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A MODIFIED MULTIPLE REGRESSION APPROACH TO
THE ANALYSIS OF DICHOTOMOUS VARIABLES *

LEO A. GOODMAN

University of Chicago
American Sociological Review 1972, Vol. 37 (February):28-46

To illustrate the models and methods of the present article, we shall reanalyze those data
in the famous study of The American Soldier by Stouffer et al. (1949), subsequently
analyzed by Coleman (1964), Zeisel (1968), and Theil (1970). The methods we present reveal
how the odds pertaining to a given dichotomized variable (e.g., the odds that a soldier would
prefer a Northern to a Southern Camp assignment) are related to other dichotomized vari-
ables (e.g., (a) the soldier’s race, (b) his region of origin, (c) his present camp location).
The usual regression analysis methods do mot suit the case considered here, where the de-
pendent variable is the odds pertaining to a given dichotomous variable. Nor do the usual
methods suit the case where the dependent variable is a proportion pertaining to the dichot-
omous variable. This article presents some relatively elementary models and methods suitable
for analyzing the odds (or a proportion) pertaining to the given dichotomous dependent
variable. Applying these models and methods to the data referred to above, new insights are

obtained.

ET us begin by describing the data that
L will be analyzed here for illustrative

purposes. These data, which are based
on the earlier data first presented by Stouf-
fer et al. (1949), appear in Table 1 below.
This four-way table cross-classifies soldiers
by the following four dichotomous varia-
bles: (A) race (Negro or white); (B) re-
gion of origin (North or South); (C) loca-
tion of present camp (North or South);
and (D) preference as to camp location
(North or South).

Table 1 shows that for say, a Negro
Northerner in a Northern camp the odds
are 387 to 36 that he will prefer a North-
ern camp. This table also shows that for,
say, a white Southerner in a Southern camp,
the odds are 91 to 869 that he will prefer a
Northern camp. In the next section, we pre-
sent a model that describes quantitatively
how these and the other odds in Table 1
are affected by (A) race, (B) region of ori-
gin, and (C) present camp location. We
show how to test whether the model fits the
data, and we measure how well the model
fits using an index that is analogous to the
usual multiple correlation coefficient of re-

* This research was supported in part by Re-
search Contract No. NSF GS 2818 from the Divi-
sion of the Social Sciences of the National Science
Foundation. For helpful comments, the author is
indebted to R. D. Bock, S. Haberman, P. F. Lazars-
feld and A. Stinchcombe.
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gression analysis. We also show how to as-
sess the statistical significance of the con-
tribution made by certain parameters in
the model, and we measure the contribu-
tion’s magnitude with indices that are analo-
gous to the usual partial and multiple-par-
tial correlation coefficients of regression
analysis.

With the model that will be described in
the next section, and with the more general
model that follows it, we can estimate how
the odds for preferring a Northern camp
are changed by the “main effects” of race,
region or origin, and present camp location,
as well as by certain “interaction effects”
among these variables. With each model
considered here we can also estimate what
the expected frequencies in Table 1 would
be if the model were true. We can compare
these estimated expected frequencies with
the corresponding observed frequencies to
determine if the model fits the data. For
the model that will be described in the next
section, Table 2 gives the expected fre-
quencies estimated under the assumption
that the model is true. Under this model,
the estimated odds are 390.64 to 32.36 that
the Negro Northerner in a Northern camp
will prefer a Northern camp; and the esti-
mated odds are 91.74 to 868.26 that the
white Southerner in a Southern camp will
prefer a Northern camp. When we compare
the corresponding entries in Tables 1 and 2
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Table 1. Cross-Classification of. Soldiers With Respect to Four Dichotomized
Variables: (A) Race, (B) Region of Origin, (C) Location of Present
Camp, and (D) Preference as to Camp Location
Variable A Variable B Variable C Variable D
Race Region of Location of Number of Soldiers Preferring Camp¥®
Origin Present Camp ‘In North In South
Negro North North 387 36
Negro North South 876 250
Negro South North 383 270
Negro South South 381 1712
White North North 955 162
White North South 874 510
White South North 104 176
South South 91 869

White |

#The numbers in this table were recalculated from the percentage table in

Stouffer et al. (1949, p. 553). These

numbers are consistent with the per-

centages in the 1949 table, but they may differ somewhat from the actual

observed frequencies due to rounding of the percentages.

A related per-

centage table was given also by Coleman (1964, p. 198) and Theil (1970,

p. 104).
move to a specific camp located in the
camp is in the North and who prefer to

"pPreference for camp in North" includes (a) those who prefer to

North, and (b) those whose present
stay there. Similarly, "preference

for camp in South" includes (a) those who prefer to move to a specific camp
located in the South, and (b) those whose present camp is in the South and

who prefer to stay there.

(by methods that will be described later
herein), we find that the model fits the data
well.

Using the expected frequencies estimated
under the given model (see Table 2), we
can also estimate the expected proportion
preferring a Northern camp (as well as the
odds referred to above), for the individuals
in each row in Table 2, under the assump-
tion that the model is true. The models con-
sidered herein, which describe how the odds
for preferring a Northern camp are changed
by certain specified “main effects” and “in-
teraction effects,” can also be used to de-
scribe how the proportion preferring a
Northern camp is changed by these effects.

In order to understand how the dependent
variable (preference as to camp location) is
related to the other three variables (race,
region of origin, and present camp location),
we began with the four-way table (Table
1). Is it necessary to use a four-way table
to describe how the dependent variable is
related to the other three variables, or can
this relationship be summarized adequately

using the information contained in tables
of smaller dimension (e.g., two-way and/or
three-way tables)? The methods presented
in the present article can be used to answer
this question. To estimate the relationship
between the dependent variable and the
other three variables, the model that will be
presented in the mnext section will actually
use only the information contained in (1)
the two-way table describing the relation-
ship between the dependent variable and
race, and (2) the three-way table describ-
ing the relationship between the dependent
variable, region of origin and present camp
location. Since that model fits the data well,
we find that the relationship between the
dependent variable and the other three vari-
ables can be summarized adequately using
only the information contained in the par-
ticular two-way and three-way tables noted
above. This topic will be discussed more
fully later herein when Table 5 is presented.

We propose to analyze the data in Table
1 by methods quite different from those used
in earlier analyses of these data. Our model
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Table 2. Estimate of the Expected Frequencies in the Four-Way Contingency Table
(Table 1), Under the Model in Which the O0dds for Preferring a Northern
Camp Depend on Race, Region of Origin; Location of Present Camp, and
on the Interaction Between Region of Origin and Location of Present
Camp
Variable: A Variable B Variable C Variable D
Race Region of Location of Number of Soldiers Preferring Camp
Origin Present Camp - In North In South
Negro North North 390.64 32.36
Negro North South 879.31 246.69
Negro "South North 376.79 276.21
Negro South South 380.26 1712.74
White North North 951.36 165.64
White North South 870.69 513.31
White South North 110.21 169.79
White South South 91.74 868.26

fits the data better than Coleman’s (1964)
and we present a more parsimonious expla-
nation of these data than he does. With the
estimated parameters in our model, we can
explain, in a more comprehensive and com-
pact way, various interesting features of
these data noted by Zeisel (1968). Some of
the models considered in the present article
are related to those in Theil (1970), but
the methods we use are easier to apply than
his. In the final section herein, we shall com-
pare more fully ours with earlier methods.

A MODEL FOR ANALYZING THE ODDS

The symbols A, B, C, and D denote the
four dichotomized variables in the four-way
table (Table 1): (A) race, (B) region of
origin, (C) location of present camp, and
(D) preference as to camp location. For
variable A, we use numbers 1 and 2 to de-
note Negro and white. For variables B, C,
and D, we use numbers 1 and 2 to denote
North and South. Each of Table 1’s sixteen
cells can be designated (i, j, k, ), where
i=lor2;j=1or2;k=1or2;7=1or 2.
For example, entry 387 isin cell (1, 1, 1, 1),
and is a case where variables A, B, C, D all
take on value 1; entry 36 is in the cell
(1, 1, 1, 2), with variable A, B, and C tak-
ing on value 1 and variable D value 2; entry
876 is in cell (1, 1, 2, 1) with variables A,
B, and D taking on value 1 and variable C

value 2; entry 250 is in cell (1, 1, 2, 2)
with variables A and B taking on value 1
and variables C and D value 2.

Let fig denote the observed frequency
in cell (i, j, k, 2) of Table 1. For example,
f1111 = 387, f1112= 36, f1121 = 876, 1122 =250,
elc. Note that each row of Table 1 can be
described by the triplet (i, j, k). For ex-
ample, the first row is (1, 1, 1); the second
(1, 1, 2); etc. Let ny; denote the total ob-
served frequency in a row (i, j, k). In other
words, we can write ny as

Nijx = fija + fijxe. (1)
For example, n;;; =423, ny12 = 1126, etc.

