

Physiology of Sport and Exercise

Assessing Body Composition

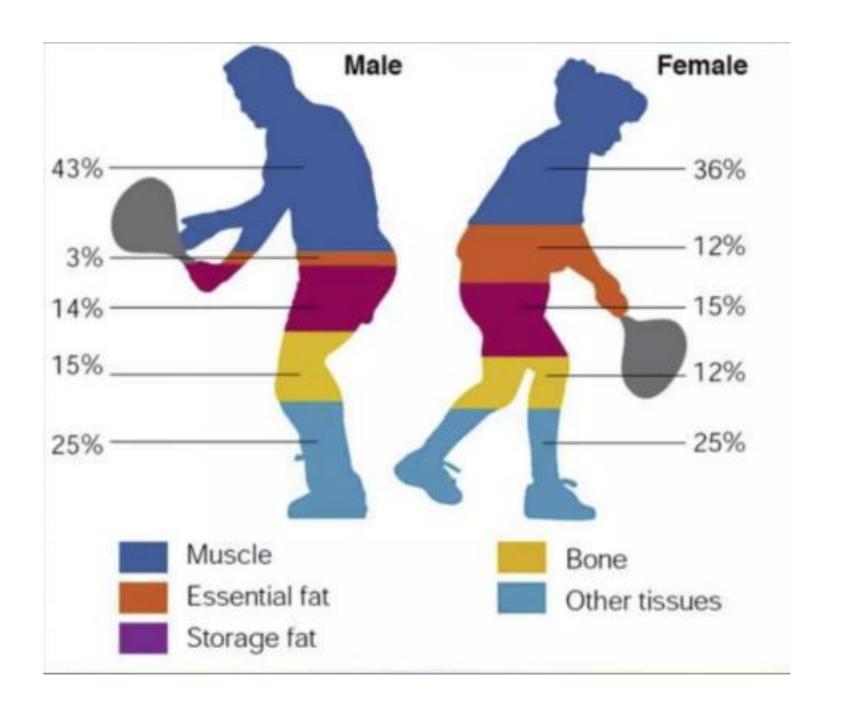
Ana Carolina Paludo

carolina.paludo@fsps.muni.cz

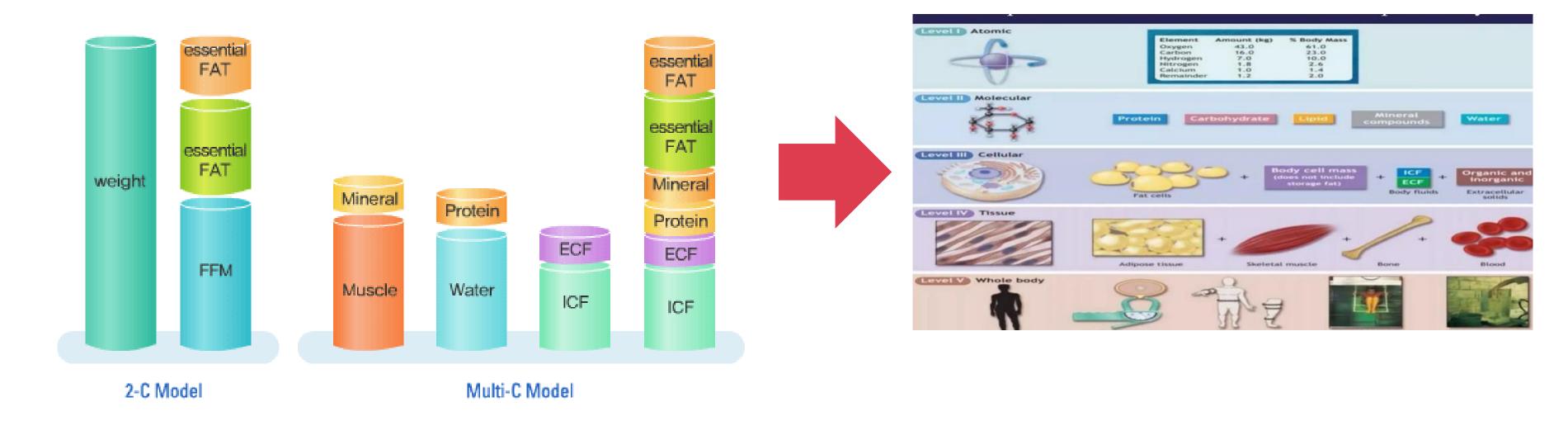
Learning Objectives

Concept of body composition

- Methods for assessing body composition
- Practical approach

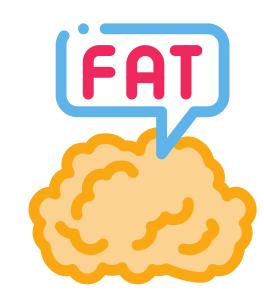

Human Body Composition

Typical body composition of and adult man and woman


Body Composition: the body's relative amounts of fat mass and fat-free mass (bone, water, muscle, connective and organ tissue, teeth)

Essential fat: crucial for normal body functioning

Nonessential fat: adipose tissue


Body Composition Models

Two-Compartment model: divides the human body into fat and fat-free mass.

Multi-component model: divide the human body into the atomic model, molecular model, cellular model, and tissue system model.

Why assessing body composition?

Information about the % of body fat and fat distribution

The most important consideration is the proportion of total body weight that is fat

Estimating a healthy body weight and formulating nutritional recommendations/ exercise prescriptions (over and underweight/fatness)

Estimating competitive body weight for athletes participating in sports that use body weight classification

Monitoring the growth of children and adolescents and identifying those at risk (under or overweight/fatness)

Body changes associated with aging, malnutrition or obesity

Two Method Body Composition Assessment

Direct

- Chemical solution dissolves
- Physical dissection

Indirect

- Height, weight and BMI
