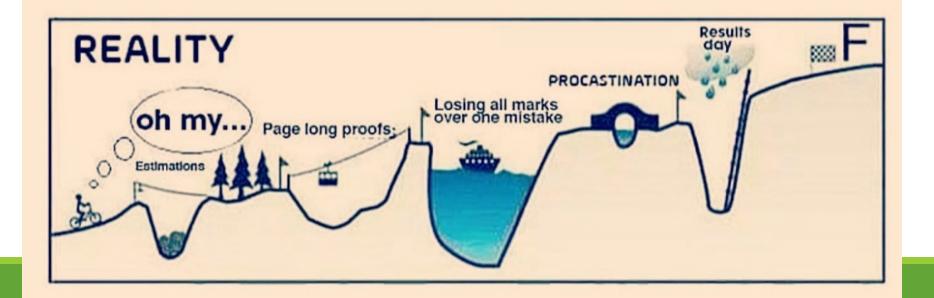
# Factor Analysis

**MARTIN SEBERA** 

MAGDEBURG 15. 12. 2023

## Martin Sebera

Faculty of Sports Studies, Masaryk University Brno Czech Republic




**Interests:** mathematics, statistics, programming, artificial intelligence, esports <a href="https://www.muni.cz/en/people/55084-martin-sebera">https://www.muni.cz/en/people/55084-martin-sebera</a>

Email: sebera@fsps.muni.cz

## **Maths Degree**

| THINKING | Fun, interesting | concepts        | Δ+ |
|----------|------------------|-----------------|----|
| E.       | Good teachers    | Calculator work |    |
| 0~0      |                  |                 |    |



## Lecture schedule – Factor Analysis

What is it used for

Requirements

Procedure

Weaknesses

Conclusion

Example - Decathlon

- sw TIBCO Statistica 14

- sw IBM SPSS 28

# When was it created and who discovered it?

- 1. Factor analysis originated in the field of psychology.
- 2. Its founder is considered to be Charles Spearman
- 3. in 1904 in an article on the nature of intelligence proposed the hypothesis of the existence of a common factor of "general intellectual ability", causing correlations between the results of various intelligence tests

## What is it used for

- 1. To identify groups of variables that are interrelated and can be represented by a smaller number of factors or latent variables.
- 2. Dimensionality reduction: Factor analysis allows data simplification by reducing many measured variables to a smaller number of factors.
- 3. Structure Identification: Helps identify hidden structure in a data set, which can for example reveal groups of variables that may represent a common concept or factor.
- 4. Data Exploration: It is useful for data exploration when researchers are looking for patterns or relationships in complex datasets.

## Requirements

- 1. Sample size: at least 5-10 observations for each variable, but ideally the total sample should have at least 100 observations. Larger samples provide more robust and stable results.
- 2. Linear relationships: Factor analysis assumes linear relationships between variables.
- **3. Normal distribution of data**: Although factor analysis can be performed on data that is not normally distributed, the normal distribution increases the reliability.
- 4. Homogeneity of the sample: The data should come from a homogeneous group or population so that the results of the factor analysis are relevant and interpretable for that population.
- **5.** No or minimal missing values

## Procedure 1/2

#### **Data preparation:**

- sample size, linear relationships between variables, normal distribution, etc.
- **Data cleaning** including addressing missing values and removing outliers.

**Method selection** - Deciding whether to use **exploratory factor analysis** (EFA) or **confirmatory factor analysis** (CFA). EFA is used for discovering potential structures, while CFA for testing hypotheses about the structure.

**Calculation of the correlation matrix** - Creating a correlation matrix of variables. This matrix provides the basis for factor analysis.

**Choosing an extraction method** - principal axes (Principal Axis Factoring) or maximum likelihood

## **Procedure 2/2**

**Selection of the number of factors** to be extracted, which can be done using the Kaiser criterion (eigenvalues > 1), the scree test, or based on theoretical considerations.

**Factor rotation** – better interpretation. Orthogonal rotation (e.g. Varimax) maintains factor independence.

**Interpretation of factors** - Each factor is interpreted on the basis of variables that have high loadings on it. Interpretation depends on the research context.

**Assessment of model fit and reliability** - In CFA, model fit is evaluated using various measures such as RMSEA (Root Mean Square Error of Approximation), CFI (Comparative Fit Index), and others.

# Important terms again - 1/3

The principal component method gives uncorrelated factors, which are additionally ordered according to their variance, such that the first factor has the largest variance and the last the smallest.

*Factor analysis* can be considered as its extension.

While principal component analysis tries to reduce the number of variables so that the variance of the original variables is best clarified, factor analysis tries to clarify the correlations of the original variables as best as possible.

# Important terms again - 2/3

#### **Factor rotation**

- 1. there are infinitely many factor solutions.
- 2. The factors are transformed so that we can interpret them as best as possible.
- 3. At the same time, practice has shown that factors whose factor loadings take on values close to either one or zero are best interpreted

# Important terms again - 3/3

#### **Interpretation of factors**

- 1. We describe a factor as having something in common in content with those variables that have high factor loadings on that factor.
- 2. When interpreting the factors, one must be careful and think about whether the name of the factor is really behind its real existence.
- 3. If it does not have a logical explanation for the factor, we cannot use factor analysis

## Weaknesses

- 1. Complexity and subjectivity: The interpretation of factors can often be subjective and depends on the researcher's decisions (e.g. choice of number of factors, rotation).
- 2. Assumptions about the data: linear relationships between variables and normal distribution, which do not always correspond to the actual data.
- 3. Dependence on sample size: A large enough sample is needed for reliable results.
- 4. Limitation to linear relationships: Factor analysis cannot effectively handle nonlinear relationships between variables.
- 5. Unclear meaning of factors: Identified factors may not always have a clear or intuitive meaning and may require further research to be fully understood.

# Conclusion

It is always important to remember that

- 1. no statistical technique is all-powerfull,
- 2. it is necessary to evaluate the appropriateness of the method in relation to the data and objectives of your research.
- 3. If you are unsure, it may also be helpful to consult an expert in statistics or research methodology about the issue.

- 1. sw TIBCO Statistica 14
- 2. sw IBM SPSS 28

1. Objective of the analysis - We are interested in whether it is possible to identify the factors on which the results in individual disciplines depend. And further which factors are most important for victory.

2. Data standardization - Not necessary. Factor analysis, as a method based on the correlation matrix, is not dependent on the scale of the input values.