For those in row (i, j, k) the observed
odds in favor of a preference for a North-
ern camp (i.e., the odds that variable D
will take on value 1) can be written as

o = figer/figee. (2)
For example, w111 =10.75, 0112=3.50, etc.
In other words, when variables A, B, and C
all take on value 1, the odds are 10.75 to
1 that variable D will take on that value.
When variables A and B take on value 1
and variable C value 2, the odds are 3.50
to 1 that variable D will take on value 1.

For row (i, j, k) in Table 1, let pij de-
note that row’s observed proportion of ob-
servations for which variable D takes on
value 1. In other words, we can write P as

Pijk = fij1/Mige. (3)
For example, p11; =.91, p112=.78, etc. We
also let qiz denote the observed proportion
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of observations in row (i, j, k) for which
variable D takes on value 2. Thus,

ik = figke/Nijr = 1 — Dijree (4)
From (2)-(4), we see that
o1k = Pijk/ ik (5)

We can also express the piyx and gk in
terms of the observed odds wij:
Pijic = oigie/ (1 + 013x)
Qi = 1/(1 + o13) - (6)
From (3) and (6) we see that the observed
frequencies fij; can be expressed in terms of
the observed odds wijx and the nyj:
fijr1 = Nygroie/ (1 + oigx)
figke = Dijie/ (1 + og55) - (7)

Let Fij denote the expected frequency in
cell (i, j, k, /) under some specified model.
For example, for the model referred to at
the end of the preceding section, we see
from Table 2 that Fi;11 and Fii11» are esti-
mated as 390.64 and 32.36, respectively.
(The calculation of the entries in Table 2
will be commented upon later herein after
we have presented the material in Table 5.)
Letting Qi denote the odds based on the
expected frequencies, we see that

Qisx = Figr1/Fijie. (8)

Formula (8) corresponds to (2). In addi-
tion, corresponding to (7), we have the
following:

Firr = 0/ (1 + Qigc)

Fijke = Dygi/ (1 + Qi) - (9)
(For a related matter, see (44) Ilater
herein.) Thus, from the Fiyjq, we can calcu-
late the “expected odds” Qi; and from the
iy and ny, we can calculate the Figg.

Our models will express the Qi in terms
of a set of parameters that describe the
“main effects” of variables A, B, and C, and
certain “interaction effects” among these
variables, in a way that is somewhat anal-
ogous to the corresponding effects in the
usual analysis of variance model. In the
present section, we shall present a particular
model that fits the data (Table 1) well;
and in the next section, we shall present a
more general model, namely, a “saturated
model” for analyzing the odds, that can
help determine the various “unsaturated
models” that should be examined further.!

1 The saturated model, which we present in the
next section, can also be described as a full model
or an unrestricted model. The unsaturated models
cani also be described as restricted models. The
various models we consider, which assume that the

-expected odds Qijx are subject to certain multi-

Our analysis of this saturated model led

us to the particular unsaturated model that

we shall present now. For expository rea-

sons we present the unsaturated model first.
Consider the following model:

Qi =y Y1y Biv ey (10)
where
VA1 = 1/, vP = 1/vP2, v = 1/7%,
¥B011 = yB0 = 1/48015 = 1/yB0, (11)

Parameters y, y41, yB1, and y°; describe the
“main effects” on Q, of the general mean 2
and variables A, B, and C, respectively; and
parameter yBC; describes the “interaction
effect” of variables B and C on Q3.3

Formula (10) describes the effects of the
parameters on Q, expressing Q. explicitly
in terms of the model’s parameters. These
parameters can also be explicitly expressed
in terms of Q. From (10)—(11), we obtain
the folowing expressions for the parameters
in terms of Q:

2 2 2 Vs
ol IR , (12)
i=1 j=1 k=1 ik |
Y= [Q’ljk/92jk]% (for j=1,2; k=1, 2)
Vs
=ln 1 @ /) , (13)
| i=1 k=1 1k 2k
[ 2 Y s
Y=o o (e /e ) , (14)
i=1 k=1 ilk  i2k
[ 2 s
701— 'Hl II (Q /Q ) , (15)
i= j=1
7 11 - [(91119122)/(91120121)]1/4
(fori=1, 2)

i12 i21

[II[(Q Q )/(Q Q

1/8
|
. (16)

plicative main and interaction effects (see, e.g.,
formulas (10) and (29)), are quite différent from
models of the kind appearing in, for example, Cole-
man (1964) and Boudon (1968). For further com-
ment, see the final section of the present article.

2Since v is somewhat analogous to the main
effect of the general mean in the usual model for
the analysis of variance (i.e., the constant term in
that model), we refer to v as the main effect of the
general mean on the Q. ¥ actually equals the
geometric mean of the Qijx corresponding to the
eight possible values of (i, j, k) obtained when
i=1, 2; j=1, 2; k=1, 2. For further details, see
formula (12) below.

3 The relationship between the model described
above by (10)-(11) and the usual model for the
analysis of variance will be clarified when we dis-
cuss formulas (20)-(22).
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From (12), we see that y is actually the
geometric mean of the eight Q. From
(13), we see that y#; is the square-root of
the odds-ratio Qyj/Qs%. From (12)-(16),
we see that all the y parameters can be
expressed in terms of Q.* Since Table 2
presents the estimated values of Fij; (under
model (10)), we can use these to estimate
first, Qi (see (8)) and second, the y para-
meters (see (12)—(16)). Table 3 gives the
estimated values of the y parameters.

To emphasize the fact that odds Qi
pertain to variable D, and that the y para-
meters describe the main and interaction
effects on these odds, we could replace the
symbols Qiz, 7, V iy Y1 7%, ¥%% in (10)-
(16) by ‘QDllk’ 'Y ’ 7AD17 YBD7 'YCDk 'YBCDJky
respectively. This notation was used in Ta-
ble 3 and later in Table 4, where each of
the above parameters is identified by its
superscript. From Table 3, we see that the
estimated main effect of each variable (A,
B, C) is posmve (i.e., the estimates of yADl,
yBD;, yOD, are all larger than 1); but the
estimated interaction effect between vari-
ables B and C is negative (i.e., the estimate
of yBCﬁn is less than 1). This means, among
other things, that the estlmated effect on
QD,Jk of being a Northerner in a Northern
camp is less positive (due to the multiplica-
tive factor of 0.86 pertaining to yBoDPy;)
than might be surmised simply by combin-
ing the main effect of being a Northerner
with the main effect of his being in a North-
ern camp. More precisely, after taking ac-
count of the model’s various main effects,
we must multiply the estimate of QP by
the factor 0.86 for a Northerner located in
a Northern camp, to account for the inter-
action effect y®°P;; between variables B
and C (i.e., the effect on QP of the inter-
action between region of origin and present
camp location).? By applying the numeri-

4 The relationship between formulas (12)-(16)
and certain formulas in the analysis of variance
will be clarified when we discuss formulas (23)-
(27).

5From the relationship between 4®%i, ~®%,
%%z and 4% described by formula (11), we see
that, after taking account of the various main
effects in the model, the estimate of the expected

odds 95|1x favoring a preference for a Northern
camp must be multiplied by the factor 0.86 for

Table 3. Estimate of the Main Effects
and Interaction Effects of
the Three Variables (A,B,C)
on the 0dds Qi'k Pertaining

to Variable D in the Four-
Way Contingency Table (Table
1), Under Models (10) and (20)

Variable vy Effects in B Effects in

Model (10) Model (20)
D 1.31 .27
AD 1.45 .37
BD 3.45 1.24
CD 2.14 .76
BCD 0.86 -.15

cal values of Table 3 to formula (10), we
see, for example, that
QP51 = (1.31) (1.45) (3.45) (2.14) (0.86)
=12.07. (17a)

(All calculations in this paper were carried
out to more significant digits than are re-
ported here.)

Further insight into the meaning of the
v parameters can be gained by noting how
the estimated value of these parameters af-
fect the estimate of QPiy, for i=1, 2; j=1,
2; k=1, 2. By applying the numerical values
of Table 3 to formulas (10)-(11), we find
that the QP can be estimated by (17a)
and as follows:

— 1
QD211 = (1.31) (m)(345) (2. 14)
(0.86) =5.74, (17b)

_ 1
OP10; = (1.31)(1.45) (m)(2-14)

1
(m) =1.36, (17¢c)
QP55 = (1.31)(1.45)(3.45)
1
7.12 )\ 0786 =3.56, (17d)

et cetera. Comparing (17a) with (17b), we

those whose region of origin is the same as their
present camp location (viz., Northerners in a
Northern and Southerners in a Southern camp);
and it must be divided by the factor 0.86 for those
whose region of origin differs from their present
camp location (viz., Northerners in a Southern
and Southerners in a Northern camp). For further
comments, see the final section herein.
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see the effect of y4P;. Comparing (17a)
with (17c), we see the effect of yBI—’l and
¥BD,;. Comparing (17a) with (17d), we
see the effect of y°P; and 45D,

We used the superscript D in the preced-
ing two paragraphs to emphasize the fact
that the odds Q;;; pertain to variable D, and
that the y parameters describe the main
and interaction effects on these odds. To
simplify notation we will delete this super-
script hereafter, in all but one section of the
paper.

