Proteins, amino acids and exercise

Proteins and amino acids

Proteins

- the most important biological compounds needed for life
- act as the structural materials in humans
- Enzymes are proteins that catalyze the body's chemical reactions.
- make up muscles that aid in movement.

Amino acids

- Proteins are made up of chains of amino acids.
- an amine group (-NH₂) bonded to a carbon atom that is bonded to a carboxylic acid group (-COOH)

Amino acids with hydrophobic side groups

Amino acids with hydrophilic side groups

Amino acids that are in betweer

Aspartic acid

(asp)

Amino acids can bond together by peptide bond

H N
$$-$$
 C $-$ C $-$ OH $-$ R' $-$ C $-$ OH $-$ Amino acid 2 amino acid 2 $-$ C $-$ OH $-$ C $-$ OH $-$ C $-$ OH $-$ C $-$ OH $-$

Amino acids (AA)

- 20 amino acids in the nature
- Classification of amino acids
 - Essential AA methionine, leucine, isoleucine, lysine, phenylalanine, threonine, tryptophan, and valine
 - Conditionally essential AA histidine, arginine (required for infants)
 - Nonesential AA glycine, aspartic acid, asparagine, proline, glutamine, glutamic acid, cysteine, tyrosine, serine, alanine, hydroxyproline

Digestion and absorption of protein

- Digestion
 - *The stomach*
 - Hydrochloric acid, pepsine
 - Proteins => polypetides, amino acids
 - *The small intestine*
 - pancreatic and intestinal proteases
 - Polypeptide => oligopeptides, tripeptides, dipeptides, amino acids
 - Peptidase
 - Tripeptides and dipeptides => amino acids
- Absorption
 - Specific carriers transport AA

Roles of proteins in the body

- As a building material
- As enzymes
- As hormones
- As regulator of fluid balance
- As acid-base regulators
- As transporters
- As antibodies
- As a source of energy and glucose

Protein metabolism

- Protein turnover and the amino acid pool
 - proteins are being made and broken down
 - Nitrogen balance
 - Positive growing infants, childrens, pregnant women
 - Negative people who are starving or suffering severe stress
- Using AA to make proteins, nonessential AA
- Using AA to make other compounds
 - Tyrosine → neurotransmitters norepinephrine, pigment melanin, hormon thyroxin, precursor for the vitamin niacin
- Using AA for energy
 - Glucose, fatty acid is limited => amino acids are source of energy
- Deamination AA
 - Broken down AA (source of energy)
 => stripped of their nitrogen-containing amino groups (NH₂)

ammonia => urea

- Using AA to make fat
 - If a person eat a lot of protein => convert to fat and store

Proteins in food and their quality

- Source of protein
 - Animal source meat, fish, milk and dairy products, egg
 - Plant source lentils, legumes, nuts, whole grains, vegetables
- Limiting AA
 - e.g. lysine in grains, methionine in legumes
- Complete protein
 - = animal protein contains all esential AA
- Biological value (BV)
 - A measure of protein quality
 - The amount of protein nitrogen that is retained from a given amount of protein nitrogen absorbed
 - BV egg 100, meat 92 92, fish 94-96, legumes 75-80, grains 70

RDA of protein

- 12 15 % energy
- Diet 2000 kcal = 300 kcal from protein = 75 g

Age	Protein RDA (g/kg)
11- 14	1,0
15 - 18	0,8-0,9
Adult	0,8
Endurance athlete	1,2 -1,4
Strength athlete	1,4-1,8
Children athlete	1,5

Approximate protein content of various foods

Food	Protein (g)
Beef 3 oz	28
Pork 3 oz	28
Cod 3 oz	21
Oysters 3 oz	17
Milk 1 c	8
Cheddar cheese1 oz	7
Egg 1 large	6
Peanut butter (1 tbs)	8
Po1 medtato 1	3
Bread 1 slice	2
Banana	
Carrots 2 c	1
Apple 1	2
Sugar, oil	0

Metabolism of amino acids and protein during exercise

■ Amino acid x not source of energy

- Hormones influence muscle protein turnover
 - Influence synthesis, breakdown or both
 - Anabolic synthesis
 - Catabolic breakdown
- Single exercise bout modify the amount of circulating levels of hormones
 - Growth hormone, tyrosin ↑

Hormones influence muscle protein turnover

Insulin

- Release is stimulated by elevated blod glucose and less potently by elevation of AA
- Promote uptake of AA to cells (skeletal muscle)
- Promote a synthesis of protein, limiting break down
- During exercise is release of insulin blunted (greater glycogen and fat breakdown)
- Endurance exercise more AA available for gluconeogenesis

Hormones influence muscle protein turnover

Cortisol

- Released by the adrenal gland during physiological or nutritional stress
- Stress hormone
- Increase energy nutrient availaility breakdown protein
- Vary in level during exercise (intensity, duration)

Growth hormone (GH)

- Increase during exercise, remain elevated for some time afterward
- Increase level of AA after protein rich meal => ↑ GH
- \uparrow GH => \uparrow AA uptake to muscle cells, protein synthesis

Hormones influence muscle protein turnover

- Insuline-like growth factor 1 (IGF-1)
 - Anabolic efect of GH is mediated with IGF-1
 - If IGF-1 is \downarrow and GH is \uparrow = inhibited protein synthesis

Testosterone

- Promoter of protein synthesis in muscle
- Enhance utilization of AA for protein synthesis
- Level of testosterone ↑ = resistance and endurance training

Resistance exercise (RE)

- Protein synthesis
 - unchanged or reduced during RE
 - Increase for several hours after RE
- Protein breakdown
 - Not occur during RE
 - May increase after RE
- AA oxidation
 - Not enhanced during RE
- Consumption of a carbohydrate and protein meal after RE
 - => minimize protein breakdown
 - => maximize protein synthesis

Endurance exercise (EE)

- Protein synthesis
 - unchanged or reduced during EE
- Protein breakdown
 - can occur during higher intensity, longer duration EE
- AA oxidation
 - Can occur during prolonged moderate to higher intensity submaximal EE
- Consumption of carbohydrate and protein meal after EE
 - => minimize protein breakdown
 - => maximize protein synthesis

Protein intake of athletes

- Endurance athlete 1,2 1,4 g/kg
- Strength athlete 1,4 1,8 g/kg
- Timing and composition of meal postexercise
 - Carbohydrates fuel and increase the uptake of AA
 - \blacksquare AA allows for an influx into muscle cells, protein synthesis
 - After training
 - 0,5 g protein per kg + 1,5 g carbohydrates per kg
 - Weight training at lest 135 g of carb. and 45 g of protein for a 90 kg weight trainer
 - Endurance training at least 105 g of carb. and 35 g of protein for a 73 kg endurance athlete
 - = 560 720 kcal (1/5 1/6 daily energy needs)
 - After 3-4hour eat again
 - => Maximise positive efect of exercise on muscle protein turnover

Protein intake of athletes

- Timing and composition of meal during exercise
 - Carbohydrate consumption (e.g. Sport drinks) support better recovery and adaptation
- Number of meals
 - Numerous smaller meals over the waking hours
 - = more consistent influence on insulin level
 - = minimize catabolic periods between meals
 - = more consistent availability essential AA = more desirable influence on protein synthesis
 - 5 6 meal during a day
 - After exercise approximately 40 g protein
 - **Each** other meal 15 20 g of protein