3. Factor estimation methods - the method of principal components,

|                       | 1<br>Team | 2<br>Finished | 3<br>Points | 4<br>100 m | 5<br>Long jump | 6<br>Shot put | 7<br>High jump | 8<br>400 m | 9<br>110 m hurdles | 10<br>Discus<br>Throw | 11<br>Pole vault | 12<br>Javelin | 13<br>1500 m |
|-----------------------|-----------|---------------|-------------|------------|----------------|---------------|----------------|------------|--------------------|-----------------------|------------------|---------------|--------------|
| Andreev Pavel         | 101       | 0             | 5456        | 11,29      |                | 14,3          | 2              | 51,64      | 15,54              | 41,89                 | 4,9              | ĺ             | ĺ            |
| Dvorák Tomáš          | 102       | 0             | 746         | 11,53      |                |               |                |            |                    |                       |                  |               |              |
| Leyckes Dennis        | 103       | 0             | 3056        | 11,05      | 7,05           | 12,84         | 1,91           |            |                    |                       |                  |               |              |
| Llanos Luiggy         | 104       | 0             | 5737        | 10,94      | 7,43           | 13,77         | 1,91           | 49,28      | 14,13              | 41,82                 |                  |               |              |
| Lobodin Lev           | 105       | 0             | 1631        | 11,05      | 6,86           |               |                |            |                    |                       |                  |               |              |
| Magnússon Jón Arnar   | 106       | 0             | 2480        | 11,05      | 7,12           | 14,98         |                |            |                    |                       |                  |               |              |
| Moussa Ahmad Hassan   | 107       | 0             | 3936        | 10,79      | 7,04           | 13,32         | 1,82           | 48,73      |                    |                       |                  |               |              |
| Pappas Tom            | 108       | 0             | 6182        | 10,8       | 7,38           | 16,17         | 2,03           | 47,97      | 14,18              | 47,39                 |                  |               |              |
| Rahnu Kristian        | 109       | 0             | 1668        | 10,77      |                | 14,45         |                |            |                    |                       |                  |               |              |
| Averyanov Nikolay     | 105       | 1             | 8021        | 10,55      | 7,34           | 14,44         | 1,94           | 49,72      | 14,39              | 39,88                 | 4,8              | 54,51         | 271,02       |
| Barras Romain         | 110       | 1             | 8067        | 11,14      | 6,99           | 14,91         | 1,94           | 49,41      | 14,37              | 44,83                 | 4,6              | 64,55         | 267,09       |
| Bernard Claston       | 111       | 1             | 8225        | 10,69      | 7,48           | 14,8          | 2,12           | 49,13      | 14,17              | 44,75                 | 4,4              | 55,27         | 276,31       |
| Casarsa Paolo         | 112       | 1             | 7404        | 11,36      | 6,68           | 14,92         | 1,94           | 53,2       | 15,39              | 48,66                 | 4,4              | 58,62         | 296,12       |
| Clay Bryan            | 108       | 1             | 8820        | 10,44      | 7,96           | 15,23         | 2,06           | 49,19      | 14,13              | 50,11                 | 4,9              | 69,71         | 281,65       |
| Covalenko Victor      | 113       | 2             | 6543        | 11,28      | 7,2            | 13,04         | 1,85           | 51,82      | 15,8               | 38,19                 |                  | 53,46         | 263,81       |
| Drews Stefan          | 103       | 1             | 7926        | 10,87      | 7,38           | 13,07         | 1,88           | 48,51      | 14,01              | 40,11                 | 5                | 51,53         | 274,21       |
| Gómez David           | 114       | 1             | 7865        | 11,08      | 7,26           | 14,57         | 1,85           | 48,61      | 14,41              | 40,95                 | 4,4              | 60,71         | 269,7        |
| Hernu Laurent         | 110       | 1             | 8237        | 10,97      | 7,19           | 14,65         | 2,03           | 48,73      | 14,25              | 44,72                 | 4,8              | 57,76         | 264,35       |
| Karlivans Janis       | 115       | 1             | 7583        | 11,33      | 7,26           | 13,3          | 1,97           | 50,54      | 14,98              | 43,34                 | 4,5              | 52,92         | 278,67       |
| Karpov Dmitriy        | 116       | 1             | 8725        | 10,5       | 7,81           | 15,93         | 2,09           | 46,81      | 13,97              | 51,65                 | 4,6              | 55,54         | 278,11       |
| Korkízoglou Pródromos | 117       | 1             | 7573        | 10,86      | 7,07           | 14,81         | 1,94           | 51,16      | 14,96              | 46,07                 | 4,7              | 53,05         | 317          |
| Lorenzo Santiago      | 118       | 1             | 7592        | 11,1       | 7,03           | 13,22         | 1,85           | 49,34      | 15,38              | 40,22                 | 4,5              | 58,36         | 263,08       |
| Macey Dean            | 119       | 1             | 8414        | 10,89      | 7,47           | 15,73         | 2,15           | 48,97      | 14,56              | 48,34                 | 4,4              | 58,46         | 265,42       |
| Martineau Eugene      | 120       | 2             | 7185        | 10,99      | 6,84           |               | 2              | 49,1       | 15,02              | 40                    | 4,8              | 63,62         | 271,79       |
| Nool Erki             | 109       | 1             | 8235        | 10,8       | 7,53           | 14,26         | 1,88           | 48,81      | 14,8               | 42,05                 | 5,4              | 61,33         | 276,33       |
| Ojaniemi Jaakko       | 121       | 1             | 8006        | 10,68      |                | 14,97         | 1,94           | 49,12      | 15,01              | 40,35                 | 4,6              | 59,26         | 275,71       |
| Parkhomenko Alexandr  | 122       | 1             | 7918        | 11,14      | 6,61           | 15,69         | 2,03           | 51,04      | 14,88              | 41,9                  | 4,8              | 65,82         | 277,94       |
| Pogorelov Aleksandr   | 105       | 1             | 8084        | 10,95      | 7,31           | 15,1          | 2,06           | 50,79      | 14,21              | 44,6                  | 5                | 53,45         | 287,63       |

## 4. Eigennumbers & How many factors to create

There are three eigenvalues > 1 and the factors/components corresponding to them describe roughly 70% of the variability of the original variables. It is to be considered whether to use a fourth factor, which would increase the percentage of explained variance to 78%.

|              | Active variables        | only     |            |            |  |  |  |  |  |
|--------------|-------------------------|----------|------------|------------|--|--|--|--|--|
|              | Include condition: v2=1 |          |            |            |  |  |  |  |  |
|              | Eigenvalue              | % Total  | Cumulative | Cumulative |  |  |  |  |  |
| Value number |                         | variance | Eigenvalue | %          |  |  |  |  |  |
| 1            | 3,545628                | 35,45628 | 3,54563    | 35,4563    |  |  |  |  |  |
| 2            | 1,969494                | 19,69494 | 5,51512    | 55,1512    |  |  |  |  |  |
| 3            | 1,421791                | 14,21791 | 6,93691    | 69,3691    |  |  |  |  |  |
| 4            | 0,903646                | 9,03646  | 7,84056    | 78,4056    |  |  |  |  |  |
| 5            | 0,563241                | 5,63241  | 8,40380    | 84,0380    |  |  |  |  |  |
| 6            | 0,527759                | 5,27759  | 8,93156    | 89,3156    |  |  |  |  |  |
| 7            | 0,432437                | 4,32437  | 9,36400    | 93,6400    |  |  |  |  |  |
| 8            | 0,365718                | 3,65718  | 9,72972    | 97,2972    |  |  |  |  |  |
| 9            | 0,164039                | 1,64039  | 9,89375    | 98,9375    |  |  |  |  |  |
| 10           | 0,106246                | 1,06246  | 10,00000   | 100,0000   |  |  |  |  |  |

Eigenvalues of correlation matrix, and related statistics (Dec.

# 5. Factor loadings & Rotation and interpretation of factors

We try to achieve that each factor is correlated only with a certain group of variables and the correlations with the other variables are zero. The goal is to find meaningful factors.

We select using the Varimax method.