Formula (10) expresses Qi;x as a product
of certain main and interaction effect pa-
rameters. This formula can also be expressed
in an additive form via logarithms. First,
corresponding to Qij, we let ®;; denote the
natural logarithm of Qij; i.e., we define
q’ijk as

Pijx =log Qux, (18)
where “log” denotes the natural logarithm.
Second, corresponding to formula (10)’s
set of parameters (y, v%;, v®;, v%, v®%w),
we define a new set as follows:

B=log y, B4 =log y*
B = log y%,, etc. (19)
Then from (10) and (18)-(19) we see that
Sy =B+ ﬂAi + ,BBj + ﬁck + ,BBCJ';;. (20)
From (11) and (19) we see that
B4 == B%, BB1=-B%, B =-pC%,
BBC11 = BBCyp = — BBC1, =— BBC,,  (21)
which can also be expressed as follows:

2 2 2
3 B%4=0, 3 B%=0, 3 p%=0,
i—1 j=1 k=1

2
E,BBcjk:O (fOI'kzl, 2), (22)
j=1

2 Bl‘UjKZO (fOI‘ j: 1, 2)
k=1

Parameters 8, 841, 8%, and B¢ describe
the main effects on @®;;; of the general
mean % and variables A, B, and C; and pa-
rameter BBC;; describes the interaction ef-
fect of variables B and C on &;;. The model
described by formula (20), which expresses

6 Since B is somewhat analogous to the main ef-
fect of the general mean in the usual model for the
analysis of variance (i.e., the constant term in that
model), we refer to 8 as the main effect of the gen-
eral mean on $ix. B actually equals the arithmetic
mean of the @iy corresponding to the eight pos-
sible values of (i, j, k) obtained when i=1, 2;
j=1, 2; and k=1, 2. For further details, see for-
mula (23) below.

@y in terms of five parameters (B8, B84,
B®1, B%, BEC11), is equivalent to that de-
scribed by formula (10), which expresses
the corresponding Q;;, in terms of the cor-
responding five parameters (y, v*i, y%,
¥%1, ¥®%1).

We noted earlier that model (10)’s pa-
rameters could be expressed explicitly in
terms of Qi (see formulas (12)-(16)).
Similarly, the parameters in model (20)
can be expressed explicitly in terms of ®;.
From (20)-(22), we obtain the following
expressions for these parameters in terms
of q>ijk:

[ 2 2
B=] = 3 =3 @ijk]/S, (23)
| i=1 j=1 k=1
BAlz[‘I)ljk—(I)gjk]/z (fOI‘jZI,Z;k:l,Z)
(24)
[ 2
=1 3 3 (Pu— Do) | /8,
| i=1 k=1 ]
,BBlz[i 3 (Piax — Piox) | /8, (25)
j=1 k=1 i
2 2 i
BC: = .21 '21 (i1 — @i32) | /8, (26)
i=1 j=
BBC11 = [®ing + Pigs — Pigo — Bio1 ] /4
(fori=1, 2) (27)

2
=1 =
i=1

Formulas (23)-(27) are equivalent to the
corresponding formulas (12)—(16).” Form-
ula (23) states that B is the arithmetic mean
of ®;; (corresponding to the eight possible
values of (i, j, k)). Formula (24) states
that 84; can be expressed both as one-half
the difference ®yjx— ®op (for j=1, 2; k=1,
2), and as one-half the arithmetic mean of
the differences ®;5 — ®ojx corresponding to
the four possible values of (j, k) obtained
when j=1, 2; k=1, 2. Formula (25) states
that 8B, equals one-half the arithmetic mean
of the differences ®;;x — ®j2x corresponding

[®i11 + Pi2e— Prr2 — Pios ] ] /8.

7Indeed, instead of obtaining (23)-(27) from
formulas (20)-(22), we could also have obtained
(23)-(27) from formulas (12)-(16) and (18)—(19).
Similarly, we could have obtained (12)-(16) from
formulas (23)-(27), making use of formula (28)
below and the fact that Qi;x=exp ®ijx.
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to the four possible values of (i, k) obtained
when i=1, 2; k=1, 2. Formula (26) can
be similarly expressed, and formula (27)
also has a somewhat similar interpretation.

Since Table 2 presents the estimated
values of Fyj; (under model (10) or the
equivalent model (20)), we can use these
values to estimate first, Qi and @i (see
(8) and (18)) and second, the B parameters
(see (23)-(27)). Table 3 includes the g8
parameters’ estimated values. We can also
use these values to calculate the y param-
eters’ estimated values since the relation-
ship between the 8 and y parameters can
be expressed by (19) or by the following
equivalent set of formulas: 8

Y = €xp ﬂ; ‘YAi: exp IBAi’ YBj: €xp IBBJy

(28)
etc., where “exp” denotes the exponential
function.?

Earlier we discussed Table 3’s y param-
eter estimated values. Now let us examine
the estimated values of B, 821, 8%, B%,
BB%;, also given in Table 3. In line with
our earlier discussion of Table 3, in examin-
ing the estimated 8 parameters, we note that
the estimated main effect of each variable
(A, B, C) is positive (i.e., the estimates of
the B44, BB1, B%, which could have been
written as BAD,, BD;, BOD, are all posi-
tive); but the estimated interaction effect
between variables B and C is negative (i.e.,
the estimate of 8%, which could have been

written as BBOPy;, is negative).l?

8 For expository purposes, we discussed the =
before the B parameters. Since Table 3 already
provided the v parameters’ estimated values, we
could have used them in turn to estimate the B
parameters (see (19)). Actually, rather than calcu-
late the estimated B from the estimated vy param-
eters, calculated earlier from the estimated Qijx
(see (12)-(16)), it is easier to calculate the esti-
mated v from the corresponding estimated B pa-
rameters (see (28)), which can be calculated from
the estimated ®ix (see (23)-(27)).

9 The exponential function is the inverse of the
natural logarithm. Comparison of (19) and (28)
should make this point clear. For example, for
a given v value, we can calculate 8 from (19)
using a table of natural logarithms; and for a
given B8 value, we can calculate v either from (19),
with the natural-logarithm table used now in so to
speak, inverted order, or equivalently from (28)
using a table of the exponential function.

10 The fact that the estimate of 8%% is negative
corresponds to the fact that the estimate of %

Later we shall show how to assess the
statistical significance of the contribution
made by certain parameters (e.g., y®%u)
in model (10), and by certain parameters
(e.g., B®%;:) in model (20), and we also
show how to measure this contribution’s
magnitude.

Our models express the expected odds
Q5 in terms of the y parameters (see (10)
and also (29) below); or they express the
expected log-odds @ in terms of the B
parameters (see (20) and also (35) below).
These two forms of expression are equiva-
lent. Since the expected frequencies Fijg
can be expressed in terms of the Qi (see
(9)), our models can also be used to express
Fiji; in terms of the y parameters. In addi-
tion, letting Pi; and Qi denote the ex-
pected proportions Fijkl/nijk and Fijkz/nijk,
respectively (see (3)—(4)), note that our
models can also be used to express Py (and
Qix) in terms of these y parameters.

Before closing this section, we should note
the relationship between model (20) and
the usual models for (a) the analysis of
variance and (b) the analysis of the “logit”
pertaining to variable D.

Model (20) and the usual model for the
three-way analysis of variance may be com-
pared in several ways. (Note that the @
in (20) can be presented in a three-way
array, while the Fy; are presented in a four-
way table.) In the usual three-way analysis
of variance, one must assume homoscedas-
ticity, i.e., that each observation in the three-
way table has the same variance. On the
other hand, for our kind of data, the ho-
moscedasticity assumption would be contra-
dicted in a way that could not be ignored.!?
Our data also contradict the assumption in
the usual analysis of variance that each
observation has a normal distribution.'?

is less than 1 (see (19) and (28)). We interpreted
this fact in footnote (5). For further comment, see
the final section herein. '

11 Tn the present context, we note that the vari-
ance of the observed proportion pisx (see (3)) will
depend both on the magnitude of nisx (see (1))
and the expected proportion Pijgx=Fim1/nigx. A
similar remark applies to the variance of the ob-
served odds wijx (see (2) and (5)) and the vari-
ance of the logarithm of wijx. (The logarithm of
the wijx is of interest here since it corresponds to
$y5x in the same sense that wijx corresponds to
Qi5x; see (2), (8), (18).)

