Regression Lab Exercises

Crosstabs

Good to give a general picture
Good to compare dependent varialbes between groups (countries, sex)
Can visually see connection between depedent and independent variabls

Crosstab to Compare Countries

Choose the variables (country and dependent variable)

Click "Cells..." then click percentages

Then click＂continue＂then＂OK＂

File Edit View Data Transform Insert Format Analyze Graphs Utilites Add－ons Window Help

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
LESSREG＊ Country／Sample（see V3A for codes for whole nation states）	43728	89．9\％	4913	10．1\％	48641	100．0\％

LESSREG＊Country／Sample（see \}

			AU－Australia	CA－Canada	CL－Chile	TW－Taiwan	HR－Croatia	CZ－Czech Republic	DK－Denmark	$\underset{\substack{\text { DO－} \\ \text { Dominican } \\ \text { Repulic }}}{ }$ Republic	Fl－Finland	FR－France	DE－W－ Germany－ West	DE－E－ Germany－East	HU－Hungary	IE－Ireland	IL－Israel－Jel
LESSREG	strongly against	Count	89	33	120	50	22	28	123	152	46	97	21	14	23	30	
		\％within LESSREG	4．1\％	1．5\％	5．6\％	2．3\％	1．0\％	1．3\％	5．7\％	7．1\％	2．1\％	4．5\％	1．0\％	．7\％	1．1\％	1．4\％	2.3
		\％within Country／Sample （see V3A for codes for whole nation states）	3．6\％	3．9\％	8．3\％	2．8\％	2．1\％	2．5\％	11．0\％	7．5\％	5．0\％	5．7\％	2．1\％	2．8\％	2．6\％	3．1\％	5.
		\％of Total	． 2%	．1\％	．3\％	．1\％	．1\％	．1\％	． 3%	． 3%	．1\％	．2\％	．0\％	．0\％	．1\％	．1\％	
	against	Count	395	111	514	447	93	114	248	440	146	211	82	34	143	178	1
		\％within LESSREG	5．2\％	1．5\％	6．7\％	5．9\％	1．2\％	1．5\％	3．2\％	5．8\％	1．9\％	2．8\％	1．1\％	．4\％	1．9\％	2．3\％	2.6
		\％within Country／Sample （see V3A for codes for whole nation states）	15．8\％	13．1\％	35．6\％	24．6\％	9．0\％	10．0\％	22．1\％	21．8\％	16．0\％	12．5\％	8．0\％	6．8\％	15．9\％	18．6\％	20.
		\％of Total	．9\％	． 3%	1．2\％	1．0\％	．2\％	． 3%	．6\％	1．0\％	． 3%	． 5%	． 2%	．1\％	． 3%	． 4%	£
	neither nor	Count	787	258	369	466	280	307	318	341	435	337	189	66	274	245	2
		\％within LESSREG	6．6\％	2．2\％	3．1\％	3．9\％	2．4\％	2．6\％	2．7\％	2．9\％	3．7\％	2．8\％	1．6\％	．6\％	2．3\％	2．1\％	2.5
		\％within Country／Sample （see V3A for codes for whole nation states）	31．4\％	30．4\％	25．6\％	25．6\％	27．0\％	27．0\％	28．4\％	16．9\％	47．5\％	19．9\％	18．5\％	13．1\％	30．4\％	25．6\％	30.6
		\％of Total	1．8\％	．6\％	．8\％	1．1\％	．6\％	．7\％	．7\％	．8\％	1．0\％	．8\％	．4\％	．2\％	．6\％	．6\％	． 7
	in favor of	Count	876	326	333	695	379	439	299	831	238	572	341	202	292	346	3
		\％within LESSREG	5．8\％	2．2\％	2．2\％	4．6\％	2．5\％	2．9\％	2．0\％	5．5\％	1．6\％	3．8\％	23\％	1．3\％	1．9\％	23\％	$2:$
		$\%$ within Country／Sample （see V3A for codes for whole nation states）	34．9\％	38．4\％	23．1\％	38．2\％	36．6\％	38．7\％	26．7\％	41．1\％	26．0\％	33．8\％	33．3\％	40．2\％	32．4\％	36．2\％	33.7
		\％of Total	2．0\％	．7\％	．8\％	1．6\％	． 9%	1．0\％	．7\％	1．9\％	． 5%	1．3\％	．8\％	．5\％	．7\％	．8\％	ε
	strongly in favor of	Count	360	122	106	160	262	247	132	256	50	474	391	187	169	157	1
		\％within LESSREG	5．2\％	1．7\％	1．5\％	2．3\％	3．8\％	3．5\％	1．9\％	3．7\％	．7\％	6．8\％	5．6\％	2．7\％	2．4\％	2．2\％	1.5
		\％within Country／Sample （see V3A for codes for whole nation states）	14．4\％	14．4\％	7．4\％	8．8\％	25．3\％	21．8\％	11．8\％	12．7\％	5．5\％	28．0\％	38．2\％	37．2\％	18．8\％	16．4\％	10.5
		\％of Total	．8\％	． 3%	． 2%	．4\％	．6\％	． 6%	．3\％	．6\％	．1\％	1．1\％	．9\％	．4\％	．4\％	． 4%	．
Total		Count	2507	850	1442	1818	1036	1135	1120	2020	915	1691	1024	503	901	956	9
		\％within LESSREG \％within Country／Sample	5．7\％	1．9\％	3．3\％	4．2\％	2．4\％	2．6\％	2．6\％	4．6\％	2．1\％	3．9\％	2．3\％	1．2\％	2．1\％	2．2\％	2.5

