Physiology of Sport and Exercise

Endocrine System in Sport and Exercise

Ana Carolina Paludo

European Structural and Investment Funds Operational Programme Research. Development and Education

carolina.paludo@fsps.muni.cz

Postdoc2MUNI No. CZ.02.2.69/0.0/0.0/18_053/0016952

Learning Objectives

The basic structures of the endocrine system

How endocrine system works during the exercise

Hormones and behavior

Last class???

What happen during the exercise??

Stress System

Switch on

Motor activity

Emotional response

Cardiac System

Endocrine System

Endocrine System

Endocrine Glands (production and secretion)

release hormones into the blood

Hormones (specifics)

travel into the blood to specific target organs

Transmitters (chemicals)

The molecules transmit specific information (in a slow way)

Hormone

Difference among the hormones

Molecule chemical structure

Туре	Examples	Derived From Cholesterol		
Steroids	Aldosterone, cortisol, estrogen, testosterone			
Amines	Epinephrine, norepinephrine	Amino acids		
Glycoproteins	FSH, LH, TSH	Carbohydrates and proteins		
Peptides	ADH, oxytocin, thyrotropin- releasing hormone	Amino acids		
Proteins	GH, PTH, PRL	Amino acids		

fast

Very slow

	Neurotransmitters	Hormones		
DEFINITION	Neurotransmitters are chemical messengers produced by the nervous system.	Hormones are the chemical messengers produced by the endocrine system.		
ORGAN SYSTEM	Nervous system	Endocrine system		
TRANSFERENCE	Through synaptic cleft.	Through the circulatory system.		
SPEED OF THE ACTION	Fast	Very slow		
EXAMPLES	Acetylcholine, dopamine, glutamate, glycine, serotonin, histamine and noradrenaline.	Estradiol, testosterone, melatonin, vasopressin, insulin and growth hormone, luteinizing hormone, follicle- stimulating hormone, thyroid-stimulating hormone, etc.		
and the second				
FUNCTION	Facilitate the signal transmission through neurons by passing action potential from axon of one neuron to dendrite of the	They affect many processes in our body including growth and development, mood, metabolism, sexual		
	next neuron.	function, reproduction, etc.		

Hormone release axis

Steroid Hormones - Brain in charge Adrenal

Pituitary

Hypothalamus

releasing and inhibiting hormones

HPA axis HPG axis

Gonodal

The pituitary

Different part of the pituitary is responsible for the secretion of specific hormones

Hormone in the blood system

- Plasma levels of specific hormones fluctuate.
- Secretion is regulated by a negative feedback system.
- Cells can also alter their number of hormone receptors via down- or up-regulation.

Hormonal response to exercise

Acute responses to exercises

Chronic responses to exercises

All other hormonal responses to exercise showed inconclusive findings

Hormonal response to exercise

Sympathetic Nervous System

Catecholamines:

Epinefrine Norepinephrine

Increase of blood flow, bpm, breathing

Hormone Regulation of Fat Metabolism

Hormonal response to exercise

Growth Hormone (GH)

Tissue growth and metabolism (muscle cells activated during the exercise – importance of training specificity).

Testosterone

Aerobic and resistance exercise. Role: increase the activation of muscle fibers. Increase protein synthesis – hypertrophy. Recovery and muscle repair.

'Hormone release adapts to meet the demands of the exercise'

Cortisol

Energy production – generate energy. to ensure your muscles get the energy they need.

Insulin-Like Growth Factors (IGF)

Training adaptations in repair and remodeling bone and skeletal muscle

BDNF- brain-derived neurotrophic factor

improvements in cognitive function

Menstrual cycle and hormone concentration

Journal of Steroid Biochemistry and Molecular Biology 191 (2019) 105375

Period Pr FSH (Follicle Stimulating Hormone)

01

Fig. 1. Model of estrogen functions in exercise endurance, focusing on skeletal muscle and mitochondrial regulation.