- Hydro densitometry
- Air displacement plethysmograph
- Skin fold method
- Bioelectrical impedance analysis (BIA)
- Dual-energy X-ray absorptiometer (DEXA)

Height, weight and BMI

Body Height: measured by stadiometer

Body weight: measured by weighing scale

Body Mass Index (BMI): estimated by equation BMI= Weight (kg)/ Height (cm)2

Classification	BMI (kg/m^2)	Risk of comorbidities		
Underweight	<18.5	Low (but risk of other clinical problems increased)		
Normal range	18.5-24.9	Average		
Overweight (preobese)	25.0-29.9	Mildly increased		
Obese	≥30.0			
Class 1	30.0-34.9	Moderate		
Class 11	35.0-39.9	Severe		
Class 111	≥40.0	Very severe		

BMI postive and negative factors

- A significant predictor of cardiovascular disease and type 2 diabetes.
- Is widely used in population-based and prospective studies

- Does not differentiate fat from lean body mass
- Athletes with a large amount of muscle mass can be wrongly classified into the 'moderate or high-risk' categories

Hydro densitometry


Based on the density of the body

D= **Mass/volume**

Mass= measured by scale weight

Volume= 1. hydrostatic weighing (underwater weighing)

2. volume by air displacement

Archimedes' Principle: weight loss underwater is directly proportional to the volume of water displaced by the body volume.

Hydro densitometry - Calculation

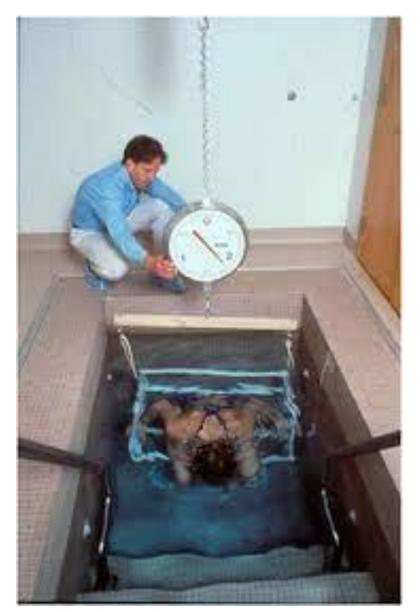
Body density = Wa / ((Wa - Ww) / Dw) - (RV + 100cc))

Ww = body weight in water (kg),

Dw = density of water (according to temperature)

RV = residual lung volume


100cc is the correction for air trapped in the gastrointestinal


tract.

