2D and 3d motion analysis Mazarik university BMX trick
lenght of the skate:
I calibrated the system of pixel putting the coordinates of two points (upper and lower points of the skate) in the calibration section of excel.
-on the video : $1,53 \mathrm{~cm}$
-real lenght: 60 cm
60/1,53=39,21
=>so each distance must be multipicate by 39,21 to become true

Lenght of the jump :

$1^{\text {st }}$ picture :
distance from the skate : $3,94 \mathrm{~cm}$
real distance : $3,94 * 39,21=154,5 \mathrm{~cm}$
$2^{\text {nd }}$ picture :
distance from the skate : $2,04 \mathrm{~cm}$
real distance : 80 cm
Total lenght of the jump :
$154,5+80=234,5 \mathrm{~cm}$
$=>\underline{\mathbf{2}, \mathbf{3 4 5} \text { metres }}$

Speed

Time in the air :
I toke the time written on the video at the beginning of the jump and then at the end.
Time at the first frame of the jump : $2,20 \mathrm{sec}$
Time at the last frame of the jump : $3,00 \mathrm{sec}$
Total time in the air :
$3,00-2,20=0,80 \mathrm{sec}$
Speed in the air :
2,345/0,80=2,93
$\underline{2,93 \mathrm{~m} / \mathrm{s}}$
and $10,55 \mathrm{~km} / \mathrm{h}$

Height

high of the jump : $1,83 \mathrm{~cm}$
real high : $\underline{71,75 \mathrm{~cm}}$

Angle of the jump

A= the highest
$\mathrm{B}=$ the
B
point of the jump
beginning of the jump
We need the angle B
$\operatorname{Tan}(B)=71,75 / 154,5$
so $\operatorname{Tan}(B)=0,464$
so $B=\underline{\mathbf{2 4 . 8 9}}{ }^{\circ}$

