Applied Categorical & Nonnormal Data Analysis

Contingency Tables

A table that cross classifies two variable is called a two-way contingency table. It is also known as a cross tabulation or crosstabs for short. If each of the two variables has two levels then the table is a 2x2. If there are three levels of one variable and 5 of the other, it would be a 3x5 table. We will start off by looking at a 2x2 table.

Observed Frequencies

The following table gives a representation of the observed frequencies of a 2x2 contingency table.

row var	column col 1		Total
row 1 row 2	n11 n21	n12	n1+ n2+
 Total	n+1	n+2	1

Here is what the observed frequencies look like for an example using myocardial infarction and the use of aspirin.

-	myocardial	infarction	
group	yes	no	Total
+			+
placebo	189	10845	11034
aspirin	104	10933	11037
+ Total	293	21778	+
1	0.1		• • • • • •

The values in the body of the table represent the joint distribution and the values around the edges represent the marginal distributions.

Observed Proportions

Here is a representation of the observed proportions which can also be treated as probabilities.

row var	column col 1	variable col 2	Total
row 1 row 2	p11 p21	p12 p22	p1+ p2+
Total The observed proport	1	' p+2 mple look lik	1.0 e this:
	myocardial	infarction	
group	yes	no	Total
	+	+	

placebo	.0086	.4914		.4999
aspirin	.0047	.4954		.5001
Total		.9867	т 	1.0000

Relative Risk

The relative risk in a 2x2 table is the ratio of "success" probabilities for the two groups. For the MI example, it would look like this.

RR = p11/p21 = .0086/.0047 = 1.82

In this example, the sample proportion of myocardial infarction was 82% higher for the placebo group. If you take the reciprocal of the relative risk the value is .55. The proportion of myocardial infarction was 45% lower for the aspirin group.

Odds Ratio

Before we can talk about odds ratios we need to define odds.

odds = p/(1 - p)

Theoretically, odds can run from 0 to positive infinity. When the odds equal one, the probability of success is equal to the probability of failure. When the odds are less than one, the probability of success is less than the probability of failure. And, when the odds are greater than one, the probability of success is greater than the probability of failure. An odds ratio is exactly what it seems, the ratio of two odds.

$$OR = \frac{odds_1}{odds_2} = \frac{p_1/(1-p_1)}{p_2/(1-p_2)} = \frac{.0086/.9914}{.0047/.9954} = 1.832$$

This is not the only way to compute the odds ratio. It is easier to compute it as a ratio of the cross products of either the frequencies or the proportions.

OR
$$= \frac{n_{11}n_{22}}{n_{12}n_{21}} = \frac{189 * 10933}{10845 * 104} = 1.832$$

OR $= \frac{p_{11}p_{22}}{p_{12}p_{21}} = \frac{.0086 * .4954}{.4914 * .0047} = 1.832$

When the odds ratio equal 1, the odds for group 1 are the same as the odds for groups 2. When the odds ratio is greater than 1, the odds for group 1 are greater than the odds for groups 2. When the odds ratio is less than 1, the reverse is true. The farther odds ratio goes in either direction, the stronger the association among the variables.

In this example, the odds of a myocardial infarction are 83% higher for the placebo group. If you take the reciprocal of the odds ratio the value is .546. Thus, the odds of myocardial infarction was about 45% lower for the aspirin group than for the placebo group.

Odds ratios are invariant when the orientation of the rows and columns reversed. The odds ratios are relatively invariant to changes in the marginal frequencies. For example, if you were to multiply each of the frequencies in the table by a constant, c, the odds ratio would remain unchanged.

$$\text{OR} \ = \frac{cn_{11}cn_{22}}{cn_{12}cn_{21}} = \frac{n_{11}n_{22}}{n_{12}n_{21}}$$

The same is true if you multiply the frequencies for one row by one constant and the frequencies in the other row by a different constant.

OR $=\frac{cn_{11}dn_{22}}{dn_{12}cn_{21}}=\frac{n_{11}n_{22}}{n_{12}n_{21}}$ Relation of Relative Risk to Odds Ratio

When p1 and p2 are both very small, the value of the odds ratio is close to that of the relative risk, In any case, the odds ratio can be obtained from the relative risk by the following formula.

OR = RR *
$$\frac{(1-p_2)}{(1-p_1)}$$

This is useful because there are times when it isn't possible to estimate relative risk directly.

Conditional Probabilities

Conditional probabilities are the probabilities of an event given that some other event has occurred. In our MI example, the conditional probabilities for the groups are:

 group	myocardial yes	infarction no	Total
placebo aspirin	.0171 .0094	.9829 .9906	1.0000
Total Recall that,	.0133	.9867	1.0000
<i>,</i>	myocardial	infarction	
group	yes	no	Total
placebo aspirin		.4914 .4954	.4999

Total | .0133 .9867 | 1.0000 Thus, the conditional probability of a myocardial infarction for the placebo group is .0171, while for the aspirin group in is .0094.

Two variables are said to be independent when the conditional distributions of one are identical for each level of the other. In this example, the conditional distributions are not identical.