Siri (1956): Fat $\% = [4.950 / Density - 4.500] \times 100$

Brozek et al. (1963): Fat $\% = [4.570 / Density - 4.142] \times 100$

Hydrostatic Weighing

- A most common technique used for decades
- The majority of indirect techniques have been validated against hydrostatic weighing
- Time-consuming
- Difficult to perform on the aquaphobic
- Requires measurement of residual lung volume
- Impractical to measure a large number of people

Air displacement plethysmograph

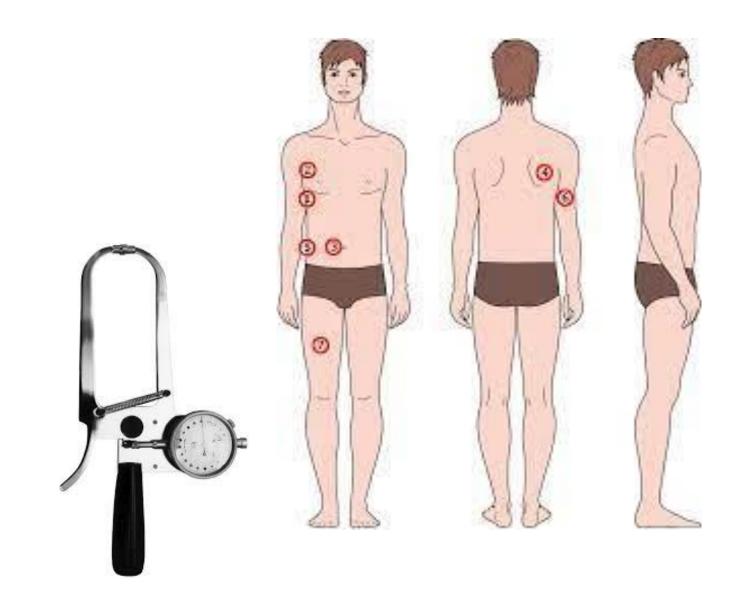
- Measure the body volume and density using air displacement instead of water to estimate the volume.
- Body volume is calculated by subtracting the air volume of the person inside the chamber from the volume of the empty chamber.
- The individual sits inside the small chamber (Bod Pod)
- Computerized pressure sensors determine the amount of air displaced by the person.
- After estimating the body volume is possible to predict the body density and body fat.
- Take around 5-10 minutes.

Air displacement plethysmograph

Factors to consider:

- Individuals are tested wearing minimal clothing (a swimsuit)
 - and a swim cap to compress the hair.
- Individuals with excess body hair may affect the results (underestimating).

Skinfold Thickness


- Based on the principle that the amount of fat beneath the skin is proportional to total body fat
- Reliable measurement of the tissue gives a good indication of the percent body fat.
- A simple anthropometric procedure that estimates body fat from the close relationship between three factors:
- 1. Subcutaneous fat in adipose tissue deposits directly beneath the skin
- 2.Body's internal fat store
- 3.Body density of the intact human body

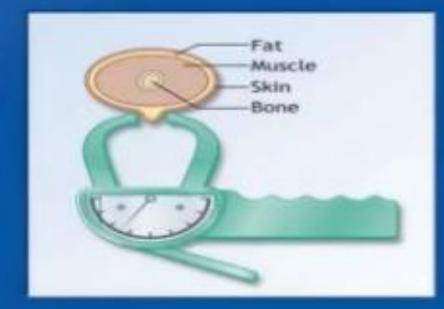


Skinfold Thickness Measurement

- Skinfold measurement is done with pressure calipers
- Specific anatomical sites are measured, on the right side of the body, three times (average or repeated number is taken)
- The values are applied in predictive equations to estimate body fat.

- Skin fold sites
- triceps vertical
- 2. Subscapular oblique
- Iliac crest oblique
- Abdomen vertical
- Thigh vertical
- 6. Biceps vertical