Factor Loadings (Varimax raw) (Decathlon) Extraction: Principal components (Marked loadings are >,700000) Include condition: v2=1

|               | Factor    | Factor    | Factor    |
|---------------|-----------|-----------|-----------|
| Variable      | 1         | 2         | 3         |
| 100 m         | -0,842660 | -0,217283 | -0,064756 |
| Long jump     | 0,853894  | 0,167822  | -0,045244 |
| Shot put      | 0,185353  | 0,863229  | 0,069407  |
| High jump     | 0,253925  | 0,741986  | 0,001451  |
| 400 m         | -0,798454 | -0,036115 | 0,443821  |
| 110 m hurdles | -0,708282 | -0,207337 | 0,117338  |
| Discus Throw  | 0,090322  | 0,850633  | 0,087463  |
| Pole vault    | 0,475904  | -0,230255 | 0,498277  |
| Javelin       | -0,079191 | 0,493663  | -0,469341 |
| 1500 m        | -0,224590 | 0,183246  | 0,895017  |
| Expl.Var      | 2,968591  | 2,469252  | 1,499070  |
| Prp.Totl      | 0,296859  | 0,246925  | 0,149907  |

**6. Interpretation.** The first factor is clearly related to the results of short sprints and long jump - the better the result, the higher the value of the factor. F1 Speed factor. The strongest correlations of the second factor are with all "throwing" events and the high jump. F2 "Trunk" strength (abdominal, back, core). The last third factor is clearly correlated with longer F3 distance running, which shows that this discipline is the most different from the others.

Factor Loadings (Varimax raw) (Decathlon) Extraction: Principal components (Marked loadings are >,700000) Include condition: v2=1

|               | Factor    | Factor    | Factor    |  |  |  |  |
|---------------|-----------|-----------|-----------|--|--|--|--|
| Variable      | 1         | 2         | 3         |  |  |  |  |
| 100 m         | -0,842660 | -0,217283 | -0,064756 |  |  |  |  |
| Long jump     | 0,853894  | 0,167822  | -0,045244 |  |  |  |  |
| Shot put      | 0,185353  | 0,863229  | 0,069407  |  |  |  |  |
| High jump     | 0,253925  | 0,741986  | 0,001451  |  |  |  |  |
| 400 m         | -0,798454 | -0,036115 | 0,443821  |  |  |  |  |
| 110 m hurdles | -0,708282 | -0,207337 | 0,117338  |  |  |  |  |
| Discus Throw  | 0,090322  | 0,850633  | 0,087463  |  |  |  |  |
| Pole vault    | 0,475904  | -0,230255 | 0,498277  |  |  |  |  |
| Javelin       | -0,079191 | 0,493663  | -0,469341 |  |  |  |  |
| 1500 m        | -0,224590 | 0,183246  | 0,895017  |  |  |  |  |
| Expl.Var      | 2,968591  | 2,469252  | 1,499070  |  |  |  |  |
| Prp.Totl      | 0,296859  | 0,246925  | 0,149907  |  |  |  |  |

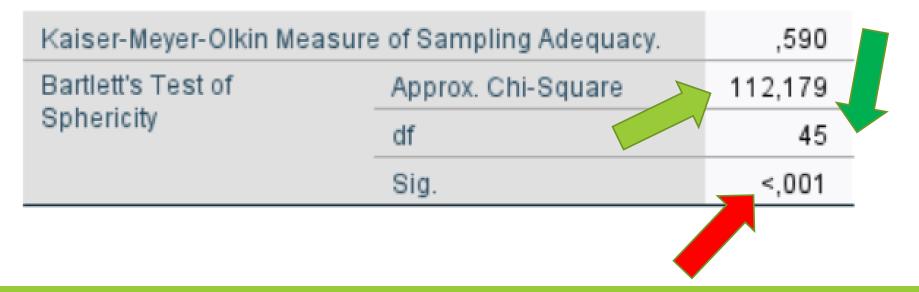
## sw IBM SPSS 28

### **Basic characteristics of observed variables**

| D             | escriptiv | e Statistics |          |
|---------------|-----------|--------------|----------|
|               |           | Std.         | Analysis |
|               | Mean      | Deviation    | Ν        |
| v100_m        | 10,92     | 0,23         | 28       |
| Long_jump     | 7,27      | 0,34         | 28       |
| Shot_put      | 14,63     | 0,86         | 28       |
| High_jump     | 1,98      | 0,09         | 28       |
| v400_m        | 49,61     | 1,27         | 28       |
| v110_m_hurdle | 14,55     | 0,44         | 28       |
| S             |           |              |          |
| Discus_Throw  | 44,38     | 3,30         | 28       |
| Pole_vault    | 4,73      | 0,29         | 28       |
| Javelin       | 58,95     | 4,98         | 28       |
| v1500_m       | 277,54    | 11,32        | 28       |

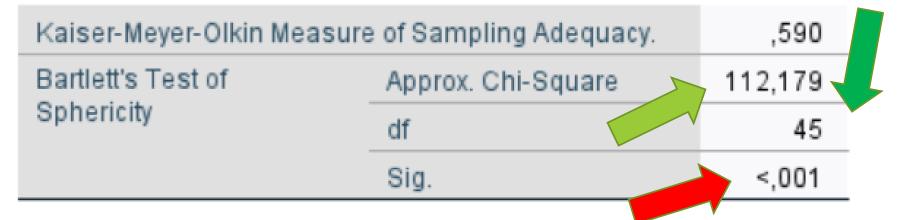
correlation coefficients are high we see positive and negative correlations, *there is a conditional formatting tool for that in Excel* 

|                | Correlation Matrix |           |          |           |        |                |              |            |         |         |  |  |
|----------------|--------------------|-----------|----------|-----------|--------|----------------|--------------|------------|---------|---------|--|--|
|                | v100_m             | Long_jump | Shot_put | High_jump | v400_m | v110_m_hurdles | Discus_Throw | Pole_vault | Javelin | v1500_m |  |  |
| v100_m         | 1,00               | -0,70     | -0,37    | -0,31     | 0,63   | 0,54           | -0,23        | -0,26      | -0,01   | 0,06    |  |  |
| Long_jump      | -0,70              | 1,00      | 0,20     | 0,35      | -0,67  | -0,54          | 0,25         | 0,29       | 0,09    | -0,15   |  |  |
| Shot_put       | -0,37              | 0,20      | 1,00     | 0,61      | -0,20  | -0,25          | 0,67         | 0,02       | 0,38    | 0,13    |  |  |
| High_jump      | -0,31              | 0,35      | 0,61     | 1,00      | -0,17  | -0,33          | 0,52         | -0,04      | 0,20    | 0,00    |  |  |
| v400_m         | 0,63               | -0,67     | -0,20    | -0,17     | 1,00   | 0,52           | -0,14        | -0,12      | -0,05   | 0,55    |  |  |
| v110_m_hurdles | 0,54               | -0,54     | -0,25    | -0,33     | 0,52   | 1,00           | -0,22        | -0,15      | -0,08   | 0,18    |  |  |
| Discus_Throw   | -0,23              | 0,25      | 0,67     | 0,52      | -0,14  | -0,22          | 1,00         | -0,18      | 0,25    | 0,22    |  |  |
| Pole_vault     | -0,26              | 0,29      | 0,02     | -0,04     | -0,12  | -0,15          | -0,18        | 1,00       | -0,07   | 0,18    |  |  |
| Javelin        | -0,01              | 0,09      | 0,38     | 0,20      | -0,05  | -0,08          | 0,25         | -0,07      | 1,00    | -0,25   |  |  |
| v1500_m        | 0,06               | -0,15     | 0,13     | 0,00      | 0,55   | 0,18           | 0,22         | 0,18       | -0,25   | 1,00    |  |  |


The Kaiser-Meyer-Olkin measure takes on a value of 0.58, is high and indicates the appropriateness of using factor analysis

| кмо | and | Bartlett's | Test |
|-----|-----|------------|------|
|-----|-----|------------|------|

| Kaiser-Meyer-Olkin Mea | asure of Sampling Adequacy. | ,590    |
|------------------------|-----------------------------|---------|
| Bartlett's Test of     | Approx. Chi-Square          | 112,179 |
| Sphericity             | df                          | 45      |
|                        | Sig.                        | <,001   |


Bartlett's test of sphericity: Test criterion value = 112.179 Number of degrees of freedom = 45 Significance ( = observed significance level) < 0.001

#### KMO and Bartlett's Test



Bartlett's test of sphericity: Test criterion value = 112.179 Number of degrees of freedom = 45 Significance ( = observed significance level) < 0.001

## KMO and Bartlett's Test



Significance level is < 0,001, we reject H0: The correlation matrix is unity (correlation coefficients off the diagonal are zero).