120n the other hand, when ni is large, the
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Note also that formulas (20)—(22) and
(23)—(27) are similar to formulas appear-
ing in the usual analysis of variance. How-
ever, to estimate the B parameters under
model (20), we use the estimated values of
the expected frequencies Fiz; under the
model (see Table 2) to estimate first Qi
and ®;;; (see (8) and (18)); and then we
use these estimated values of @ in (23)-—
(27) to estimate the B parameters. In con-
trast, in the usual analysis of variance (as-
suming homoscedasticity), the quantity cor-
responding to the estimated &y in formulas
(23)—(27) is replaced by the observation
in cell (i, j, k) ; and formulas (24) and (27)
are replaced simply by the corresponding ex-
pressions on the second line of these two
formulas.

Now let us consider the usual model for
analyzing the logit pertaining to variable D.
This logit is usually defined as being ®;;./2
(see, e.g., Fisher and Yates 1963). Model
(20) states that this logit (multiplied by 2)
can be expressed as a sum of parameters
B, B%i, BB, B%, BBC%x (i.e., the main effects
of the general mean and of variables A, B,
C, and the interaction effect between vari-
ables B and C). We can rewrite this model
as a regression model expressing variable
D’s logit as a linear function of dummy
variables pertaining to the main effects of
variables A, B, C and the interaction effect
between variables B and C; but homoscedas-
ticity can not be assumed in this model.
Later we shall test the statistical significance
of the contribution made by certain param-
eters in this model, and we shall measure the
contributions’ magnitude by applying meth-
ods proposed in Goodman (1970, 1971a).
For some related material, see also Dyke and
Patterson (1952), Bishop (1969), Theil
(1970), and the final section below.

A GENERAL MODEL FOR ANALYZING THE ODDS

Model (10) included the main effect on
Qi of all three variables (A, B, C), but
only one of three possible two-factor inter-
action effects (viz., y®%); and it did not
inclide the three-factor interaction effect

observed propoftion pisx will be approximately
normally distributed (as long as the expected pro-
portion Pijx differs sufficiently from the extreme
values of 0 and 1). A similar remark applies to
the observed odds wijx and the logarithm of wijx.

(viz., y2BCy). This model assumed that
yABy;, 4%, and yABCy, all equal 1. We shall
now consider the model that includes all
possible main and interaction effects and
that makes no assumptions about which (if
any) of these effects equals 1. Instead of
model (10), we now have the following
“saturated” model:

Digie =y 2721y %y *Pisy Oy Oy s,
(29)
where
YA =1/y%, o, AP =y B =
1/y*B12=1/9*%1, . . .,
yAB0y 1y = ¢80 = YAB0212 = yABO 50 =
1/ YABcnz =1/ YAB0121 =
1/yABO11 = 1/9ABCh0,. (30)

Formula (29) describes the effects of the
v parameters on Q. It expresses Qi ex-
plicitly in terms of the model’s y parameters.
These parameters can also be expressed ex-
plicitly in terms of Q. From (29)-(30),
we obtain the following expressions for the
parameters in terms of the Q: ®

9 %
v = I 1II Q45
4 [ i=1 j=1 k=1 i ] , (1)

%
2
YA = [1211 (Q15/Q2ix) ] s (32)
%

2
yAB = [kII1 (1112201 ) / (Q126Q01k) ] ,

[=0%

-

=

1

)

. (33)
Y280 11 = [ (QR1110221Q0212C122) /
(211221210211 0222) ] . (34)

For the saturated model (29)—(30), we
can estimate the y parameters by formulas
(31)—(34), replacing the expected odds
Qi in these formulas by the corresponding
observed odds e.!* With the saturated

13 Formulas (31)-(34) for the saturated model
(29)-(30) correspond to formulas (12)-(16) for
the unsaturated model (10)-(11).

14 Tp contrast to this procedure for the saturated
model, note that for an unsaturated model (e.g.,
model (10)) we use the estimated values of the
expected frequencies Fijx: under the miodel (see
Table 2) to estimate Qi;x (see (8)); then we can
use these estimated valies of the Qi3x in (31)—(34)
to estimate the vy parameters. (When these esti- -
mated values of the Qijx are used in (31)-(34), we
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Table 4. Estimate of the Main Effects
and Interaction Effects of
the Three Variables (A,B,C)
on the 0dds ;4 Pertaining
to Variable D in the Four-
Way Contingency Table (Table
1), Under the Saturated
Models (29) and (35)
Var- vy Effects B Effects Stand-
iable in in ardized
Model (29) Model (35) Value
D 1.28 .25 6.96
AD 1.44 .37 10.21
BD 3.43 1.23 34.36
(o} 2.10 .74 20.65
ABD 0.96 -.04 -1.11
ACD 1.00 .00 0.00
BCD 0.86 -.15 -4.31
ABCD 0.97 -.03 -0.86

model’s y parameters thus estimated, the
observed data fit perfectly. (For further
comments on this point, see footnote 19 later
herein.) Based on Table 1’s data, the y
parameters’ estimated values dre given in
Table 4. Note that, for Table 1’s data, Table
4’s estimated y’s are quite similar to the cor-
responding quantities of Table 3.

Having replaced the unsaturated (10)
with the saturated model (29), we can also
replace the unsaturated (20) with the fol-
lowing saturated model:

B = B+ B4+ B+ B% + BAPy
+ BACik+BBcjk +,3ABGijk, (35)
where
BA1==p", . . ., BB = AR =
_IBABlzz_IBAle, ce
BABC, 1y = BABC,y; =BABC, , = BABC 5
=— BABO o =— BABOy =

_,BAB0211:—ﬁAB0222. (36)

obtain the same results as when they are used in
(12)-(16).) For an unsaturated model (e.g., model
(10)), the entries in Table 2 are the maximum-
likelihood estimates of the Fijx: under the model,
and they are calculated by an iterative procedure
which we shall comment upon later herein after
we have presented the material in Table 5. The
observed frequencies fijx: are the maximum-like-
lihood estimates of the Fijx: under the saturated
model, but #ot under an unsaturated model. Sim-
ilarly, the observed odds wijx are the maximum-
likelihood estimates of the Qijx under the saturated
model, but #ot under an unsaturated model.

Model (35)—(36) is, of course, equivalent
tc model (29)—(30). Similarly, formulas
(31)-(34) are equivalent to the following
set of formulas:

2 2 2
B=)§ 3 3 I &ux /8 (37)
i=1 j=1 k=1

1 k=1

,BAlz[ é 22 (P1jx — P2jx) ] /8, (38)

AB1_1:

2
[151 (P11 + ok — P12k — Poik) ]/8, (39)

ey
BABO 11 = [ @111 + Pagr + Para+ Proo

— @112~ P1o1 — Pors — Pa2a] /8. (40)

For the saturated model (35)-(36) we

can estimate the B parameters by formulas

(37)-(40), replacing the “expected log-

odds” &y in these formulas by the cor-

responding log wi.'® In addition, the vari-

ance of the estimated B parameters can be
estimated by the following formula: 16

S25=
(1/figi) ] /64. (41)

By dividing each estimated B parameter
by its estimated standard deviation Sg, we
obtain the corresponding “standardized
value” of the estimate. Each standardized
value can be used to test whether the cor-
responding 3 parameter is nil.!? Table 4 in-

15 Remarks similar to those in footnotes 8 and
14 would apply here as well.

16 Note should be taken of the fact that the
estimation method presented herein for the satu-
rated model can be improved upon by replacing
fisxe in (41) by fi;+34, and replacing the ik
that are used in (31)-(34) (or in (37)-(40)) by
wigx=(fiya+25)/(f13x2+2%). It should also be
noted that formula (41) and some of the other
results presented herein are applicable both in the
case where the observed four-way table (Table 1)
describes results obtained for a random sample of
individuals cross-classified with respect to the four
variables (A, B, C, D), and also in the case where
the fijxn and figxe in row (i, j, k) of Table 1 de-
scribe results obtained with respect to variable D
for a random sample of nijx individuals at levels
i, j, k on variables A, B, C, respectively. For
further details, see Goodman (1970) and Haber-
man (1970).

17 The term “standardized value” of a statistic
is used here to mean the ratio of the statistic and
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cludes the B parameters’ estimated values,
and their corresponding standardized values.

By examining the magnitudes of Table
4’s standardized values, we find that the
model in which BAB;;, 840, BABCy. are set
equal to zero in (35) should merit consid-
eration. (Recall that these three parameters
could also have been written as BABDy,
BACD,  BABOD,, - respectively.) But the
model obtained when these particular pa-
rameters are set equal to zero in (35) is
equivalent to model (20). Thus, for Table
I’s data, examining the saturated models
(29) and (35) leads to models (10) and
(20).