No consensus about performance and menstrual cycle phase

Recovery and Sleep

Overtraining - an imbalance of training dose-responses

Increase production, receptors and muscle growth

Hypoactivity of HPG axis

Hormone and Behavioral Reponses

During Exercise

muscle hypertrophy, power, strenght T concentrations related to better performance

Behaviors

Agressive

Vigor

Angry

Dominante

Some behaviors can increase T concentration; a major concentration of T during a game/exercise can improve performance

Hormone and Behavioral Reponses

Pre-competition hormonal and psychological levels of elite hockey players: Relationship to the 'home advantage'

Justin Carré^a, Cameron Muir^{a,b}, Joey Belanger^c, Susan K. Putnam^{*}

Changes in salivary testosterone concentrations and subsequent voluntary squat performance following the presentation of short video clips

Christian J. Cook ^{a,b,c}, Blair T. Crewther ^{b,*}

^a United Kingdom Sport Council, London, UK b Hamlyn Centre, Imperial College, London, UK ^c Sport, Health and Exercise Science, Department for Health, University of Bath, Bath, UK

Fig. 1. Mean (±S.E.) pre-game and practice salivary testosterone levels in 14 elite Junior 'A' hockey players. Players showed significantly higher pre-game salivary testosterone levels when playing in their home arena as compared to their opponents' arena (paired *t*-tests, two-tailed). *p=0.04.

The effects of different pre-game motivational interventions on athlete free hormonal state and subsequent performance in professional rugby union matches

Christian J. Cook ^{a,b,c,d}, Blair T. Crewther ^{b,d,*}

Salivary testosterone concentrations in response to the pre-game motivational inter-

2		VPCF1	SM1	VCCF	SM2	VPCF2
tion (pg/ml)	М	140.5	152.6	147.4	144.1	147.2
	SD	19.4	30.1	34.6	25.6	19.2
g/ml)	Μ	157.5	160.3	146.3	151.0	164.0
	SD	18.5	29.2	35.4	25.1	17.6
	Μ	$12.5^{*,\alpha}$	5.4 ^{*,#}	-0.7	5.0 ^{*,#}	11.8 ^{*,α}
	SD	5.9	3.7	4.7	2.4	4.8

VPCF = video with positive coach feedback, SM = self-motivate, VCCF = video with cautionary coach feedback.

Mental Fatigue and testosterone concentration

Mental fatigue impairs technical performance and alters neuroendocrine and autonomic responses in elite young basketball players

Alexandre Moreira^{a,*}, Marcelo Saldanha Aoki^b, Emerson Franchini^a, Daniel Gomes da Silva Machado^c, Ana Carolina Paludo^a, Alexandre Hideki Okano^d

Menstrual Cycle and Testosterone Concentration

A longitudinal analysis of salivary testosterone concentrations and competitiveness in elite and non-elite women athletes

Blair T. Crewther^{a,b,*}, Christian J. Cook^{b,c,d}

Menstrual Cycle and behavioural responses

International Journal of Environmental Research

The Prevalence of Menstrual Cycle Disorders in Female Athletes from Different Sports Disciplines: A Rapid Review

Marta Gimunová^{1,*}, Alexandra Paulínyová¹, Martina Bernaciková¹ and Ana Carolina Paludo²

The Effect of Menstrual Cycle on Perceptual Responses in Athletes: A Systematic Review With Meta-Analysis

Ana Carolina Paludo 1*, Armin Paravlic 1,2,3, Kristýna Dvořáková⁴ and Marta Gimunová⁵*

Hormonal Doping

Anabolic-Androgenic Steroids (AAS)

Synthetics derivatives of testosterone

Anabolic: muscle growth, major recovery, pain tolerance, aggression. Androgenic: secondary sexual characteristics

Sources: Associated Press; Bantam Medical Dictionary; Chronicle research

JOHN BLANCHARD / The Chronicle

strengthens and increases muscle

Hormonal Doping

Side effect of AAS use

MOOD SWINGS

Steroids disrupt the functioning of the brain's limbic system, which influences mood.

CONFUSED HORMONES

Steroids confuse the hypothalamus, the part of the brain that controls sex hormones. Boys can develop breasts; girls can get deep voices and facial hair. Both sexes risk reproductive problems, including infertility.

STUNTED GROWTH

Steroids can trick the brain into signaling the bones to stop growing. Teens who use steroids may never reach their full adult height.

INFECTION

Nonsterile injection techniques and sharing needles put abusers at risk for life-threatening diseases, including HIV and hepatitis B and C.

Hormonal Evaluation

Practical Application

Task: search for an

article about hormone

and the sport modality

that you like it

carolina.paludo@fsps.muni.cz

Complementary material:

Exercise associated hormonal signals as powerful determinants of an effective fat mass loss. <u>https://pubmed.ncbi.nlm.nih.gov/26238498/</u>

Enhancement of hypothalamic-pituitary activity in male athletes: evidence of a novel hormonal mechanism of physical conditioning. https://bmcendocrdisord.biomedcentral.com/articles/10.1186/s12902-019-0443-7.

https://www.youtube.com/watch?v=C0EcMJ7CZfY