Thus, the basic assumption for the use of factor analysis is fulfilled.

All KMO values for individual observed variables are satisfactory – greater than 0.5

#### v110 m Discus Shot\_put High\_jump v400\_m hurdles Throw Pole vault Javelin v1500 m v100\_m Long\_jump 0,925 -1,095 -0,525 -0,218 v100 m 2,908 1,189 -0,081 -0,414 -0,019 0,623 1,189 3,456 1,499 -0,989 1,851 0,193 -0,521 -0,512 -0.663 -0,771 Long jump 3,348 -1,325 1,072 -1,225 -0,999 -0,757 0,925 1,499 -0,130 -0.374 Shot put 2,135 0,725 -0,319 0,141 0,403 High jump -0,081 -0,989 -1,325 -1,077 0,296 v400 m -1,095 1,851 1,072 -1,077 4,744 -0,394 0,605 0,143 -0,994 -2,756 -0,414 0,193 -0,130 0,296 -0,394 1,641 0,096 0,081 -0,029 v110 m hurdles 0,049 2,499 -0,525 -0,521 -1,225 -0,319 0,605 0,096 0,732 -0,217 -0,972 Discus Throw Pole vault -0,019 -0,512 -0,374 0,141 0,143 0,081 0,732 1,414 -0,055 -0,547 0,403 0.049 1,630 1,056 Javelin -0,218 -0,663 -0,999 -0,994 -0,217 -0,055 1,056 3,052 0,623 -0,771 -0,757 0,725 -2,756 -0,029 -0,972 -0,547 v1500 m

#### Inverse of Correlation Matrix

**Conditions of use of factor analysis** 

Attention! Unlike the tables of correlation coefficients and communalities, the rows of this table are not devoted to manifest variables, but to factors

#### Total Variance Explained

| K         | Initial Eigenvalues |               |              | Extractio | n Sums of Square | ed Loadings  | Rotation Sums of Squared Loadings |               |              |
|-----------|---------------------|---------------|--------------|-----------|------------------|--------------|-----------------------------------|---------------|--------------|
| Component | Total               | % of Variance | Cumulative % | Total     | % of Variance    | Cumulative % | Total                             | % of Variance | Cumulative % |
| 1         | 3,546               | 35,456        | 35,456       | 3,546     | 35,456           | 35,456       | 3,040                             | 30,401        | 30,401       |
| 2         | 1,969               | 19,695        | 55,151       | 1,969     | 19,695           | 55,151       | 2,458                             | 24,584        | 54,985       |
| 3         | 1,422               | 14,218        | 69,369       | 1,422     | 14,218           | 69,369       | 1,438                             | 14,384        | 69,369       |
| 4         | ,904                | 9,036         | 78,406       |           |                  |              |                                   |               |              |
| 5         | ,563                | 5,632         | 84,038       |           |                  |              |                                   |               |              |
| 6         | ,528                | 5,278         | 89,316       |           |                  |              |                                   |               |              |
| 7         | ,432                | 4,324         | 93,640       |           |                  |              |                                   |               |              |
| 8         | ,366                | 3,657         | 97,297       |           |                  |              |                                   |               |              |
| 9         | ,164                | 1,640         | 98,938       |           |                  |              |                                   |               |              |
| 10        | ,106                | 1,062         | 100,000      |           |                  |              |                                   |               |              |

The first section, entitled "Initial Eigenvalues" by SPSS, contains the results of the principal components method

#### Total Variance Explained

|           | Initial Eigenvalues |               |              | Extractio | n Sums of Square | ed Loadings  | Rotation Sums of Squared Loadings |               |              |
|-----------|---------------------|---------------|--------------|-----------|------------------|--------------|-----------------------------------|---------------|--------------|
| Component | Total               | % of Variance | Cumulative % | Total     | % of Variance    | Cumulative % | Total                             | % of Variance | Cumulative % |
| 1         | 3,546               | 35,456        | 35,456       | 3,546     | 35,456           | 35,456       | 3,040                             | 30,401        | 30,401       |
| 2         | 1,969               | 19,695        | 55,151       | 1,969     | 19,695           | 55,151       | 2,458                             | 24,584        | 54,985       |
| 3         | 1,422               | 14,218        | 69,369       | 1,422     | 14,218           | 69,369       | 1,438                             | 14,384        | 69,369       |
| 4         | ,904                | 9,036         | 78,406       |           |                  |              |                                   |               |              |
| 5         | ,563                | 5,632         | 84,038       |           |                  |              |                                   |               |              |
| 6         | ,528                | 5,278         | 89,316       |           |                  |              |                                   |               |              |
| 7         | ,432                | 4,324         | 93,640       |           |                  |              |                                   |               |              |
| 8         | ,366                | 3,657         | 97,297       |           |                  |              |                                   |               |              |
| 9         | ,164                | 1,640         | 98,938       |           |                  |              |                                   |               |              |
| 10        | ,106                | 1,062         | 100,000      |           |                  |              |                                   |               |              |

## The eigenvalues are listed in the second column, which follows the column labeled factors

(components). Total Variance Explained

|           | Initial Eigenvalues |               |              | Extractio | n Sums of Squar | ed Loadings  | Rotation Sums of Squared Loadings |               |              |
|-----------|---------------------|---------------|--------------|-----------|-----------------|--------------|-----------------------------------|---------------|--------------|
| Component | Total               | % of Variance | Cumulative % | Total     | % of Variance   | Cumulative % | Total                             | % of Variance | Cumulative % |
| 1         | 3,546               | 35,456        | 35,456       | 3,546     | 35,456          | 35,456       | 3,040                             | 30,401        | 30,401       |
| 2         | 1,969               | 19,695        | 55,151       | 1,969     | 19,695          | 55,151       | 2,458                             | 24,584        | 54,985       |
| 3         | 1,422               | 14,218        | 69,369       | 1,422     | 14,218          | 69,369       | 1,438                             | 14,384        | 69,369       |
| 4         | ,904                | 9,036         | 78,406       |           |                 |              |                                   |               |              |
| 5         | ,563                | 5,632         | 84,038       |           |                 |              |                                   |               |              |
| 6         | ,528                | 5,27/8        | 89,316       |           |                 |              |                                   |               |              |
| 7         | ,432                | 4,324         | 93,640       |           |                 |              |                                   |               |              |
| 8         | ,366                | 3,657         | 97,297       |           |                 |              |                                   |               |              |
| 9         | ,164                | 1,640         | 98,938       |           |                 |              |                                   |               |              |
| 10        | ,106                | 1,062         | 100,000      |           |                 |              |                                   |               |              |