C Illac


E Thig

B Subscapular

D Abdomen

Skinfold Thickness Formulas

Authors	Population	Equations
Siri (1961)	Adults	M and F: Fat (%) = 495/D - 450
Lohman et al (1984)	Prepubescent children	M and F: Fat (%) = 530/D - 489
Weststrate and Deurenberg (1989) 10–18 y (modification of Siri equation)	F: Fat (%) = [553–7.3 (Age – 10)] / D – [514–8 (Age –10)] M: Fat (%) = [562–4.2 (Age – 2)] / D – [525–4.7 (Age –2)]
Brook (1971)	1–11 y (predicted from equations for adolescents)	F: D=1.2063-0.0999 (LOG sum of 4 skinfolds) M: D=1.1690-0.0788 (LOG sum of 4 skinfolds)
Durnin and Rahaman (1967); Durnin and Womersley (1974)	13–15.9 y 16–19.9 y	F (13–15.9 y): $D = 1.1369-0.0598$ (LOG sum of 4 skinfolds) M (13–15.9 y): $D = 1.1533-0.0643$ (LOG sum of 4 skinfolds) F (16–19.9 y): $D = 1.1549-0.0678$ (LOG sum of 4 skinfolds) M (16–19.9 y): $D = 1.162-0.063$ (LOG sum of 4 skinfolds)
Johnston et al (1988)	8–14 y	F: $D = 1.144-0.06$ (LOG sum of 4 skinfolds) M: $D = 1.166-0.07$ (LOG sum of 4 skinfolds)
Deurenberg et al (1990)	Pubertal F: 13.1 ± 0.15 y Pubertal M: 13.8 ± 0.21 y Post-pubertal F: 16.8 ± 0.36 y Post-pubertal F: 17.5 ± 0.39 y	F pubertal: $D = 1.1074 - 0.0504$ (LOG sum of 4 skinfolds) $+ 1.6$ (age 10^{-3}) M pubertal: $D = 1.0555 - 0.0352$ (LOG sum of 4 skinfolds) $+ 3.8$ (age 10^{-3}) F post-pubertal: $D = 1.183 - 0.0813$ (LOG sum of 4 skinfolds) M post-pubertal: $D = 1.1324 - 0.0429$ (LOG sum of 4 skinfolds)
Sarría et al (1998)	11–16.9 y	M (11–13.9): D = 1.1516 – 0.0658 (LOG sum of 4 skinfolds) M (14–16.9): D = 1.169 – 0.0693 (LOG sum of 4 skinfolds)
Sloan et al (1962)	Young women	F: D = 1.0764-0.00081 suprai - 0.00088 tric
Wilmore and Behnke (1970)	Young women	F: D = 1.06234-0.00068 subsc - 0.00039 tric - 0.00025 thigh

Bioelectrical Impedance Analysis (BIA)

- Based on the principle that the fat tissue is a less-efficient conductor of an electrical current (1-10 uA).
- The easier the conductance, the leaner the individual
- Low-level electrical current is passed through the individual body and the impedance or the opposition to the flow of the current is measured with a BIA analyzer.
- It is possible to estimate body fat, lean body mass and body water

Bioelectrical Impedance Analysis (BIA)

• BIA devices are considered safe for most people

CAUTIONS:

- Anyone with an electronic medical implant
- Pregnant women

- Body weight: less accurate in obese people
- Hydration: dehydration may cause the fat-free mass (muscle and bone) to be underestimated
- Exercise: a recent exercise in high intensity may affect the accuracy
- Food and drink: recent food and drink intake may affect the accuracy. Overnight fasting is more accurate

Dual-Energy X-Ray Absorptiometey

- A high-technology procedure that quantifies fat and muscle around bone areas of the body, including regions without the bone present.
- Consists of a short exposure with low radiation dosage penetrates into the bone and soft tissue areas to a depth of about 30cm. Specialized computer software reconstructs an image of the underlying tissue.
- The computer generates a report that quantifies bone mineral content, total fat mass, and fat-

free mass.

