The Portuguese food wheel

- avoid taking the quantitative approach in the recommendation
 - approximate proportion of food weight for only 5 food group
 - proportion of each food group is expressed in percentage
- · Study Graca P, 1999 the National Council of Food and Nutrition.
 - Higher intakes of total fat and saturated fat,
 - lower intakes of fibre/energy and carbohydrates were shared by younger people (40-55 years),
 - higher intakes of total fat, saturated fat, fibre/energy, protein and carbohydrates
 - lower intakes of alcohol by women.

Table 1. Recommendations for the Portuguese Adult Population by the National Council of Food and Nutrition (CNAN) and translated dietary recommendations

- Total carbohydrates should contribute a total daily energy value of 50–70 %;
- Fibre intake should vary between 27 and 40 g/d;
- Total lipids consumption ≤ 30 % of total daily energy;
- Consumption of saturated fatty acids <10 % of total daily energy;
- Cholesterol consumption < 300 mg/d;
- Total saccharose < 20-30 g/d;
- Salt < 6 g/d;
- Reduce alcohol consumption;
- Calcium total daily intake of 800 mg.
- Breast-feeding in the first months of a baby's life, especially during the first six months;
- Adequate consumption of cereals and cereal products;
- Increase of the consumption of vegetable products and fresh fruit;
- Reduction of the consumption of fats, especially solid and overheated fats; preference given to olive-oil consumption;
- Increase of fish consumption;
- Reduction of sugar and sugar-like products consumption;
- Reduction of salt consumption;
- Moderate consumption of alcoholic drinks. Pregnant women, children and those younger than 17 should not drink alcohol.
- Adequate consumption of milk and dairy products;
- Weight control kept through a balanced diet and physical activity;
- A balanced meal first thing in the morning.

Carbohydrates

- "carbohydrate" a mixture of carbon, hydrogen and oxygen
- Carbohydrates are manufactured inside plants from carbon dioxide in the air and water, under the influence of sunlight (photosynthesis)
- Consist of monosaccharide <u>sugars</u>, of varying chain lengths, that have the general <u>chemical</u> <u>formula</u> C_n(H₂O)_n
- The main energy source for the human body
 - 60 % of energy (4-5g/kg)
 - Athletes 5 10 g/kg
- 1 g of carbohydrates = 4 kcal = 17 k.T

Types of carbohydrates

- Carbohydrates are classified in various ways
 - (1) according to their molecular or biological structure
 - Simple Carbohydrates (or "simple sugars")
 - Monosaccharides and Disaccharides
 - Complex Carbohydrates (or "complex sugars")
 - Oligosaccharides and Polysaccharides

- **(2)**
 - Sugars "simple carbs",
 - Starches "complex carbs"
 - Dietary fiber "complex carbs"

Types of carbohydrates

- Carbohydrates are classified in various ways
 - (3) how fast they are digested, and thus how quickly they raise our blood sugar levels

The Glycemic Index

- High glycemic index foods
- Medium glycemic index foods
- Low glycemic index foods
- (4) depending on how "processed" they are by food manufacturers
 - refined carbohydrates
 - unrefined carbohydrates

Simple Carbohydrates

- Monosaccharides one unit of sugar
 - Sweet tasting
 - Rapidly metabolized into energy
 - Honey, fruit
 - Glucose (dextrose, blood sugar, grape sugar)
 - Fructose (sweetest of all sugar)
 - Galactose
- Disaccharides two unit of sugar
 - High glycemic index
 - Sucrose = glucose + fructose (table sugar sugar cane, sugar beet)
 - Lactose = glucose + galactose (milk sugar)
 - Maltose glucose + glucose (malt sugar, germinating grains)

Complex Carbohydrates

- Oligosaccharides
 - \blacksquare 3 6 units of simple sugars
 - Found in plants beans, legumes
 - Can not be digested
 - Low glycemic index
 - help to maintain stable blood glucose level
 - Stachyose
 - Raffinose

Complex Carbohydrates

- Polysaccharides > 100 unit of simple sugar
 - Most natural carbohydrates

Starch polysacharides

- Starch (to store glucose) energy storage in plant
 - Amylose and amylopectin (chains up to 4000 unit)
 - Grains, potatoes, beans, legumes
- Glycogen
 - energy storage in human body
 - liver and muscle glycogen

Non- starch polysacharides (fiber)

- Cellulose, hemicellulose (insoluble fiber)
- Pectin, gum and mucilage (soluble fiber)
- Cannot be digested
- Keep our intestine clean and healthy
- beans, wholegrain cereals, fruits, vegetables and nuts

Benefits of carbohydrates

- **Easily-obtained energy** in the form of glucose
- Carbohydrate are rapidly break it down into simple sugars and ultimately glucose
- The glucose is then absorbed and distributed to cells and muscles with the help of insulin
- The glucose can be retained as and energy reserve in the liver and muscles **glycogen**
- The glucose can be store as body fat

Metabolism of sugar

■ Two major metabolic pathways of monosaccharide catabolism:

Glycolysis

- a molecule of glucose is oxidized to two molecules of pyruvic acid
- generation of high-energy molecules (<u>ATP</u> and <u>NADH</u>)
- production of a variety of six- or three-carbon intermediate metabolites (may be removed at various steps in the process for other intracellular purposes)
- Glycolysis alone produces less energy per glucose molecule than complete aerobic oxidation

Citric acid cycle (Krebs cycle)

- a series of <u>chemical reactions</u> of central importance in all living <u>cells</u> that utilize <u>oxygen</u> as part of <u>cellular respiration</u>.
- part of a <u>metabolic pathway</u> involved in the chemical conversion of <u>carbohydrates</u>, <u>fats</u> and <u>proteins</u> into <u>carbon dioxide</u> and <u>water</u> to generate a form of usable energy.
- It is the second of three metabolic pathways that are involved in <u>fuel</u> molecule <u>catabolism</u> and <u>ATP</u> production, the other two being <u>glycolysis</u> and <u>oxidative phosphorylation</u>
- The citric acid cycle also provides precursors for many compounds such as certain <u>amino acids</u>, and some of its reactions are therefore important even in cells performing <u>fermentation</u>

Benefits of carbohydrates for athletes

- The major energy providers in your diet
- Carbohydrate should provide 60 % of your total dietary energy (most energy from starch polysacharides)
- Starch the body's favourite "fuel,,
- Dietary carbohydrate increases the amount of CHO available to the working muscles
- We store very little glucose in the body vital to have a regular intake of starch (starch \rightarrow glucose \rightarrow glycogen \rightarrow glucose)
- If the muscles run out of glucose they can also burn body fat (is not as efficient an energy source)
- High levels of glycogen => help you exercise at your optimum level
- Low level of glycogen => early fatigue and reduced exercise intensity
- Athletes should ingest 9-10 grams CHO/kg of body weight per day

Good source of starch for athletes

- bread
- cereals
- porridge oats
- potatoes
- beans
- lentils
- rice
- pasta
- noodles

How much carbohydrate should you eat?

Minimum of 60 percent to
 70 %

Example

- Total calorie intake 3,000 calories/day
- calories from carbohydrate3,000 X 60 % = 1800 calories
- 1 gram of carbohydrate = 4 calories
- Therefore, 1,800 calories is equivalent to 450 grams of carbohydrate

Factors influencing metabolism of carbohydrate during exercise

Expenditure of energy

Carbohydrate loading

- => increase of muscle glycogen stores above normal levels
- => delay the onset of fatigue during an event

Method for achieving carbohydrate loading over a seven-day period prior to an event

Day 1	Endurance training for one hour to deplete your muscle glycogen stores.
Days 2, 3 & 4	Taper off your training and eat a moderate carbohydrate diet - 5 grams to 7 grams per kilogram of body weight.
Days 5, 6 & 7	Taper off training further and rest. While doing this, have a high carbohydrate intake - 8 grams to 10 grams per kilogram of

Carbohydrate intake while exercising

- Longer exercise sessions (more than an hour)
 - => deplete supplies of glycogen
- Eat carbohydrates during sport event
 - Hypotonic sport drink (30 60 g carbphydrates/hour)
 - Fruit, musli bar, dry fruit
- Greater amounts have no further benefit
- Start taking in carbohydrate soon after the exercise session begins

Carbohydrate intake after exercise

- It depends on, how depleted are your stores of glycogen
- Take carbohydrates as soon as possible after exercise session
- During the first two hours, replenishment is most rapid and is approximately one and a half times the normal rate
 - eat or drink 200 to 400 carbohydrate calories
- During the following four hours, the rate slows down but remains higher than normal
 - eat or drink again 200 to 400 carbohydrate calories
- Restoring your glycogen levels as quickly as possible is very important, particularly if you train every day or every other day

200 to 400 calorie

- Two pieces of fruit such as a banana and orange or apple
- 12 oz. fruit juice cocktail, like cranberry, or fruit juice like grapefruit or orange
- 1 cup non-fat frozen or regular yogurt topped with 1 cup blueberries or raspberries
- 1 cup of grapes and 1 bagel
- 1 oz. of cereal with 1/2 cup skim milk and 1/2 cup sliced banana
- 1 cup low-fat vegetable soup with 1 pita pocket
- 1 bran, blueberry, or cranberry low-fat muffin with a cup of skim milk

Carbohydrate intake before, during and after exercise

Time scale	The amount of carbohydrate
3 - 4 hours before exercise	200 - 350 g carbohydrates for maximum loading of glycogen (4 - 5 g/kg)
30 - 60 minute before exercise	50 - 75 g carbohydrates (1 - 2 g/kg)
< 5 minute before exercise	50 g (less for women) can improve performance)
During exercise	Endurence event 30 - 60 g/h - for stable blood glucose level
	Drinking 600 - 1200 ml 6 - 8% carbohydrates drinks/hour
After exercise	To supply glycogen
	1,2 - 1,5 g carbohydrates/h during first 30 minute and every 2 hours (4 - 6 hodin) 2. dinner rich in complex carbohydrates