The eigenvalues of the correlation matrix indicate the variance exhausted by the factor. This variance, expressed as a percentage, is shown in the third column of the tables

|           |       |                   |              | Total Turn | anoe Explaine   |              |                                   |               |              |  |
|-----------|-------|-------------------|--------------|------------|-----------------|--------------|-----------------------------------|---------------|--------------|--|
|           |       | Initial Eigenvalu | ies          | Extractio  | n Sums of Squar | ed Loadings  | Rotation Sums of Squared Loadings |               |              |  |
| Component | Total | % of Variance     | Cumulative % | Total      | % of Variance   | Cumulative % | Total                             | % of Variance | Cumulative % |  |
| 1         | 3,546 | 35,456            | 35,456       | 3,546      | 35,456          | 35,456       | 3,040                             | 30,401        | 30,401       |  |
| 2         | 1,969 | 19,695            | 55,151       | 1,969      | 19,695          | 55,151       | 2,458                             | 24,584        | 54,985       |  |
| 3         | 1,422 | 14,218            | 69,369       | 1,422      | 14,218          | 69,369       | 1,438                             | 14,384        | 69,369       |  |
| 4         | ,904  | 9,036             | 78,406       |            |                 |              |                                   |               |              |  |
| 5         | ,563  | 5,632             | 84,038       |            |                 |              |                                   |               |              |  |
| 6         | ,528  | 5,278             | 89,316       |            |                 |              |                                   |               |              |  |
| 7         | ,432  | 4,324             | 93,640       |            |                 |              |                                   |               |              |  |
| 8         | ,366  | 3,657             | 97,297       |            |                 |              |                                   |               |              |  |
| 9         | ,164  | 1,640             | 98,938       |            |                 |              |                                   |               |              |  |
| 10        | ,106  | 1,062             | 100,000      |            |                 |              |                                   |               |              |  |

#### Total/Variance Explained

For a better idea of how much variance is already exhausted by the given number of factors, the fourth column with the cumulative percentage values of the exhausted variance is used.

| Initial Eigenvalues |       |               |              |       | Extraction Sums of Squared Loadings |               |              |       | Rotation Sums of Squared Loadings |              |  |
|---------------------|-------|---------------|--------------|-------|-------------------------------------|---------------|--------------|-------|-----------------------------------|--------------|--|
| Component           | Total | % of Variance | Cumulative % | Г / Г | otal                                | % of Variance | Cumulative % | Total | % of Variance                     | Cumulative % |  |
| 1                   | 3,546 | 35,456        | 35,456       | K     | 3,546                               | 35,456        | 35,456       | 3,040 | 30,401                            | 30,401       |  |
| 2                   | 1,969 | 19,695        | 55,151       |       | 1,969                               | 19,695        | 55,151       | 2,458 | 24,584                            | 54,985       |  |
| 3                   | 1,422 | 14,218        | 69,369       |       | 1,422                               | 14,218        | 69,369       | 1,438 | 14,384                            | 69,369       |  |
| 4                   | ,904  | 9,036         | 78,406       |       |                                     |               |              |       |                                   |              |  |
| 5                   | ,563  | 5,632         | 84,038       |       |                                     |               |              |       |                                   |              |  |
| 6                   | ,528  | 5,278         | 89,316       |       |                                     |               |              |       |                                   |              |  |
| 7                   | ,432  | 4,324         | 93,640       |       |                                     |               |              |       |                                   |              |  |
| 8                   | ,366  | 3,657         | 97,297       |       |                                     |               |              |       |                                   |              |  |
| 9                   | ,164  | 1,640         | 98,938       |       |                                     |               |              |       |                                   |              |  |
| 10                  | ,106  | 1,062         | 100,000 v    |       |                                     |               |              |       |                                   |              |  |

#### Total Variance Explained

The second part of the table "Extraction Sums of Squared Loadings" gives the amount of variance extracted after factor extraction

#### Total Variance Explained

| Initial Eigenvalues |       |               |              | Extractio | n Sums of Square | ed Loadings  | Rotation Sums of Squared Loadings |               |              |
|---------------------|-------|---------------|--------------|-----------|------------------|--------------|-----------------------------------|---------------|--------------|
| Component           | Total | % of Variance | Cumulative % | Total     | % of Variance    | Cumulative % | Total                             | % of Variance | Cumulative % |
| 1                   | 3,546 | 35,456        | 35,456       | 3,546     | 35,456           | 35,456       | 3,040                             | 30,401        | 30,401       |
| 2                   | 1,969 | 19,695        | 55,151       | 1,969     | 19,695           | 55,151       | 2,458                             | 24,584        | 54,985       |
| 3                   | 1,422 | 14,218        | 69,369       | 1,422     | 14,218           | 69,369       | 1,438                             | 14,384        | 69,369       |
| 4                   | ,904  | 9,036         | 78,406       |           |                  |              |                                   |               |              |
| 5                   | ,563  | 5,632         | 84,038       |           |                  |              |                                   |               |              |
| 6                   | ,528  | 5,278         | 89,316       |           |                  |              |                                   |               |              |
| 7                   | ,432  | 4,324         | 93,640       |           |                  |              |                                   |               |              |
| 8                   | ,366  | 3,657         | 97,297       |           |                  |              |                                   |               |              |
| 9                   | ,164  | 1,640         | 98,938       |           |                  |              |                                   |               |              |
| 10                  | ,106  | 1,062         | 100,000      |           |                  |              |                                   |               |              |

The second part of the table "Extraction Sums of Squared Loadings" gives the amount of variance extracted after factor extraction

|           |       | Initial Eigenvalu | es           | Extraction | n Sums of Square | ed Loadings  | Rotation Sums of Squared Loadings |               |              |
|-----------|-------|-------------------|--------------|------------|------------------|--------------|-----------------------------------|---------------|--------------|
| Component | Total | % of Variance     | Cumulative % | Total      | % of Variance    | Cumulative % | Total                             | % of Variance | Cumulative % |
| 1         | 3,546 | 35,456            | 35,456       | 3,546      | 35,456           | 35,456       | 3,040                             | 30,401        | 30,401       |
| 2         | 1,969 | 19,695            | 55,151       | 1,969      | 19,695           | 55,151       | 2,458                             | 24,584        | 54,985       |
| 3         | 1,422 | 14,218            | 69,369       | 1,422      | 14,218           | 69,369       | 1,438                             | 14,384        | 69,369       |
| 4         | ,904  | 9,036             | 78,406       | absolute   | e                |              |                                   |               |              |
| 5         | ,563  | 5,632             | 84,038       |            |                  |              |                                   |               |              |
| 6         | ,528  | 5,278             | 89,316       |            |                  |              |                                   |               |              |
| 7         | ,432  | 4,324             | 93,640       |            |                  |              |                                   |               |              |
| 8         | ,366  | 3,657             | 97,297       |            |                  |              |                                   |               |              |
| 9         | ,164  | 1,640             | 98,938       |            |                  |              |                                   |               |              |
| 10        | ,106  | 1,062             | 100,000      |            |                  |              |                                   |               |              |