HOW TO TEST WHETHER A MODEL FOR
THE ODDS FITS THE DATA

To test whether the hypothesis H de-
scribed by model (10) fits Table 1’s data,
we first estimate the expected frequencies
Fijq under the hypothesis H (see Table 2),
and then compare the observed frequency
fij; in Table 1 with the corresponding esti-
mate of the Fij,; in Table 2, by calculating
either the usual chi-square goodness-of-fit
statistic
2 2 2 2 (figia — (42)

ijkl)2/Fijkl,
i=1 j=1 k=1

or the correspondlng chi-square based on the
likelihood-ratio statistic; viz.
2

2 3 2 2 2 fisia 1og  [fia/ Fukl]
i=1 j=1 k=1 [=1
The chi-square value obtained from (42)
or (43) can be assessed by comparing its
numerical value with the percentiles of the
tabulated chi-square distribution. The de-
grees of freedom for testing hypothesis H
will be 8 —5=3 (since (a) there are eight
observed odds in Table 1, and (b) there
are five y parameters estimated in model
(10)).
Using (42), we obtain a goodness-of-fit

its estimated standard deviation. The same or
similar words have also been used by other writers
to denote other things with which the usage here
should not be confused.

If a particular B parameter is nil, then the
standardized value of the corresponding estimated
B will be approximately normally distributed with
zero mean and unit variance (when the sample
size is large). For comments on related matters,
see Goodman (1970, 1971a).

chi-square value of 1.46, and using (43),
a likelihood-ratio chi-square value of 1.45.
Since there were three degrees of freedom
under H, the model fits the data well.

Model (10) is obtained from the satu-
rated model (29) by making a specific set
of its y parameters equal to one.'® Model
(20) is obtained from the saturated model
(35) by making a specific set of its B pa-
rameters equal to zero. Models obtained
this way from saturated models we call “un-
saturated.”'® Of course, all unsaturated
models obtained from (29) or (35) are
models for the odds Qi (or the log-odds
®;5x) pertaining to variable D. Thus, all
these unsaturated models view the four-way
table (Table 1) asymmetrically. In the four-
way table for variables (A, B, C, D), we
treated variable D as the dependent . vari-
able; i.e., we viewed the odds (or log odds)
pertaining to variable D as depending on
the level of variables (A, B, C).

When each individual in a sample is clas-
sified by four dichotomous variables (e.g.,
A, B, C, D), we obtain a four-way table
(e.g., Table 1); and, in some contexts, any
one of the four variables might be viewed
as the dependent variable. For the four-way
table, the expected frequencies estimated
under a given unsaturated model that treats
variable D as the dependent variable (see,
e.g., Table 2) will usually differ from the
corresponding expected frequencies esti-
mated under a model that treats one of the
other variables as the dependent variable.

In some contexts, the research worker will
know which variable should be treated as
the dependent variable; in others, any one
of the four might be treated so. In still
cthers, a different point of view would be
appropriate. We could, for example, con-

18 Indeed, the three degrees of freedom used
above to test model (10) correspond to the three
v parameters (viz., v*Pu, ¥*%, ¥**%m) in (29)
that are set equal to one under model (10).

19 The number of degrees of freedom used to
test a given unsaturated model will equal the num-
ber of v parameters in (29) that are set equal to
one under the unsaturated model. Since none of the
v parameters in (29) are set equal to one under that
model (ie. the number of v parameters set equal
to one is zero), there will be zero degrees of free-
dom under the saturated model. This corresponds
to the fact that the observed data fit perfectly
under the saturated model, since it includes all
possible main and interaction effects (i.e., all pos-
sible vy parameters).
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sider the case where none of the variables
is the dependent variable, but where all are
mutudlly related in some sense (see, e.g.,
Goodman, 1970). For the four-way table,
Goodman (1970) described in his Table 4
a large class of models that would include
as special cases models like our (10) and
(20) which treat one variable as the de-
pendent variable, as well as “unsaturated”
models of a different kind where none of the
variables is treated as the dependent vari-
able but where some or all may be mutually
related variables. Goodman’s Table 4
(1970) contains fifty-three different ‘“un-
saturated models” in which one of the four
variables is treated as the dependent vari-
able and 113 different “unsaturated” models
in which none of the four variables is viewed
as the dependent variable. For the case
where a given variable (say variable D) is
the dependent variable, Goodman’s Table
4 (1970) lists nineteen different unsaturated
models.

Earlier herein we considered the case
where a given variable is the dependent
variable. Our models well suit this case (see
(10), (20), (29), (35)). Many readers will
find our exposition of this case easier to
understand than the exposition of the more
general case in Goodman (1970). Neverthe-
less, the more general models and methods
of the earlier article also apply to the spe-
cial case we considered. For each unsatur-
rated model of the kind considered herein,
and also for other kinds of “unsaturated”
models, Goodman’s Table 4 (1970) gave
the corresponding degrees of freedom when
each variable in the contingency table is
dichotomous. He also described ways to cal-
culate the degrees of freedom when some
variables are polytomous but not necessarily
dichotomous. A single computer program
can be used to calculate the estimate of the
I'iji, and the corresponding chi-square
values (42) and (43), for any set of “un-
saturated” models of the kinds considered
herein and in Goodman (1970). For related
material dealing with such models see, e.g.,
Bishop (1969), Goodman (1970, 1971a,
1972).

Let us reconsider model (10), which we
obtained from the saturated model (29) by
making some of its y parameters equal to
one. We can describe this unsaturated model

in any of the following equivalent ways:
(1) By listing the y parameters that are

included in model (10); viz., y© yAD;, yBD;
y©D,, yBOD,, 20 (2) By listing the y param-
eters in (29) that are set equal to one under
the model; ViZ., ‘yABDij, ‘yACDik, }'ABODijk.
(3) By listing the particular marginal tables
that are fitted under the model—a topic we
shall now discuss.

From our Table 1 we can determine njj
as defined by formula (1). In all unsatu-
rated models obtained from the saturated
model (29), the njj are considered fixed;
thus in these models the expected frequencies
Fijp (under the model) will satisfy the fol-
lowing condition:

Fijia + Fijre = Dy (44)
By comparing the ni; from Table 1 with
the estimated value of Fij+ Fije from
Table 2, we see that condition (44) is satis-
fied. Since the nyy describe the three-way
marginal table pertaining to variables (A,
B, C), we shall use the symbol {ABC} to
denote this table. Condition (44) states that
the marginal table {ABC} is fitted under
the model.

In addition to the marginal table {ABC},
two other marginal tables are fitted under
model (10); viz.,, the two-way marginal
table {AD} and the three-way marginal
table {BCD}. Table 5 gives the three mar-
ginal tables fitted under model (10).2! In
the preceding paragraph, we explained why
the marginal table {ABC} was fitted. Under
model (10), we also fit the marginal tables
{AD} and {BCD} because it includes the
parameters yAP; and y®%Py, which pertain
to the relationship between variables A and
D (as displayed in the marginal table {AD})

20 We return now to the notation used earlier

where the letter D was included in the superscript
of each v parameter to emphasize the fact that the
v parameters describe the main and interaction
effects on ‘the odds pertaining to variable D. This
notation will facilitate some of our present expo-
sition. This notation’s utility will become clearer
two paragraphs below.

21 The four-way contingency table of observed
data (Table 1) can be displayed as a 2x2x2x2
table, or an 8x2 table (as in Table 1); similarly
the three-way marginal table {ABC} can be dis-
played as a 2%x2x2 table, or a 4x2 table (as in
Table 5), or as a 8x 1 table (as we would obtain
if we present it as the marginal of the 8x2 table
displayed in Table 1).
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Table 5. The Three Marginal Tables
That are Fitted When Models
(10) and (20) are Applied to
the Four-Way Contingency

Table (Table 1)

I. Table {ABC}

Variable A Variable B Variable C
North  South
Negro North 423 1126
Negro South 653 2093
White North 1117 1384
White South 280 960
II. Table {AD}
Variable A Variable D
North  South
Negro 2027 2268
White 2024 1717
III. Table {BCD}
Variable B Variable C Variable D
North  South
North North 1263 286
North South 764 1982
South North 1829 672
South South 195 1045

and to the joint relationship among vari-
ables B, C, and D (as displayed in the
marginal table {BCD}).??

The reader will find that the entries in
the three marginal tables in Table 5, which
were calculated from Table 1’s data, equal
the corresponding entries in the three mar-

22 When the three-way marginal table {BCD}
is fitted, then the following two-way marginal
tables will fit automatically: {BC}, {BD}, {CD}.
Similarly, when a two-way marginal table, say,
{AD} is fitted, then the two one-way marginals,
{A} and {D}, will fit automatically. Corresponding
to the supqrscript of each v parameter in model
(10) (with the letter D added to each superscript),
a marginal table pertaining to that superscript will
be included in the set of marginal tables fitted
under the model. Under model (10), it will suffice
to include {AD} and {BCD} (in addition to table
{ABC}) in the set of fitted marginal tables, since
then all the marginal tables corresponding to the
model’s v parameters (viz, {D}, {AD}, {BD},
{CD}, {BCD}) will actually be fitted.

ginal tables calculated from Table 2’s esti-
mated Fyjq. The computer program, to which
we referred in the fourth paragraph preced-
ing this one, calculated the estimated values
in Table 2 (viz., the maximum-likelihood
estimates of the expected frequencies Fixy
under model (10)) by an iterative pro-
cedure which insured that the three mar-
ginal tables given in Table 5 would be fitted
when Table 2’s estimated Fijg are used. For
further details about the computing pro-
cedure, see, for example, the literature cited
in the paragraph referred to above.

