test statistic value
N  – 	 sample size
k  – 	 the number of measurements per subject

The Kendall’s W coefficient assumes the value from 0 
(indicating no relationship) to 1 (indicating a perfect 
relationship).

Also, in sport sciences it is quite common practice to use 
the chi-square test of independence (χ2). Having tested 
the null hypothesis (H0) with a χ2 test of independence, 
one may assess the strength of a relationship between 
nominal variables. In this case, Phi (φYoula, computed 
for 2 × 2 tables where each variable has only two 
levels, e.g. the first variable: male/female, the second 
variable: smoking/non-smoking) can be reported, or 
one can report Cramer’s V (for tables which have 
more than 2 × 2 rows and columns). The values 
obtained for the estimates of effect size are similar to 
correlation coefficients in their interpretation. Again, 
popular statistical software packages calculate Phi and 
Cramer’s V. Below we present the formulae for such 
calculations [1, 6]:

φ
χ

=
2

n

and for Cramer’s V:

V
n dfs

=
χ2

( )

dfs    – 	 degrees of freedom for the smaller from two 
numbers (the number of rows and columns, 
whichever is smaller)

χ2   – 	 the calculated chi-square statistic
n    – 	 the total number of cases

The Phi coefficient and the Cramer’s V assume the  
value from 0 (indicating no relationship) to 1 (indicating 
a perfect relationship).

Conclusions
In the present contribution we have re-emphasized the 
need to report estimates of effect size in conjunction 
with null hypothesis testing, and the benefits thereof. We 
have presented some of the recommended measures of 
effect size for statistical tests that are most commonly 
used in sport sciences. Additional emphasis has been 
on effect size estimates for non-parametric tests, as 
reporting effect size measures for these tests is still 
very rare. The present paper may also serve as a point 
of departure for further discussion where practical 
(e.g. clinical) magnitude (importance) of results in the 
light of the conditionings in a chosen area will come 
into focus.
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What this paper adds?
This paper highlights the need for including adequate 
estimates of effect size in research reports in the area of 
sport sciences. The overview contains various types of 
effect size measures that can be calculated following 
the computation of parametric and non-parametric 
tests. Since reporting effect size estimates when using 
non-parametric tests is very rare, this section may 
prove particularly useful for researchers. Some of the 
effect size measures given can be calculated by hand 
quite easily, others can be calculated with the help of 
popular statistical software packages.
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