#### Total Variance Explained

The second part of the table "Extraction Sums of Squared Loadings" gives the amount of variance extracted after factor extraction

|           |       | Initial Eigenvalu | Initial Eigenvalues |       | n Sums of Square | ed Loadings  | Rotation Sums of Squared Loadings |               |              |
|-----------|-------|-------------------|---------------------|-------|------------------|--------------|-----------------------------------|---------------|--------------|
| Component | Total | % of Variance     | Cumulative %        | Total | % of Variance    | Cumulative % | Total                             | % of Variance | Cumulative % |
| 1         | 3,546 | 35,456            | 35,456              | 3,546 | 35,456           | 35,456       | 3,040                             | 30,401        | 30,401       |
| 2         | 1,969 | 19,695            | 55,151              | 1,969 | 19,695           | 55,151       | 2,458                             | 24,584        | 54,985       |
| 3         | 1,422 | 14,218            | 69,369              | 1,422 | 14,218           | 69,369       | 1,438                             | 14,384        | 69,369       |
| 4         | ,904  | 9,036             | 78,406              |       | porcoptage       |              |                                   |               |              |
| 5         | ,563  | 5,632             | 84,038              |       | percentage       |              |                                   |               |              |
| 6         | ,528  | 5,278             | 89,316              |       |                  |              |                                   |               |              |
| 7         | ,432  | 4,324             | 93,640              |       |                  |              |                                   |               |              |
| 8         | ,366  | 3,657             | 97,297              |       |                  |              |                                   |               |              |
| 9         | ,164  | 1,640             | 98,938              |       |                  |              |                                   |               |              |
| 10        | ,106  | 1,062             | 100,000             |       |                  |              |                                   |               |              |

#### Total Variance Explained

#### The second part of the table "Extraction Sums of Squared Loadings" gives the amount of variance extracted after factor extraction

|           |       | Initial Eigenvalues |              |       | n Sums of Squar | ed Loadings   | Rotation Sums of Squared Loadings |               |              |
|-----------|-------|---------------------|--------------|-------|-----------------|---------------|-----------------------------------|---------------|--------------|
| Component | Total | % of Variance       | Cumulative % | Total | % of Variance   | Cumulative ‰  | Total                             | % of Variance | Cumulative % |
| 1         | 3,546 | 35,456              | 35,456       | 3,546 | 35,456          | 35,456        | 3,040                             | 30,401        | 30,401       |
| 2         | 1,969 | 19,695              | 55,151       | 1,969 | 19,695          | 55,151        | 2,458                             | 24,584        | 54,985       |
| 3         | 1,422 | 14,218              | 69,369       | 1,422 | 14,218          | 69,369        | 1,438                             | 14,384        | 69,369       |
| 4         | ,904  | 9,036               | 78,406       |       |                 | in cumulative |                                   |               |              |
| 5         | ,563  | 5,632               | 84,038       |       |                 | percentage    |                                   |               |              |
| 6         | ,528  | 5,278               | 89,316       |       |                 | form          |                                   |               |              |
| 7         | ,432  | 4,324               | 93,640       |       |                 |               |                                   |               |              |
| 8         | ,366  | 3,657               | 97,297       |       |                 |               |                                   |               |              |
| 9         | ,164  | 1,640               | 98,938       |       |                 |               |                                   |               |              |
| 10        | ,106  | 1,062               | 100,000      |       |                 |               |                                   |               |              |

#### Total Variance Explained

We see that it is limited to a given number of factors, i.e. 3.

#### Total Variance Explained

|           |       | Initial Eigenvalu | ies          | Extractio | n Sums of Square | ed Loadings  | Rotation Sums of Squared Loadings |               |              |  |
|-----------|-------|-------------------|--------------|-----------|------------------|--------------|-----------------------------------|---------------|--------------|--|
| Component | Total | % of Variance     | Cumulative % | Total     | % of Variance    | Cumulative % | Total                             | % of Variance | Cumulative % |  |
| 1         | 3,546 | 35,456            | 35,456       | 3,546     | 35,456           | 35,456       | 3,040                             | 30,401        | 30,401       |  |
| 2         | 1,969 | 19,695            | 55,151       | 1,969     | 19,695           | 55,151       | 2,458                             | 24,584        | 54,985       |  |
| 3         | 1,422 | 14,218            | 69,369       | 1,422     | 14,218           | 69,369       | 1,438                             | 14,384        | 69,369       |  |
| 4         | ,904  | 9,036             | 78,406       |           |                  |              |                                   |               |              |  |
| 5         | ,563  | 5,632             | 84,038       |           |                  |              |                                   |               |              |  |
| 6         | ,528  | 5,278             | 89,316       |           |                  |              |                                   |               |              |  |
| 7         | ,432  | 4,324             | 93,640       |           |                  |              |                                   |               |              |  |
| 8         | ,366  | 3,657             | 97,297       |           |                  |              |                                   |               |              |  |
| 9         | ,164  | 1,640             | 98,938       |           |                  |              |                                   |               |              |  |
| 10        | ,106  | 1,062             | 100,000      |           |                  |              |                                   |               |              |  |

For principal component factor extraction, it is of course identical to the first part of the table.

#### Total Variance Explained

|           |       | Initial Eigenvalu | <del>ëS</del> | Extraction Sums of Squared Loadings |               |              |      | Rotation Sums of Squared Loadings |               |              |  |
|-----------|-------|-------------------|---------------|-------------------------------------|---------------|--------------|------|-----------------------------------|---------------|--------------|--|
| Component | Total | % of Variance     | Cumulative %  | Total                               | % of Variance | Cumulative % | Tota | I                                 | % of Variance | Cumulative % |  |
| 1         | 3,546 | 35,456            | 35,456        | 3,546                               | 35,456        | 35,456       | 3,0  | 040                               | 30,401        | 30,401       |  |
| 2         | 1,969 | 19,695            | 55,151        | 1,969                               | 19,695        | 55,151       | 2,4  | 158                               | 24,584        | 54,985       |  |
| 3         | 1,422 | 14,218            | 69,369        | 1,422                               | 14,218        | 69,369       | 1,4  | 138                               | 14,384        | 69,369       |  |
| 4         | ,904  | 9,036             | 78,406        |                                     |               |              |      |                                   |               |              |  |
| 5         | ,563  | 5,632             | 84,038        |                                     |               |              |      |                                   |               |              |  |
| 6         | ,528  | 5,278             | 89,316        |                                     |               |              |      |                                   |               |              |  |
| 7         | ,432  | 4,324             | 93,640        |                                     |               |              |      |                                   |               |              |  |
| 8         | ,366  | 3,657             | 97,297        |                                     |               |              |      |                                   |               |              |  |
| 9         | ,164  | 1,640             | 98,938        |                                     |               |              |      |                                   |               |              |  |
| 10        | ,106  | 1,062             | 100,000       |                                     |               |              |      |                                   |               |              |  |

In the third part of the table "Extraction Sums of Squared Loadings" the values of the exhausted variance after rotation are presented analogously.

|           | Total Variance Explained |                   |              |           |                  |              |                                   |               |              |  |  |  |
|-----------|--------------------------|-------------------|--------------|-----------|------------------|--------------|-----------------------------------|---------------|--------------|--|--|--|
|           |                          | Initial Eigenvalu | ies          | Extractio | n Sums of Square | ed Loadings  | Rotation Sums of Squared Loadings |               |              |  |  |  |
| Component | Total                    | % of Variance     | Cumulative % | Total     | % of Variance    | Cumulative % | Total                             | % of Variance | Cumulative % |  |  |  |
| 1         | 3,546                    | 35,456            | 35,456       | 3,546     | 35,456           | 35,456       | 3,040                             | 30,401        | 30,401       |  |  |  |
| 2         | 1,969                    | 19,695            | 55,151       | 1,969     | 19,695           | 55,151       | 2,458                             | 24,584        | 54,985       |  |  |  |
| 3         | 1,422                    | 14,218            | 69,369       | 1,422     | 14,218           | 69,369       | 1,438                             | 14,384        | 69,369       |  |  |  |
| 4         | ,904                     | 9,036             | 78,406       |           |                  |              |                                   |               |              |  |  |  |
| 5         | ,563                     | 5,632             | 84,038       |           |                  |              |                                   |               |              |  |  |  |
| 6         | ,528                     | 5,278             | 89,316       |           |                  |              |                                   |               |              |  |  |  |
| 7         | ,432                     | 4,324             | 93,640       |           |                  |              |                                   |               |              |  |  |  |
| 8         | ,366                     | 3,657             | 97,297       |           |                  |              |                                   |               |              |  |  |  |
| 9         | ,164                     | 1,640             | 98,938       |           |                  |              |                                   |               |              |  |  |  |
| 10        | ,106                     | 1,062             | 100,000      |           |                  |              |                                   |               |              |  |  |  |

