Multivariate Lab Exercises

Getting Started

- Remember again to put on the filter

Think about which independent variables you want to use

- For today we will only look at one dependent variable, so choose the one that you think does the best job in measuring the issue you are interested in.
For example, if you are interested in gender equality, choose the one question that you think most clearly shows gender attitudes. If you are choosing marketliberalism, think whether less regulation really is the best question or should you choose a different question.

After adding the filter, go to linear regression

Choose your independent variables

Ask for collinearity diagnostics under "test" (you can also choose Durbin-Watson and casewise diagnostics if you want to test for heteroscedasticity, but consult the textbooks for advise)

The F-statistic shows that the model as a whole is significant, but this is almost ALWAYS the case, so it tells you when the model is bad, but not when it is good

a. Predictors: (Constant), R: Education II-highest education level, R: Sex, R: Age
b. Dependent Variable: LESSREG

Which variable(s) is/are significant? Which Variable explainces the greatest amount of variance?

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.	Collinearity Statistics	
		B	Std. Error				Tolerance	VIF
1	(Constant)	3.639	. 151		24.082	. 000		
	R: Sex	-. 090	. 060	-. 045	-1.491	. 136	. 997	1.003
	R : Age	. 000	. 002	-. 005	-. 164	. 869	. 990	1.010
	R: Education II-highest education level	. 071	. 027	. 077	2.576	. 010	. 993	1.007

a. Dependent Variable: LESSREG

Which variable(s) is/are significant?

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		$\begin{gathered} \hline \begin{array}{c} \text { Standardized } \\ \text { Coefficients } \end{array} \\ \hline \text { Beta } \end{gathered}$	t	Sig.	Collinearity Statistics	
		B	Std. Error				Tolerance	VIF
	(Constant)	3.639	. 151		24.082	. 000		
	R: Sex	-. 090	. 060	-. 045	-1.491	. 136	. 997	1.003
	R : Age	. 000	. 002	-. 005	-. 164	. 869	. 990	1.010
	R: Education II-highest education level	. 071	. 027	. 077	2.576	. 010	. 993	1.007

a. Dependent Variable: LESSREG

Is there a problem with Collinearity?

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.	Collinearity Statistics	
		B	Std. Error				Tolerance	VIF
1	(Constant)	3.639	.151		24.082	. 000		
	R: Sex	-. 090	. 060	-. 045	-1.491	. 136	. 997	1.003
	R : Age	. 000	. 002	-. 005	-. 164	. 869	. 990	1.010
	R: Education II-highest education level	. 071	. 027	. 077	2.576	. 010	. 993	1.007

a. Dependent Variable: LESSREG

Nevertheless, SEX and AGE are rather equally distributed on dimensions 3 and 4 which indicates there could be a problem between them

Collinearity Diagnostics

Model	Dimension	Eigenvalue	ConditionIndex	Variance Proportions			
				(Constant)	R: Sex	R : Age	R: Education II-highest education level
1	1	3.735	1.000	. 00	. 01	. 01	. 01
	2	. 144	5.100	. 00	. 03	. 21	. 67
	3	. 093	6.352	. 00	. 55	. 46	. 06
	4	. 029	11.427	. 99	. 42	. 32	. 26

a. Dependent Variable: LESSREG

Next step

Probably only educational level is a good predictor, so it would be best to use a bivariate regression or replace SEX and AGE with some other variables
But since there might have been a problem of collinearity between AGE and SEX and since AGE had a much lower std. Coefficient, we will eliminate AGE now and see if SEX become significant

Elminate AGE

罒 *issp2006steve.sav [DataSet 1] - SPSS Data Editor

Sex is still insignificant

Coefficients

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Oollinearity Statistics	
		B	Std. Error	Beta			Tolerance	VIF
1	(Constant)	3.618	. 124		29.265	. 000		
	R : Sex	-. 089	. 060	-. 044	-1.483	. 138	1.000	1.000
	R: Education II-hig education level	. 073	. 027	. 079	2.667	. 008	1.000	1.000

a. Dependent Variable: LESSREG

Adjusted R-square

Increased now from . 005 to .007
(Not shown here)
So eliminating a variable made the model better
But still it cannot explain even 1% of the change in LESSREG

With only EDUCATIONAL LEVEL: it is significant, but the adjusted r-square is only .06 , so again it shows we should look for different variables

Coefficients

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.	Collinearity Statistics	
		B	Std. Error				Tolerance	VIF
1	(Constant)	3.475	. 078		44.504	. 000		
	R: Education II-highe education level	. 073	. 027	. 080	2.689	. 007	1.000	1.000

a. Dependent Variable: LESSREG

Make table in Word

Your Task

Run a multiple regession with the dependent variable you have chosen and at least 5 independent variables
Eliminate all the variables that are not significant
Make sure there is no-collinearity
Try to make the best model

- Make a table in Word