Although the three marginal tables (viz.,
{ABC}, {AD}, {BCD}) in Table 5 are
fitted under model (10), we noted earlier
that the reason for fitting {ABC} in the
present context is somewhat different from
the reason for fitting {AD} and {BCD}.
The marginal table {ABC} is considered to
be fixed under model (10); i.e., the n;x in
(1) and (44) are viewed as constants. Aside
from the ny; constants, to estimate the Fijg
under model (10), we use only the informa-
tion contained in the observed marginals
tables {AD} and {BCD}.

The above remarks pertain to model (10),
but they can be extended in a straightfor-
ward way to a wide range of unsaturated
models obtained from the saturated model
(29) by setting certain specified y param-
eters in (29) equal to one. Now let’s apply
several such unsaturated models to Table
I’s data. Table 6 lists the chi-square values
(42) and (43) obtained in testing these
models. We include both chi-square values
(42) and (43) in Table 6; but, in the pres-
ent context, (43) has some advantages (see,
e.g., Goodman 1968, 1970). In the remain-
ing discussion, we shall use only the chi-
square value based on (43).

Each model in Table 6 is described there
by listing the marginal tables fitted under
the model. For the sake of brevity, we ac-
tually list in Table 6 the “minimal set” of
marginal tables fitted under the model,
rather than the entire set of marginal tables
that will in fact be fitted (see footnote 22
herein and Goodman 1970). For example,
for model (10), which is presented as H;
in Table 6, we list in Table 6 the following
“minimal set” of marginal tables fitted
under the model: {ABC}, {AD}, {BCD}.
From this “minimal set” of marginal tables,
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Table 6. Chi-Square Values for Some Models Pertaining to Table 1
Degrees Likelihood- Goodness-

Mod - of Ratio of-Fit v Parameters Included

el Fitted Marginals Freedom Chi-Square Chi-Square in the Model

Hl {ABC},{AD},{BCD} 3 1.45 1.46 [D],[AD],[BD],[CD],
[BCD]

H, {ABC},{AD},{BD},{CD} 4 24.96 25.73 [D],[AD],[BD], [CD]

Hg {ABC},{BCD} 4 152.65 147.59 [D], [BD],[CD],[BCD]

H4 {ABC},{BD},{CAD} 5 186.36 180.26 [D],[BD],[CD]

Hg {ABC},{AD},{CD} 5 2286.83 2187.71 [D], [AD],[CD]

Hyg {ABC},{AD},{BD} 5 695.01 727.16 [D], [AD],[BD]

H, {ABC},{D} 7 3111.47 2812.64 [D]

Hg {ABC},{ACD},{BCD} 2 1.32 1.34 [D],[AD],[BD],[CD],
[ACD], [BCD]

Hy {ABC},{ABD},{BGD} 2 0.68 0.69 [D],[AD],[BD], [CD],
[ABD], [BCD]

Hig {ABC},{ABD},{ACD} 2 17.29 18.73 [D],[AD],[BD],[CD],
[ABD], [ACD]

Hyq {ABD},{ACD},{BCD} 2 24.79 25.11 *

H;, None 15 5469.88 5989.11 *

*Models H11 and le cannot be expressed in terms of the y parameters.

See

related discussion in the present article.

we find that the following marginal tables
will in fact be fitted: {D}, {AD}, {BD},
{CD}, {BCD} as well as {ABC} and all the
marginal tables formed from {ABC}. Vari-
able D is included in five of the marginal
tables listed above, and the model under
consideration (i.e., model H; of Table 6)
will include the following five y parameters
corresponding to these five marginal tables:
Y% Y% v®Ps, vk vP Pk

Consider now hypothesis Hy in Table 6.
Since this model fits the marginals {ABC},
{AD}, {BD}, {CD}, it will include the fol-
lowing y parameters: yD, yAD, BD; 0D, 23
Similarly, hypothesis Hz in Table 6 fits the
marginals {ABC}, {BCD}; and thus that
model includes the following y parameters:

yP, yBD;, yOD, BCD.  Hypothesis H, in

28 For the reader who has difficulty determining
which v parameters are included in the model from
the description of the model in terms of the mar-
ginal tables that are fitted, we include this infor-
mation in Table 6’s final column. In that column,
we use the symbols [DI], [AD], [BD],..., to de-

note v°, v*®;, v®°y,..., respectively.

Table 6 fits the marginals {ABC}, {BD},
{CD}; and thus that model includes the

following y parameters: yP, yBD;, yOD,. Let
us discuss these and other models in Table
6 further.

As we have already noted, model (10) is
listed as H; of Table 6. If we now make

¥BDy equal to 1 in model (10), we get Hy
of Table 6. In model H,, the odds pertain-
ing to variable D are expressed in terms of
the parameters yD, yAD;, yBD; yOD, ie., the
main effects of the general mean and vari-
ables A, B, and C. To test whether the
parameter yBDy in model (10) contributes
in a statistically significant way, we can use
the difference between the corresponding
chi-square values for H, and H; as a chi-
square statistic with one degree of freedom.
(We get the one degree of freedom by sub-
tracting the corresponding degrees of free-
dom for Hy and Hy; ie., 4—3=1.) From
Table 6’s chi-square values for H, and Hj,
we see that yB%Py, does contribute to model
(10) in a statistically significant way.
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If we set y2D; equal to 1 in model (10),
we get Hz of Table 6. To test whether the
parameter yAD; in model (10) contributes
in a statistically significant way, we can use
the difference between the corresponding
chi-square values for Hs and H; as a chi-
square statistic with one degree of freedom.
From Table 6’s chi-square values for Hs and
H,;, we see that yAﬁi does contribute to
model (10) in a statistically significant way.

If we set yAD; and yP%Py equal to 1 in
model (10), we get Hy of Table 6. If we set
+B9; and yBOP, equal to 1 in model (10),
we get Hs. If we set y°Px and yBOPy equal
to 1 in model (10), we get Hg. Comparing
the magnitudes of Table 6’s corresponding
three chi-square values, we see that the
worst fitting model was Hj, the next worst
Hs, and the least worst Hy. In other words,
by comparing the three models obtained
from H, by deleting the main effect of one
of the variables (A, B, C), we see that yBP;
contributes the most.

If we set y4D;, yBD;, 4OD, and yBDy, equal
to 1 in model (10), we get H; of Table 6.
In model Hy, the odds pertaining to variable
D depend on 4P (the main effect of the gen-
eral mean), but are unaffected by the level
of variables A, B, and C. In other words,
model H; states that variable D is inde-
pendent of the joint variable A, B, C. From
the chi-square value for H; in Table 6, we
see that the data contradict this model.

If we set y2BD;; and y2BCD;y equal to 1
in model (29), we get Hg of Table 6. If we
set yA°D, and yABCD,, equal to 1 in model
(29), we get Hy. If we set y®D; and
yABOD, . equal to 1 in model (29), we get
Hio. Table 6 shows that Hg and Hy fit the
data well, but H;o does not.

From the above description of Hg and
Hy, we can express model H; as follows:
Model H; states both that Hg is true and
that yA°D;, in Hg equals 1. Model H; also
states both that Hy is true and that yABI_’ij
in Hy equals 1. Thus, if H; is true, then Hg
and Hy will also be true; but Hg and Hy
can be true in cases where H; is not. H;
implies models Hg and Ha,

Models H;; and H;s of Table 6 differ
from H; to Hjo in an important respect.

These last two models do not include the
marginal {ABC} among the marginals that
are fitted under the model. Therefore, the
expected frequencies Fij; estimated under
models Hy; and H;» will no¢ satisfy con-
dition (44) (except in some special cases).
These two models cannot be expressed as
unsaturated models obtained from the satu-
rated model (29), except in cases where
condition (44) is satisfied.

Model Hy, of Table 6 is easier to describe
than H;q, so I will describe it first. Model
H,, states that the sixteen cells of Table 1
are equiprobable. From the chi-square value
for Hy, in Table 6, we see that the data
contradict this model.

Now let us consider Hy; of Table 6. As
we noted above, this model cannot be ex-
pressed as one in which variable D is the
dependent variable, since table {ABC} is
not fitted under it. However, since the other
three-way marginal tables (viz., {ABD},
{ACD}, {BCD}) are fitted under model Hy;,
we see that Hy; is a model in which any one
of the other variables (C, B, or A) can be
viewed as the dependent variable. (Note
that three of the four possible three-way
marginal tables are fitted under Hj;, and
also under Hg, and Hy, and H;y.) From the
chi-square value for Hy; in Table 6, we see
that the data contradict this model.