In the third part of the table "Extraction Sums of Squared Loadings" the values of the exhausted variance after rotation are presented analogously. We see that the first factor accounts for 30.4% of

the variance

#### **Total Variance Explained**

|           |       | Initial Eigenvalu | ies          | Extractio | n Sums of Square | ed Loadings  | Rotation Sums of Squared Loadings |               |              |  |  |
|-----------|-------|-------------------|--------------|-----------|------------------|--------------|-----------------------------------|---------------|--------------|--|--|
| Component | Total | % of Variance     | Cumulative % | Total     | % of Variance    | Cumulative % | Total                             | % of Variance | Cumulative % |  |  |
| 1         | 3,546 | 35,456            | 35,456       | 3,546     | 35,456           | 35,456       | 3,040                             | 30,401        | 30,401       |  |  |
| 2         | 1,969 | 19,695            | 55,151       | 1,969     | 19,695           | 55,151       | 2,458                             | 24,584        | 54,985       |  |  |
| 3         | 1,422 | 14,218            | 69,369       | 1,422     | 14,218           | 69,369       | 1,438                             | 14,384        | 69,369       |  |  |
| 4         | ,904  | 9,036             | 78,406       |           |                  |              |                                   |               |              |  |  |
| 5         | ,563  | 5,632             | 84,038       |           |                  |              |                                   |               |              |  |  |
| 6         | ,528  | 5,278             | 89,316       |           |                  |              |                                   |               |              |  |  |
| 7         | ,432  | 4,324             | 93,640       |           |                  |              |                                   |               |              |  |  |
| 8         | ,366  | 3,657             | 97,297       |           |                  |              |                                   |               |              |  |  |
| 9         | ,164  | 1,640             | 98,938       |           |                  |              |                                   |               |              |  |  |
| 10        | ,106  | 1,062             | 100,000      |           |                  |              |                                   |               |              |  |  |

In the third part of the table "Extraction Sums of Squared Loadings" the values of the exhausted variance after rotation are presented analogously. We see that the first factor consumes 30.4% of the variance, the second 24.58% and the third

## Total Variance Explained

|           |       | Initial Eigenvalu | ies          | Extraction | n Sums of Square | ed Loadings  | Rotation Sums of Squared Loadings |               |              |  |
|-----------|-------|-------------------|--------------|------------|------------------|--------------|-----------------------------------|---------------|--------------|--|
| Component | Total | % of Variance     | Cumulative % | Total      | % of Variance    | Cumulative % | Total                             | % of Variance | Cumulative % |  |
| 1         | 3,546 | 35,456            | 35,456       | 3,546      | 35,456           | 35,456       | 3,040                             | 30,401        | 30,401       |  |
| 2         | 1,969 | 19,695            | 55,151       | 1,969      | 19,695           | 55,151       | 2,458                             | 24,584        | 54,985       |  |
| 3         | 1,422 | 14,218            | 69,369       | 1,422      | 14,218           | 69,369       | 1,438                             | 14,384        | 69,369       |  |
| 4         | ,904  | 9,036             | 78,406       |            |                  |              |                                   |               |              |  |
| 5         | ,563  | 5,632             | 84,038       |            |                  |              |                                   | $\checkmark$  |              |  |
| 6         | ,528  | 5,278             | 89,316       |            |                  |              |                                   |               |              |  |
| 7         | ,432  | 4,324             | 93,640       |            |                  |              |                                   |               |              |  |
| 8         | ,366  | 3,657             | 97,297       |            |                  |              |                                   |               |              |  |
| 9         | ,164  | 1,640             | 98,938       |            |                  |              |                                   |               |              |  |
| 10        | ,106  | 1,062             | 100,000      |            |                  |              |                                   |               |              |  |

The method of principal components gives the factors that exhaust the highest percentage of variance of all the methods used. However, the main task of factor analysis is to clarify the original correlation matrix with the help of factors, not the

# Total Variance Explained

|           |       | Initial Eigenvalu | ies          | Extraction | n Sums of Square | ed Loadings  | Rotation Sums of Squared Loadings |               |              |  |
|-----------|-------|-------------------|--------------|------------|------------------|--------------|-----------------------------------|---------------|--------------|--|
| Component | Total | % of Variance     | Cumulative % | Total      | % of Variance    | Cumulative % | Total                             | % of Variance | Cumulative % |  |
| 1         | 3,546 | 35,456            | 35,456       | 3,546      | 35,456           | 35,456       | 3,040                             | 30,401        | 30,401       |  |
| 2         | 1,969 | 19,695            | 55,151       | 1,969      | 19,695           | 55,151       | 2,458                             | 24,584        | 54,985       |  |
| 3         | 1,422 | 14,218            | 69,369       | 1,422      | 14,218           | 69,369       | 1,438                             | 14,384        | 69,369       |  |
| 4         | ,904  | 9,036             | 78,406       |            |                  |              |                                   |               |              |  |
| 5         | ,563  | 5,632             | 84,038       |            |                  |              |                                   |               |              |  |
| 6         | ,528  | 5,278             | 89,316       |            |                  |              |                                   |               |              |  |
| 7         | ,432  | 4,324             | 93,640       |            |                  |              |                                   |               |              |  |
| 8         | ,366  | 3,657             | 97,297       |            |                  |              |                                   |               |              |  |
| 9         | ,164  | 1,640             | 98,938       |            |                  |              |                                   |               |              |  |
| 10        | ,106  | 1,062             | 100,000      |            |                  |              |                                   |               |              |  |

### **Rotated Component Matrix** Principal Component Analysis

Finally the result! We can now try to interpret the factors

| Rotated Cor       | npone     | ent Ma    | atrix <sup>a</sup> | Rotated Cor       | npone      | ent Ma     | atrix <sup>a</sup> |                           |
|-------------------|-----------|-----------|--------------------|-------------------|------------|------------|--------------------|---------------------------|
|                   | С         | ompone    | nt                 |                   | Component  |            |                    |                           |
|                   | 1         | 2         | 3                  |                   | 1          | 2          | 3                  |                           |
| v100_m            | 0,819     | -0,243    | -0,178             | v100_m            | 0,819      |            |                    |                           |
| Long_jump         | -0,849    | 0,179     | 0,080              | Long_jump         | -0,849     |            |                    |                           |
| Shot_put          | -0,173    | 0,868     | -0,023             | Shot_put          |            | 0,868      |                    | Loads less than $\pm 0.4$ |
| High_jump         | -0,252    | 0,740     | -0,060             | High_jump         |            | 0,740      |                    | are deleted               |
| v400_m            | 0,864     | 0,009     | 0,299              | v400_m            | 0,864      |            |                    |                           |
| v110_m_hurdles    | 0,718     | -0,205    | 0,021              | v110 m hurdles    | 0,718      |            |                    |                           |
| Discus_Throw      | -0,076    | 0,856     | -0,020             | Discus Throw      |            | 0,856      |                    |                           |
| Pole_vault        | -0,381    | -0,147    | 0,601              | Pole vault        |            |            | 0,601              |                           |
| Javelin           | -0,005    | 0,421     | -0,541             | Javelin           |            | 0,421      |                    |                           |
| v1500_m           | 0,377     | 0,302     | 0,807              | v1500 m           |            | ♥,┭∠ 1     | 0,807              |                           |
| Extraction Method | •         |           | •                  | Extraction Method | d: Princip | bal Com    |                    |                           |
| a. Rotation conve | rged in t | oiteratio | ons.               | a. Rotation conve | rged in 5  | 5 iteratio | ons.               |                           |

