Performing under Pressure; on the Biology, Psychology and Sociology of stress in high-performance professions

I - ON THE PHYSIOLOGY OF STRESS

Nature selects for speed

Speed over accuracy

-It matter less where you run than that you run as quickly as possible

Limited time frame (5 min)

Most negatives effects of stress are the result of turning on the system for way longer than the approximately 5 minutes it usually takes.

Sapolsky, R. M. (2004). Why zebras don't get ulcers: A guide to stress, stress related diseases, and coping. In Natural History.

Heitz, R. P. (2014). The speed-accuracy tradeoff: History, physiology, methodology, and behavior. Frontiers in Neuroscience, 8(8 JUN), 1–19, https://doi.org/10.3389/fnins.2014.00150

Both the lion and the gazelle heed the same acute processes to survive

Transport energy (fuel + oxygen) to those parts of the body that you need to survive

Legs

Upper body

Hyper cognitive focus on the task at hand (fight or flight)

Down-regulation of non-essential processes

Energy

 Oxygen in-take and transport to the relevant muscle groups

Increased respiration rate

Increased blood pressure / increased heart rate

Release of glucose from glycogen stores and transport to the relevant muscle groups

Cortisol

Increased blood glucose levels

Increased blood pressure / increased heart rate

Important cognitive changes

Mild stress

Enhanced cognitive function; implicit memory & declarative tasks

Enhanced task oriented focus

High acute or chronic stress

Impairs the formation of complex memories: enhances implicit memory

Repetitive tasks

Sandi, C. (2013). Stress and cognition. WIREs Cogn Sci, 4(June). https://doi.org/10.1002/wcs.1222

Processing stimuli; the hardware

- A stimulus is detected by one of our senses
 - The amygdala relays signals if the stimulus is threatening
 - Locus coeruleus (Norepinephrine)
 - Hypothalamic adrenal axis (Cortisol)
 - Ventral tegmental area (Dopamine)
 - Medial prefrontal cortex (is this really a problem?)

Autonomic nervous system

Sympathetic nervous system

Parasympathetic nervous system

(nor-)adrenaline / (nor-)epinephrine

Setting the system up for movement
Blood pressure / heart-rate
Respiration rate
Task related focus and memory
Heightened alertness & stressor related memory
Three behavioural stages of nor-adrenaline
Movement
Erratic movement (panic)

Shutdown

Ross, J. A., & Van Bockstaele, E. J. (2021). The Locus Coeruleus- Norepinephrine System in Stress and Arousal: Unraveling Historical, Current, and Future Perspectives. Frontiers in Psychiatry, 11(January), 1–23. https://doi.org/10/3389/fpsy12020.601519

Cortisol

Release glucose (fuel) from glycogen stores

Highest in the morning

Nightmares

Interaction with nutrition

Suppress inflammation

Blood pressure

What does dopamine do to the stress response

Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36(2), 241–263. https://doi.org/10.1016/S0896-623 (02)00967-4