How to read the crosstab

In the columns we have the countries
In the rows we have the numbers and percentages of people giving a certain response to the question of whether they think the government should regulate industry less.
In the first row we see that 28 people or 2.5% of Czechs were strongly against less government regulation, while 123 or 11% of the Danes were strongly against.

- In the second row we see that 114 Czechs or 10% were against less government regulation, while 148 Danes or 22.1\% were against less government regulation.

Making your own table

You must decide what you are measuring

- For this example it is "degree of market liberalism" which is why we recoded to make $5=$ strongly agree, rather than $1=$ strongly agree as it originally was coded
- If we were measuring degree of support for social democratic policies, we would have kept the original coding for this question, but changed it for the other questions that gave the lowest score (1) for supporting state policies
- Calculate the \% in favor or strongly in favor of LESSREG for 2 countries and make a table in Word
- These are the last two responses. The first two that we already discussed measured the \% against or strongly against, that is it measured OPPOSITION to market liberalism, while the table we will make now will show SUPPORT for market liberalism.

This is what the table would look like

Your Next Step

Choose 5 questions that measure the issue you are interested in
In the last session you recoded questions so that they are all in the same direction So use these questions again It could be anything, like support for welfare, tolerance toward immigrants, etc.

- Make a table based on combining these 5 crosstabs

Crosstab showing dependent and independent variables

Now we will go back to one question, like LESSREG
We will see if women are more or less market liberal than men in the Czech Republic
We must first add the Czech filter, so we only get answers for the Czech Republic

- Then we replace the variable for countries with the variable for gender

First the filter

We no longer have to use the "if" function, because we have already created the Czech filter from it, so instead we choose the Czech filter from the "selected cases" and move it over to "Use filter variable" then press OK