#### Compare 4 rotation methods

|                | Component |       |         | Component |           |        | Component |        |        | Component |       |        |
|----------------|-----------|-------|---------|-----------|-----------|--------|-----------|--------|--------|-----------|-------|--------|
|                | 1         | 2     | 3       | 1         | 2         | 3      | 1         | 2      | 3      | 1         | 2     | 3      |
| v100_m         | 0,819     |       |         | 0,815     |           |        | 0,827     |        |        | 0,830     |       |        |
| Long_jump      | -0,849    |       |         | -0,846    |           |        | -0,854    |        |        | -0,858    |       |        |
| Shot_put       |           | 0,868 |         |           | 0,869     |        |           | 0,865  |        |           | 0,877 |        |
| High_jump      |           | 0,740 |         |           | 0,741     |        |           | 0,738  |        |           | 0,754 |        |
| v400_m         | 0,864     |       |         | 0,868     |           |        | 0,857     |        |        | 0,870     |       |        |
| v110_m_hurdles | 0,718     |       |         | 0,717     |           |        | 0,721     |        |        | 0,734     |       |        |
| Discus_Throw   |           | 0,856 |         |           | 0,856     |        |           | 0,855  |        |           | 0,859 |        |
| Pole_vault     |           |       | 0,601   |           |           | 0,608  |           |        | 0,587  |           |       | 0,559  |
| Javelin        |           | 0,421 | -0,541  |           | 0,411     | -0,549 |           | 0,440  | -0,526 |           | 0,414 | -0,519 |
| v1500_m        |           |       | 0,807   |           |           | 0,797  |           |        | 0,825  |           |       | 0,850  |
| ROTATION       | Varimax   |       | Equamax |           | Quartimax |        |           | Promax |        |           |       |        |

|                                                   | <b>Rotated Cor</b>                   | npone     | ent Ma     | trix <sup>a</sup> |  |  |
|---------------------------------------------------|--------------------------------------|-----------|------------|-------------------|--|--|
|                                                   |                                      | Component |            |                   |  |  |
| Transfor to anorto trai                           |                                      | 1         | 2          | 3                 |  |  |
| Transfer to sports trai                           | v100_m                               | 0,819     |            |                   |  |  |
| 1. What to train (it is not possible to train all | Long_jump                            | -0,849    |            |                   |  |  |
| 10 disciplines at the same time) to be the        | Shot_put                             |           | 0,868      |                   |  |  |
| best decathlete?                                  | High_jump                            |           | 0,740      |                   |  |  |
|                                                   | v400_m                               | 0,864     |            |                   |  |  |
|                                                   | v110_m_hurdles                       | 0,718     |            |                   |  |  |
|                                                   | Discus_Throw                         |           | 0,856      |                   |  |  |
|                                                   | Pole_vault                           |           |            | 0,601             |  |  |
|                                                   | Javelin                              |           | 0,421      | -0,541            |  |  |
|                                                   | v1500_m                              |           |            | 0,807             |  |  |
|                                                   | Extraction Method: Principal Compone |           |            |                   |  |  |
|                                                   | a. Rotation conve                    | rged in 5 | 5 iteratio | ns.               |  |  |

|                                                                                                                          | Rotated Cor                            | npone  | ent Ma | trix <sup>a</sup> |  |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------|--------|-------------------|--|
|                                                                                                                          |                                        | ompone | nt     |                   |  |
| Transfor to anorta trai                                                                                                  | 0                                      | 1      | 2      | 3                 |  |
| Transfer to sports trai                                                                                                  | v100_m                                 | 0,819  |        |                   |  |
| 1. What to train (it is not possible to train all 10                                                                     | Long_jump                              | -0,849 |        |                   |  |
| disciplines at the same time) to be the best                                                                             | Shot_put                               |        | 0,868  |                   |  |
| decathlete?                                                                                                              | High_jump                              |        | 0,740  |                   |  |
| 2. You can't always generalize, but it's                                                                                 | v400_m                                 | 0,864  |        |                   |  |
| a 400m run and a shot put spin!                                                                                          | v110_m_hurdles                         | 0,718  |        |                   |  |
|                                                                                                                          | Discus_Throw                           |        | 0,856  |                   |  |
| <ol> <li>Why? It said Mr. Váňa, the coach of the Czech<br/>decathletes Roman Šebrle (gold and silver from the</li> </ol> | Pole_vault                             |        |        | 0,601             |  |
| Olympics) and Tomáš Dvořák (3x world champion,                                                                           | Javelin                                |        | 0,421  | -0,541            |  |
| bronze from the Olympics). Váňa bet on the speed                                                                         | v1500_m                                |        |        | 0,807             |  |
| of execution of individual disciplines.                                                                                  | Extraction Method: Principal Component |        |        |                   |  |
|                                                                                                                          | a. Rotation converged in 5 iterations. |        |        |                   |  |

And **what to do** if we are looking for relationships and the conditions for classic tests known from statistics, such as linear regression, factor analysis, etc., are not met?



## **Data Mining Statistical Methods**

C&RT trees and Neural networks

Martin Sebera

de Oliveira Abrahão, A. A., Marcos de Andrade Júnior, É., de França Ferraz, A., Kuang Hongyu, & Fett, C. A. (2022). Factor Analysis for detection of sports talent in football players. *Saúde e Pesquisa*, *15*(1), 1–12. <u>https://doi.org/10.17765/2176-9206.2022v15n1.e9766</u>

Jinrui Zhang, Zhiwen Zhang, Shuo Peng, Veloo, A., Bailey, R. P., & Wee Hoe Tan. (2023). Psychometric properties of the Chinese version of Sport Anxiety Scale-2. *Frontiers in Psychology*, 1–10. <u>https://doi.org/10.3389/fpsyg.2023.1260253</u>

Lan Zhou, Sang-Ho Lee, & Youshen Cao. (2022). An empirical analysis of sport for mental health from the perspective of a factor analysis approach. *Frontiers in Psychology*, 13. <u>https://doi.org/10.3389/fpsyg.2022.960255</u>

Li, X., Chen, J., Zhan, J., & Liu, L. (2016). A Study on Sports Tourism Competitiveness Based on Factor Analysis Method. 2016 12th International Conference on Computational Intelligence and Security (CIS), Computational Intelligence and Security (CIS), 2016 12th International Conference on, CIS, 673–676. <u>https://doi.org/10.1109/CIS.2016.0162</u>

Putra, M. F. P. (2022). Construct validity test of spirituality in sports test (SIST) using confirmatory factor analysis (CFA) method. *Ovidius University Annals, Series Physical Education and Sport/Science, Movement and Health*, *22*(2), 139.

Děkuji za pozornost Thank you for your attention Danke für Ihre Aufmerksamkeit