Expected Frequencies

Here are the expected frequencies for our example given independence of group and myocardial infarction.

group		nyocardial yes	infarction no		Total
placebo aspirin	+ 	146.480 146.520	10887.520 10890.480	- 	11034 11037
Total	+	293	21778	-+	22071

Note that the marginal frequencies are that same as in the table of the observed frequencies. This is the case because the expected frequencies are obtained form the marginal distribution of the observed frequencies. For example, the expected frequency of 146.480 is obtained as follows:

$$\mathbf{e}_{ij} = (\mathbf{n}_{i+})(\mathbf{n}_{+j})/\mathbf{n}_{++} = 11034*293/22071 = 146.480$$

where n_{i^+} is the frequency for the ith row, n_{+j} is the frequency for the jth column, and n_{++} is the total frequency for the entire table.

What this means, is that, the joint distribution is determined by the marginal distribution of the variables when the two variables are independent.

This property is just a variation of the rule for the joint probability of independent events P(A & B) = P(A)*P(B).

Chi-Squared Statistic

In two-way contingency tables chi-squared is used to test the independence of the two marginal variables. The chi-squared test is often called a goodness-of-fit test but is perhaps better thought of as a badness-of-fit test, because a large value of chi-squared is indicative of a bad fit between the observed and expected frequencies.

There are two commonly computed chi-squared statistics; the Pearson chi-squared (χ^2) and the likelihood ratio chi-squared (G^2)

$$\chi^{2} = \sum \frac{\left(x_{ij} - e_{ij}\right)^{2}}{e_{ij}}$$
$$G^{2} = 2\sum x_{ij} \ln \left(\frac{x_{ij}}{e_{ij}}\right)$$

with degrees of freedom = (I-1)(J-1)

Asymptotically, χ^2 and \mathbf{G}^2 are equivalent. However, in finite samples there can be a considerable difference the estimates of these two statistics.

Stata Examples

use http://www.gseis.ucla.edu/courses/data/hsb2

```
tabulate ses prog, all
```

type of program					
ses	general	academic	vocation	Total	
low middle high	16	19 44 42	12 31 7	47 95 58	
Total	+	105	+ 50	200	
	earson chi2(4 -ratio chi2(4				

Cramer's V =	0.2037	
gamma =	0.0109	ASE = 0.097
Kendall's tau-b =	0.0069	ASE = 0.062

tabulate ses prog, cell nofreq

	ty	type of program			
ses	general	academic	vocation	Total	
low middle high	8.00 10.00 4.50	9.50 22.00 21.00	6.00 15.50 3.50	23.50 47.50 29.00	
Total	+ 22.50	52 . 50	25.00	100.00	

tabulate ses prog, row nofreq

	l ty	vpe of progr	am	
ses	general	academic	vocation	Total
low middle high	34.04 21.05 15.52	40.43 46.32 72.41	25.53 32.63 12.07	100.00 100.00 100.00
Total	22.50	52.50	25.00	100.00

tabchi ses prog

observed frequency expected frequency

	 t vn	e of progr	
ses		academic	
low	16	19	12
	10.575	24.675	11.750
middle	20	44	31
	21.375	49.875	23.750
high	9	42	7
	13.050	30.450	14.500

Pearson chi2(4) = 16.6044 Pr = 0.002 likelihood-ratio chi2(4) = 16.7830 Pr = 0.002

tabchi ses prog, raw pearson cont adjust noo noe

raw residual Pearson residual contribution to chi-square adjusted residual type of program ses | general academic vocation low | 5.425 -5.675 0.250

	1.668 2.783 2.167	-1.142 1.305 -1.895	0.073 0.005 0.096	
middle	-1.375 -0.297 0.088 -0.466	-5.875 -0.832 0.692 -1.666	7.250 1.488 2.213 2.371	
high	-4.050 -1.121 1.257 -1.511	11.550 2.093 4.381 3.604	-7.500 -1.970 3.879 -2.699	
	Pearson chi2(d-ratio chi2(. ,		= 0.002 = 0.002

A note about tetrachoric correlations

Tetrachoric correlations measure the association between two dichotomous variables by estimating the correlation between their associated latent variables.

The **tabulate** command includes an estimate of phi, a measure of association between dichotomous variables. Stata, in the 2x2 case, labels phi as "Cramer's V." The same coefficient can be obtained by computing a standard correlation correlation between the two variables.

The **tetrac** command (**findit tetrac**) available from ATS uses an approximation of the tetrachoric correlations due to Edwards (1957).

let $\alpha = ad/bc$ then $r = (\alpha^{\pi/4}+1)/(\alpha^{\pi/4}-1)$

tabulate hon sci, all

The tetrachoric correlations are often larger than the phi coefficients for the same variables. use http://www.gseis.ucla.edu/courses/data/tetra

| sci
hon | 0 1 | Total
0 | 111 36 | 147
1 22 31 | 53
Total | 133 67 | 200

Pearson chi2(1) = 20.2150 Pr = 0.000
Pearson chi2(1) = 19.4693 Pr = 0.000
 Cramer's V = 0.3179
 gamma = 0.6258 ASE = 0.103
 Kendall's tau-b = 0.3179 ASE = 0.072

corr hon sci

(obs=200)

| hon sci +-----hon | 1.0000 sci | 0.3179 1.0000

tetrac hon sci

(obs=200)

Approximate Tetrachoric Correlations

hon sci hon 1.0000 sci 0.5204 1.0000

tetrac female schtyp ses hon sci (obs=200)

Approximate Tetrachoric Correlations

	female	schtyp	ses	hon	sci
female	1.0000				
schtyp	-0.0331	1.0000			
ses	-0.2844	-0.5840	1.0000		
hon	0.2504	0.0365	0.0837	1.0000	
sci	-0.2616	-0.1434	0.2996	0.5204	1.0000