Go back now to the crosstab

3issp2006steve.sav [DataSet1] - SPSS Data Editor													
File Edit View Data Transform			Analyze Graphs Utilites Add-ons Window Help										
			Reports										
			Descriptive Statistics		Frequencies... Descriptives...								
	Name	Type			Values	Missing	Columns	Align	Measure				
268	hu_size	Numeric	Compare Means				,	Explore...	NAP, other	0	9	Right	Nominal
269	ie_size	Numeric	General Linear Model		Crosstabs...		NAP, other	0,99	9	Right	Nominal		
270	il_size	Numeric	Generalized Linear Models Mixed Models		Ratio... P.P Plots...		NAP, other	0	9	Right	Nominal		
271	jp_size	Numeric			Q-Q Plots...		NAP, other	0	9	Right	Nominal		
272	kr_size	Numeric	Correlate				Q-Q Plots... NAP, other 0	0	9	Right	Nominal		
273	Iv_size	Numeric	Loglinear ,			Size of commu \{0, NAP, other 0		0	9	Right	Nominal		
274	nl_size	Numeric	Classify			Size of commu $\{0$, NAP, other 0		0,99	9	Right	Nominal		
275	no_size	Numeric	Data Reduction			Size of commu $\{0$, NAP, other		0	9	Right	Nominal		
276	nz_size	Numeric	Scale			Size of commu \{0, NAP, other		0,99	9	Right	Nominal		
277	ph_size	Numeric	Nonparametric Tests Time Series		- Size of commu \{0, Not availabl 0				9	Right	Nominal		
278	pl_size	Numeric				Size of commu \{0, NAP, other 0		0	9	Right	Nominal		
279	pt_size	Numeric	Survival Multiple Response		Size of commu $\{0$, NAP, other 0			0	9	Right	Nominal		
280	ru_size	Numeric	Missing Value Analysis...		Size of commu $\{0, N A P$, other 0			0	9	Right	Nominal		
281	se_size	Numeric				Size of commu $\{0, \mathrm{NAP}$, other 0		0	9	Right	Nominal		
282	si_size	Numeric	Complex Samples			Size of commu \{0, NAP, other 0		0,99	9	Right	Nominal		
283	tw_size	Numeric	ROC Curve...			Size of commu $00, \mathrm{NAP}$, other		0,99	9	Right	Nominal		
284	us_size	Numeric	2	0	Size of commu $\{0, N A P$, other 0			0	9	Right	Nominal		
285	uy_size	Numeric	2	0	Size of commu $\{0, N A P$, other 0			0	9	Right	Nominal		
286	ve_size	Numeric	2	0	Size of commu $\{0$, Not availabl 0				9	Right	Nominal		
287	za_size	Numeric	2	0	Size of commu $\{0, N A P$, other 0			0	9	Right	Nominal		
288	urbrural	Numeric	1	0	Type of comm		\{0, Not availabl		10	Right	Nominal		
289	ethnic	Numeric	4	1	Family origin, \{		\{.0, Not availab	. $0,99.0$	8	Right	Scale		
290	mode	Numeric	2	0	Administrative		\{10, F2f.pap a	0	6	Right	Nominal		
291	weight	Numeric	11	8	Weighting fact		\{1.00000000,	None	13	Right	Scale		
292	LESSREG	Numeric	8	2			$\{1.00$, strongly	None	10	Right	Scale		
293	Czech	Numeric		2	$\text { Czech }=1 \text { (FIL }$		None	None	10	Right	Scale		
294	filter_S	Numeric	8	0			\{0, Not Selecte	None	10	Right	Scale		
295			1										
296													
298													
299													
300													
301													
302													
303													
304													
305													
306													
307													
308													
309													
310													
311													

Replace "country" with "sex" and click OK

This is what the result looks like

Make your own table for the questions measuring your

 topic. We see men are more market liberal than women, but the difference is small. That question is whether the difference is big enough to be more than a random difference.

Now we will do a bivariate regression with the same two variables

Choose the depedent variable and choose "sex" as the independent variable

59 issp2006steve sav [Datasel1]-SpSS Data Etilor

The Model summary:

 R-square is very low. The model only explains 0.2% of the total variance in LESSREG
Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.046^{\mathrm{a}}$.002	.001	1.00205

a. Predictors: (Constant), R: Sex

Df total shows that there were 1134 cases, which shows you that your country filter is working, otherwise it would have been around 44,000. Sig. $=.120$ means the model is only significant at the 12% level which is much higher than the 5% level that is normally acceptable

ANOVA $^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	2.433	1	2.433	2.423	$.120^{\text {a }}$
Residual	1137.642	1133	1.004			
Total	1140.076	1134				

a. Predictors: (Constant), R: Sex
b. Dependent Variable: LESSREG

Here we see there is a negative correlation between being a woman and supporting less regulation ($\mathrm{B}=-.094$), but the correlation is very small and is only -.046 on a scale lof $0-1 \mid$ (the standardized coefficient. Furthermore, $\mathrm{t}<\mid 1.96$ I and is only significant at the 12% level. The t significance for this variable (SEX) and the significance for the entire model is the same, since we only have one independent variable.

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized Coefficients			
		B	Std. Error	Beta	t	Sig.
1	(Constant)	3.820	.099		38.448	
	R: Sex	-.094	.060	-.046	-1.557	.120

a. Dependent Variable: LESSREG

Your Next Step at This Lab

Now choose the questions that you have for measuring the attitude you chose.
They should be at least 5 questions.
Choose any independent variable, such as SEX, or INCOME, EDUCATION or AGE

- Run bivariate regressions on each of the questions using the same independent variable and think about why some might have been significant or not.
Today choose only one independent variable, so you can see whether this variable is significant for some questions but not for others.
When discussing multivariate regressions we will compare the importance of different indepedent variables and start to comtemplate whether, for example gender can explain attitudes better or worse than income, age or education.