We noted earlier that Goodman’s Table 4
(1970) included models in which one of the
variables is treated as the dependent vari-
able, and it included other kinds of models
as well. To test whether any of these other
kinds of models might fit the data in our
four-way table, we would first consider Hy;
of Table 6; for this model assumes only
that the Fiyj, are not affected by the three
factor “interaction effect” among the three
variables A, B, C, nor by the four-factor
“interaction effect” among variables A, B,
D, C.2¢ If this particular model does not fit

2¢ Under model Hiu, the only tables not fitted
to the data are 'the three-way marginal table
{ABC} and the four-way table {ABCD}; so the
Fijxir (under model Hu) are not affected by the
three-factor “interaction effect” among variables
A, B, C (as displayed in the marginal table
{ABC}) nor by the four-factor “interaction effect”
among variables A, B, C, D (as displayed in the
four-way table). We use the term “interaction
effect” in the preceding sentence, and in the sen-
tence to which this footnote applies, in a way
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Table 7.
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Analysis of the Variation in the Odds Pertaining to Variable D in the

Four-Way Contingency Table (Table 1)

Source of Variation Degrees of Numerical
Freedom Chi-Square Value
1. Total variation due to the "main effects"
of variables A,B,C and "interaction 2
effects' among these variables 7 X (H7) 3111.47
la. Due to variation unexplained by model Hy 3 XZ(HIJ 1.45
1b. Due to variation explained by model H; 4 xPeup-x*(H;)  3110.02
Partition of (la)
la.l. Due to variation unexplained by 2
model Hy 2 X (Hg) 0.68
la.2. Due_to variation explained by the
Y??Dparameter in model Hy 1 Xz(Hl)-XZ(Hg) 0.77

the data, then the data will also contradict
any of the other kinds of “unsaturated”
models that do not treat variable D as the
dependent variable.?’ For examples of data
that do not contradict these other kinds of
“unsaturated” models, see, Goodman (1970,
1971a).

Before closing this section, we should note
that some of the material discussed above
could be presented in summary form in
tables that are somewhat analogous to the
usual analysis of variance tables. Table 7
is an example.

MULTIPLE AND PARTIAL CORRELATION
COEFFICIENTS FOR MODELS FOR THE ODDS

In the usual multiple regression analysis
for quantitative variables (predicting vari-

related to but different from the way we used it
earlier. Earlier the term referred to the interaction
effects of certain variables on the expected odds
Qi pertaining to variable D; whereas above the
term refers to the “interaction effects” among cer-
tain variables in the four-way table. For further
details, see Goodman (1970, 1971a).

25 Except for model Hiui, any other unsaturated
model that does not treat variable D as the de-
pendent variable can be viewed as a model that
states both that Hu is true esnd that some addi-
tional “interaction effects” (in addition to the par-
ticular three and four-factor “interaction effects”
noted in sentence one of footnote 24) can be set
equal to one. Thus, if any other unsaturated model
(of the above kind) is true, then Hu will also be
true, If Hy is not true, then none of the other
unsaturated models (of the above kind) can be
true. For related matters, see Goodman (1970,
1971a).

able Y from, say, variables X; and X5), the
quantity R?y.x,x,, which is the square of
the multiple correlation coefficient, can be
interpreted as follows: It is the relative de-
crease in Y’s “unexplained variation” ob-
tained when comparing the case where X;
and X, are not used to predict Y with the
case where both are used. Similarly, the
quantity r?yx,.x,, which is the square of
the partial correlation coefficient, can be in-
terpreted as follows: It is the relative de-
crease in Y’s unexplained variation obtained
when comparing the case where X, but not
X, is used to predict Y with the case where
both are used. The quantity R%y.x;x, is
sometimes referred to as the coefficient of
multiple determination, and the quantity
r’yx, - x, can be called the coefficient of par-
tial determination. Goodman (1970, 1971a)
introduced coefficients that are somewhat
analogous to the usual coefficients of mul-
tiple and partial determination for analy-
zing the odds pertaining to a given variable
in the four-way contingency table. We shall
now illustrate their calculation.

For a given model in Table 6 (say model
H;, fori=1,2,...,12), we shall use the
symbol XZ2(H;) to denote its chi-square
value. In the preceding section, we noted,
among other things, that the statistic
X?(H) ~X2%(H;) could be used to test
whether the parameter y®%; in H; contrib-
uted in a statistically significant way.2¢ To

26 To facilitate exposition in the preceding sec-
tion, we included the letter D in the superscript of
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measure the contribution’s magnitude, we
recommend the following coefficient, which
we shall call the coefficient of partial deter-
mination between the odds oy and the
parameter yBC;, when the other y’s in model
H; are taken into account: ?7

%0 vpg-

[Xz(Hz) X2(Hy)]/X?(Hs). (45)
From Table 6, we see that this coefficient
equals .94 for Table 1’s data.

We also noted in the preceding section
that the statistic X2(Hs) —X2(H;) could
be used to test whether the parameter y*;
in H; contributed in a statistically signifi-
cant way. As in the preceding paragraph,
we shall measure this contribution’s mag-
nitude by the following coefficient of par-
tial determination:

r2 ® Yp
[X2(H3) X?(Hy)]/X?(Hs). (46)
From Table 6, we see that this coefficient
equals .99 for Table 1’s data.

To measure how well model H; fits the
data, we consider the following coefficient,
which we call the coefficient of multiple de-
termination between o and the y parameters
in model H;:

each v parameter; e.g., 7 C; in’ (10) became
4%y, In the present section, we have no need

for this more cumbersome notation and will not in-

clude the letter D in the superscript. The reader
should, of course, keep in mind that say, v®%x
here has the same meaning as v°°’;x earlier, and
that the various 7 parameters describe the main
and interaction effects on the odds pertaining to
variable D.

27 In the subscript of r* in (45), we changed the
4" notation to the ysc notation because of typo-
graphical considerations. This simple notational
change should not confuse the reader. Similar nota-
tional changes will be made in other formulas in
this section.

Since model Hi: includes the v parameters v, v,
7®5, 7%, v*%x, we could let

r2 @YBQY» YA YB» YC
denote the coefficient defined by (45). To test
whether this coefficient differs significantly from
zero, we use the statistic X*(H:)—X*(H:) as noted
earlier.

28 Remarks like those in the second paragraph of
footnote 27 can be applied to the coefficients de-
fined by (46)—-(49). For example, for (46), we
could let

r20yA.y, ¥B. 7O+ YBO
denote this coefficient, and we could assess the sta-
tistical significance of this coefficient using the
statistic X?(Hs) —X*(H:) noted earlier.

R2,.

[X2(H7) X2(Hy)]/X2(Hr). (47)
From Table 6, we see that this coefficient
equals 1.00 (to two decimal places) for Ta-
ble 1’s data.

We might also consider the following co- .
efficient, which we shall call the coefficient
of multiple-partial determination between o
and the parameters y%; and y®C; in model
H;, when Hy’s other y parameters (viz., v,
v®;, v%) are taken into account.

R%, (ya, v80)'y, vB, Y0 =

[X2(Hy) - X2(Hy) ]/X3(Hs).  (48)
From Table 6 we see that the coefficient
equals .99 (to two decimal places) for Ta-
bie 1’s data. Similarly, we can measure the
contribution of B and yB% (using Hs
rather than Hy in (48)) or the contribution
of y% and y®Cy (using Hg rather than Hy
in (48)).

We can also use the above coefficients to
measure the magnitude of the contribution
made by the parameters in other models in
Table 6. For example, to measure the mag-
nitude of y2%; in model Hs, we use the
following coefficient of partial determina-
ion:

r2w YAC Hg =
[X*(Hy) - X2(Hs) [ /X2(Hy).  (49)
From Table 6, we see that this coefficient
equals .09 for Table 1’s data.