A COMPARISON OF COMMON BODY COMPOSITION METHODS IN SPORT

REFERENCE: Larson-Meyer et al. (2018); International Journal of Slater et al. (2018); Best Practice Protocols for Phys	iau a Assassmant	in Sport		J		nal		
MORE INFO: Designed by Adam Virgile Learn more here: https://blog.shakebot.co/ @shakebotapp	Cost	Technicio	n Accurac	y Reliab	ility Subject	Regional Assessme	nt Time	Common Sources of Error
Assessment Method		17	, (Formula used
Skinfolds Assessment Compressed subcutaneous fat thickness via skinfold calipers	\$	Med	Med [®] 3-7%	High	Body touched by practitioner	Yes	<10 min	 Inconsistent site locations Population-specific prediction equation
Bioelectrical impedance analysis Fat mass, fat-free mass, body water via imperceptible electric current thru body	\$ to \$\$\$\$\$	Low	Low 3-11%	Low	Non-in∨asive	Yes; but invalid	<5 min	 Hydration status Body temperature Recent exercise Food intake
Underwater weighing Fat mass, fat-free mass, total body volume via water displacement	\$\$\$\$\$	High	Med 2-3%	High	Involves full water submersion	No	10-20 min	 Fat-free mass fluctuations (water, minerals, proteins) Air in lungs
Air displacement plethysmography Fat mass, fat-free mass, total body volume via air displacement	\$\$\$\$\$	High	Med 2-3%	High	May involve sitting in small spaces	No	<10 min	 Moisture on skin Hydration status Inconsistent clothing Breathing patterns
Dual energy x-ray absorptiometry Bone, fat mass, non-osseous lean mass via X-ray beams thru body	\$\$\$\$\$	High	Med 2-3%	High	Non-invasive	Yes	<10 min	 Muscle glycogen stores Inconsistent clothing Changes in technology & software
Ultrasound Uncompressed subcutaneous fat thickness via imperceptible high- frequency sound waves	\$\$\$ to \$\$\$\$\$	High	High 1-3%	Med	Body indirectly touched with device	Yes	<10 min	 Inconsistent site locations Technician inexperience Inconsistent interpretation

Practical application - Sport

Maximizing Fat-Free Mass

Desirable for athletes involved in strength, power and muscular endurance types of modalities in which the body weight is moved through space.

Severe weight loss



Dehydration: impairs kidney and cardiovascular function; impairing performance

Chronic fatigue: similar symptoms of overtraining

Practical application - Sport

Problems associate with very low levels of body fat

Too little body fat is associated with impairment in reproductive health (low levels of testosterone and estrogen); disorders in the immune system; lower bone mineral density; increase risk of injuries.

In female athletes, increase the chance of the Female Triad Syndrome: interrelationship of menstrual dysfunction, low energy availability and decrease of bone mineral

Orthorexia Nervosa:

When healthy eating goes wrong

The foods we eat should fuel our body. But if nutrition disrupts your life, it could be orthorexia.

POSITIVE NUTRITION

Gives us pleasure

Promotes social bonds

PATHOLOGICAL NUTRITION

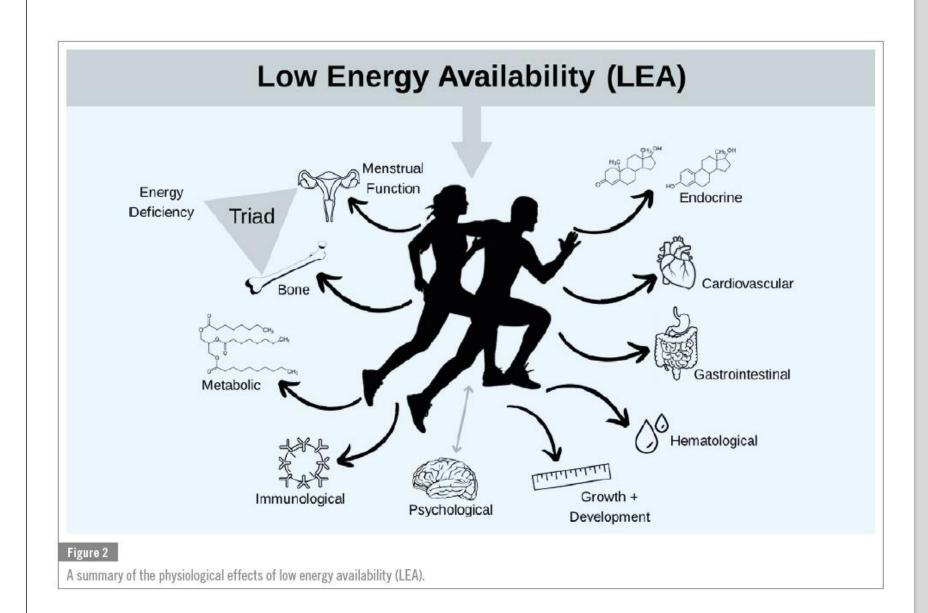
Excludes certain foods

Harms our health

Controls our thoughts and behaviors

Interferes with relationships

Source: Jessica Setnick, MS, RD, CEDRD-S



Eating disorders are serious medical conditions. If you need help, seek care from a physician quickly. Visit chioHealth.com/FindADoctor.