All of the r2? and the R2 coefficients given
by (45)-(49) above took the general form
R?=[X*(H") -X*(H)]/X*(H"),  (50)
where the y parameters in model H” are
also included among the y parameters in
model H’'. We could also write each coeffi-
cient as follows:

2 2 2 2
3 3 3 3 Fi log [Fliye/F sl
i=1 j=1 k=1 I1=1

(51)
2 2 2 2
S 3 3 E fia log [ fisia/F" 1]

i=1 j=1 k=11

where F'ij; and F”y denote the expected
frequencies estimated under model H’ and
model H”, respectively. The expression of
the coefficient in the form (51) is somewhat
analogous to the expression of the coeffi-
cients of multiple and partial determination,
in the usual multiple regression analysis, as
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a ratio of the “explained variation” (when
model H' is used to “explain” the variation
that was not explained by H”) to the “un-
explained variation” (when model H” is
used).2®

COMMENTS ON SOME RELATED WORK

As we noted earlier, Coleman’s model and
methods differ from ours in several ways.
His model does not fit the data as well, and
his explanation of the data is less parsi-
monious. Indeed, he observes in his book
(1964) that his model differs from the ac-
tual data in certain systematic ways, at-
tributing these deviations to a supposed
interaction for Negroes (but not whites)
between their region of origin and present
camp location.3® In contrast, we find that
(a) model (10) in the present article fits the
data very well, (b) it does not require an
ostensible interaction for Negroes (but not
whites) of the kind considered by Coleman,
(c) it includes an interaction effect y®O
between region of origin and present camp
location, which applies equally to both
Negroes and whites, (d) this interaction
effect is statistically significant, and (e) it
both reduces the expected odds favoring a
preference for a Northern camp for those
whose region of origin is the same as their
present camp location, and increases these
expected odds for those whose region of
origin differs from their present camp loca-
tion, after the various main effects in the
model have been taken into account.?!

29 When H” is taken as H; of Table 6, then the
denominator in (51) (i.e., the “unexplained varia-
tion” when model H; is used) corresponds to the
“total variation” in the denominator of the usual
coefficient of multiple determination in multiple
regression analysis. For related matters, see Good-
man (1970).

80 Coleman (1964) did not provide methods for
including interaction effects in his models, and so
could not measure the magnitude of the ostensible
interaction to which he referred, nor could he
judge whether introducing the ostensible inter-
action would improve the fit of his model.

31 For further details, see footnote 5. In addition
to the effect of v®%« described there, the effect can
also be described as follows: For the estimate of the

expected odds P, sk in favor of a Northern camp,

the effect on 'the estimated Qﬁljk of being at present
in a Northern rather than a Southern camp is less
for those from the North than from the South.

Similarly, the effect on the estimated QP of being

Coleman’s article did not show how to
test whether his model fit the actual data,
nor was he able to measure how well it fit.
Furthermore, he did not show how to test
the statistical significance of the contribu-
tion made by the various parameters in the
model, nor could he measure their contribu-
tion’s magnitude. In addition, the variance
of Coleman’s estimates of the main effects
in his model was larger than it would have
been had he used more efficient estimation
methods (e.g., maximum-likelihood estima-
tion methods) ; and his estimates are biased
to the extent that his model excluded rele-
vant interaction effects.?2

Coleman’s model states that the effects
on the expected proportions P;y, are linear.33
Applying Coleman’s estimation methods to
his model, it is possible to obtain clearly
incorrect estimates of the Pj; under the
model; e.g., estimates of the expected pro-
portions Py that are negative or larger than
one.?* Furthermore, his model and methods
do not take into account the fact that the
variance of the observed proportion pij will
depend on the magnitude of Py.3%

Some of the limitations of Coleman’s ap-
proach apply to the usual multiple regres-
sion model (and analysis of variance model)
if used in the present context. For data of
the kind considered in the present article,
the assumption of homoscedasticity made in
the usual multiple regression model (and in

a Northerner rather than a Southerner is less for
those presently in a Northern rather than a South-
ern camp.

82 The remarks above apply to Coleman’s (1964)
and Boudon’s (1968) articles, except that Boudon’s
model did allow for interaction effects.

83 Recall that Pijx=Fijsx/nisx, using our nota-

tion. In contrast to Coleman’s, our model states

that the expected odds Qi;x can be expressed in
terms of multiplicative effects. In many substantive
contexts, it will be more useful to consider mul-
tiplicative rather than additive effects. Further-
more, from the point of view of statistical theory,
there are a number of reasons for preferring multi-
plicative models of our kind for analyzing data of
the kind presented in Table 1. We shall not pursue
these matters further here.

34 Since Pijx denotes an expected proportion, it
should not be negative nor larger than one. There-
fore, it is undesirable to use models and methods
that can lead to estimates of the Pijx that are neg-
ative or that are larger than one.

"85In other words, Coleman implicitly assumes
homoscedasticity when, on the contrary, his data
violate this assumption.



REGRESSION ANALYSIS 45

the usual analysis of variance model) would
be contradicted in a way that could not be
ignored. In addition, as with Coleman’s
analysis, if one applied the usual multiple
regression methods to the model in which
the effects on the expected proportions Pij
are linear, one could obtain clearly incorrect
estimates of the Py under the model, in
the sense described above.3®

We noted earlier that our data were also
analyzed by Zeisel (1968) and Theil (1970).
Zeisel described various intéresting features
of these data. These features can be ex-
plained, in a more comprehensive and com-
pact way, in terms of the estimated param-
eters in model (10) of the present article.
For example, from the estimates for model
(10) presented in Table 3 herein, we find
that the estimated product of the param-
cters y and yBC;; is approximately one (more
precisely, this product is 1.13), and this
single fact can be used to explain the follow-
ing features of the data: (a) the preference
for a Northern camp location among Negro
Northerners in Northern camps is approxi-
mately equal to the preference for a Southern
camp location among white Southerners in
Southern camps; and (b) the preference for
a Northern camp location among white
Northerners in Northern camps is approxi-
mately equal to the preference for a Southern
camp location among Negro Southerners in
Southern camps. (In order to see that this
single fact explains features (a) and (b),
insert the estimated values of the param-
eters in model (10).) The other interesting
features noted by Zeisel can also be explained
in similar terms, with one exception. This
exception pertains to Zeisel’s mention of a
supposed effect on camp preference due to
the interaction between race and region of
origin, among those in Northern camps. Ap-
plying the methods of the present article,
we find that this ostensible interaction effect
is not statistically significant, and there is no
need to include it in our model (10).

We comment next on the article by
Theil (1970). He used the logit model cor-
responding to (20), but his estimation
method and his analysis differed from
ours. Theil (1970) wused a weighted

36 The comments in footnotes 33 and 34 are
relevant here.

least-squares procedure, as did Grizzle,
Starmer, and Koch (1969) in the same con-
text; whereas, all the estimates presented
in the present article are maximum-likeli-
kood estimates. In commenting on the
weighted least-squares procedure, the Griz-
zle-Starmer-Koch article notes that esti-
mates obtained by their procedure have a
somewhat larger variance than maximum-
likelihood estimates (see also Rao 1965);
similarly Theil’s estimates have a somewhat
larger variance than our maximum-likelihood
estimates. We also find that it is harder to
use the methods proposed by Theil, and by
Grizzle, Starmer, and Koch than the meth-
ods proposed in the present article, when
studying the kinds of hypotheses we have
discussed for the four-way contingency table
(or in Goodman 1970, for the five-way
table) .37

Before closing, we remind the reader that
our methods were for the case where a given
variable (e.g., variable D) can be viewed
as the dependent variable which is affected
by the other variables under consideration.
Where this is not the case, we refer the
reader to the more general techniques pre-
sented in, for example, Goodman (1970,
1972).
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People who analyze industrial conflict from strike activity usually base their study on one
overall measure of conflict, such as Kerr and Siegel’s measure of strike propensity. We
suggest it might be easier to identify several components of strike activity rather than one.
We identify a composite variable, volume of conflict, which resembles Kerr and Siegel’s
Strike Propensity, and demonstrate the mathematical relationship to its components: prome-
ness to conflict, extensity of conflict, and intensity of conflict. We analyze the relative con-
tributions of each component to the composite variable, and conclude that extensity of con-
flict and proneness to conflict exert strong influences on volume of conflict, while intensity of
conflict is weaker in impact. We then introduce two union variables—degree of unionization
and average union size—and speculate on their effect on the various dimensions of industrial
conflict We propose a tentative model which explains the unionization variables’ difference

in impact in terms of external support, threat potential, and factionalism.

NDUSTRIAL conflict calls to mind a wide
variety of phenomena embracing verti-
cal, horizontal, individual and collective

forms. Dahrendorf (1959:236-40) treats in
dustrial conflict as vertical class conflict be-
tween labor, the subject class, and manage-
ment, the dominant class. Other authors note
the relevance of more truncated authority
distributions to variations in the degree of
industrial conflict. Lopreato (1968), in test-

* The research for this paper was supported in
part by the Urban and Regional Development Cen-
ter, Vanderbilt University. The writers wish to
thank John McCarthy, Mayer Zald and especially
Leo Rigsby for their comments.

ing Dahrendorf’s thesis, notes great conflict
within the dominant class between greater
and lesser authorities. Similarly, Michels
(1962:33-56) and others describe conflicts
between authority levels in unions. Where
authority is split among parallel hierarchies,
industrial conflict is described as more
nearly horizontal: Dalton (1959), focuses
on line staff conflicts, Harvey and Mills
(1970:181-213) and Lawrence and Lorsch
(1967) refer to more general sub-unit con-
flict over the resource and power allocation.
Finally, Udy (1967:678—709) delineates
variables which channel anger modes into
individual or collective forms.