Cabre HE^{1,2}, Moore SR^{1,2}, Smith-Ryan AE^{1,2,3}, Hackney AC^{2,3}

Relative Energy Deficiency in Sport (RED-S): Scientific, Clinical, and Practical Implications for the Female Athlete

Relativer Energiemangel im Sport (RED-S): Wissenschaftliche, klinische und praktische Implikationen für die Sportlerin

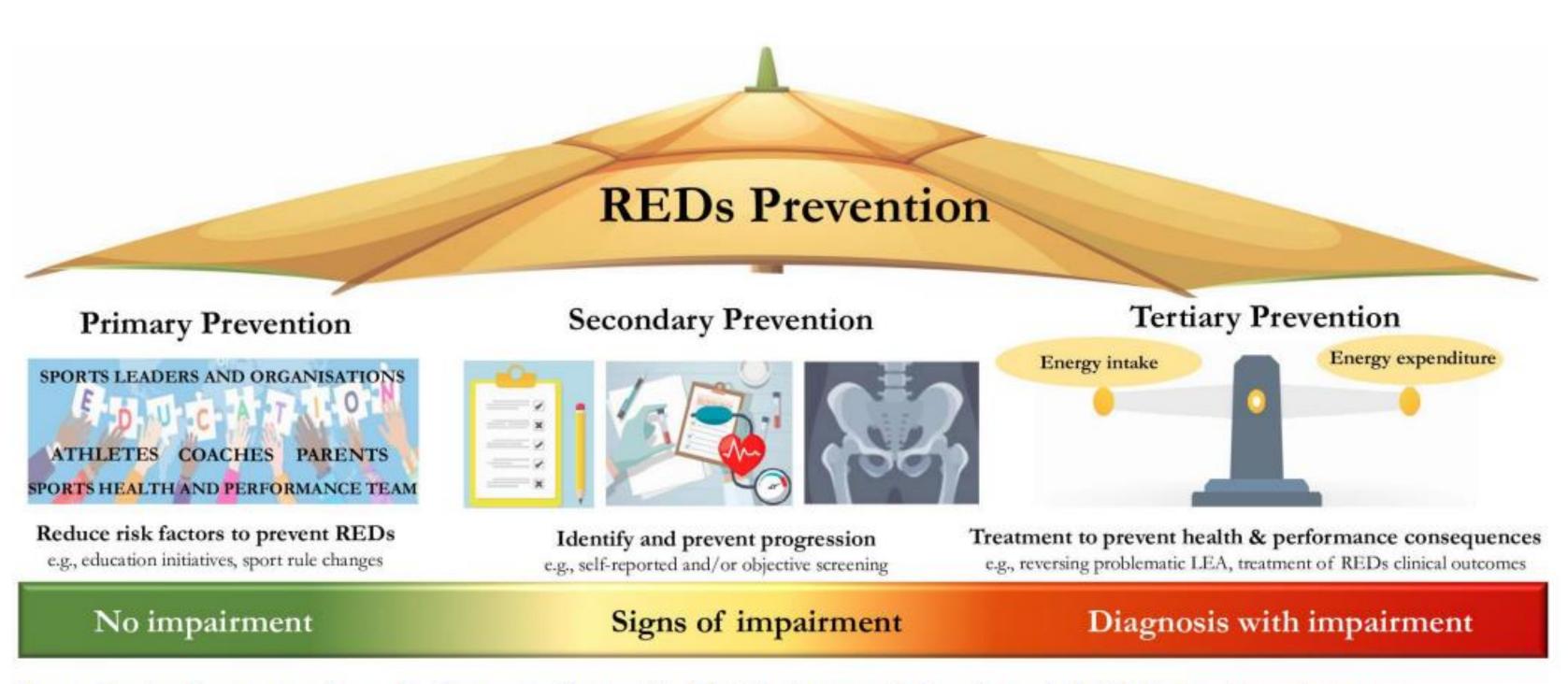


Figure 1 A primary, secondary and tertiary prevention model of Relative Energy Deficiency in Sport (REDs). Pictures from pixabay.com.

Practical application - Sport

To consider in sport settings:

- Prioritize the body composition instead of weight
- Specific sport modality
- Sex and individual differences should be considered
- Methodological errors in body composition measurement should be considered
- A combination of diet and exercise is the best approach for optimal weight loss, for athletes with no more than 0.5 –1.okg per week until reaching the desired body composition range.

