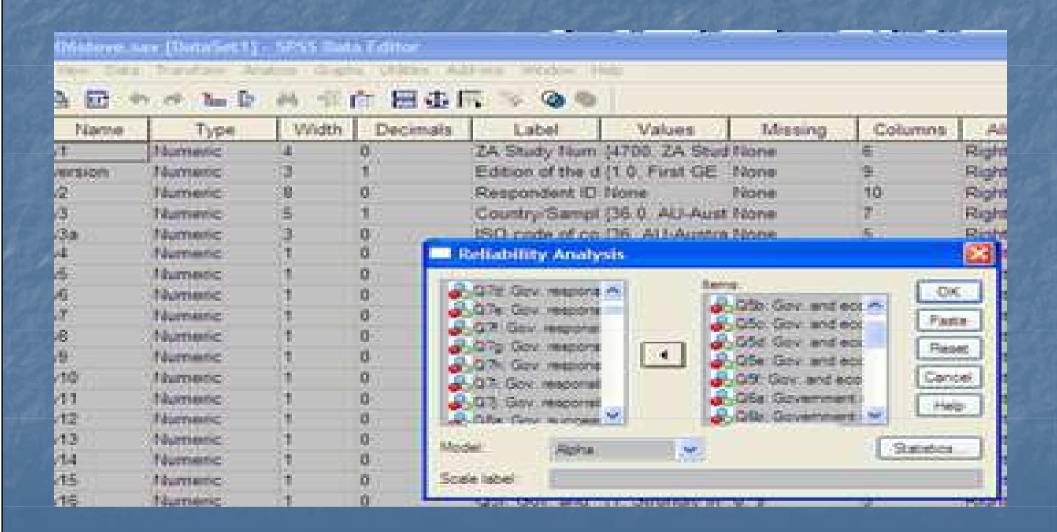
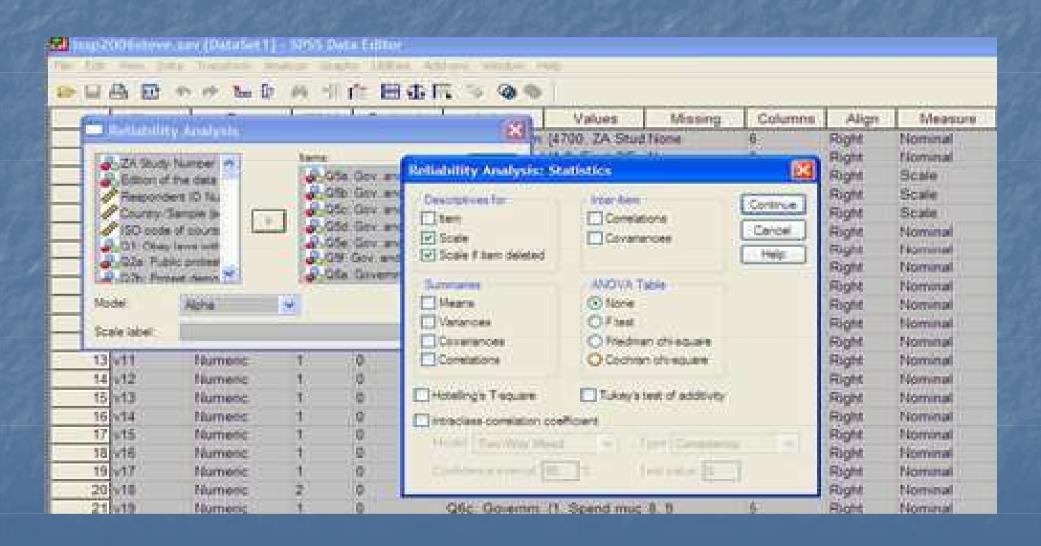

Scaling Lab


Scaling outline

- First add the country filter
- Then we will do Cronbach's Alpha
- Then Factor Analysis

Starting to make a one-dimensional scale with Cronbach's Alpha


Add the items

In the present example the score will be low

- Why?
- I did not RECODE the variables
- They should all go in the same direction so that the most points is either for government intervention or against it

Click on "Statistics." Choose "scale" and "scale if item deleted"

Alpha Score in SPSS. Not so bad since in this example I did not recode the variables, so they all go in the same direction

Reliability Statistics

Cronbach's
Alpha N of Items
.675 16

We should delete variables that lower Alpha, which means Alpha>.675 if Alpha item Deleted. We see that the first question Q5a would increase Alpha if eliminated and that its correlation is negative (perhaps because it was not recoded?)

Item-Total Statistics: Scale ---- if item Deleted

	Mean iID	Var iID	CorrItTotCor	Alpha iIDeleted
Q5a: Gov. and economy: Cuts in gov. spending	38.48	38.062	037	.704
Q5b: Gov. and economy: Financing projects for new jobs	38.79	33.260	.417	.643
Q5c: Gov. and economy: Less gov. reg. of business	38.51	36.464	.103	.684
Q5d: Gae: Support industry to develop new products	38.58	33.468	.376	.648
Q5e: Gae: Support declining industries to protect jobs	37.87	31.666	.431	.637
Q5f: Gov. and economy: Red. working week for more jobs	37.71	34.531	.226	.669
Q6a: Government should spend money: Environment	38.33	34.922	.328	.656
Q6b: Government should spend money: Health	38.76	34.806	.345	.654
Q6c: Government should spend money: Law enforcement	38.04	34.856	.305	.658
Q6d: Government should spend money: Education	38.66	35.122	.305	.658
Q6e: Government should spend money: Defence	37.39	35.746	.210	.669
Q6f: Government should spend money: Retirement	38.56	34.101	.389	.648
Q6g: Government should spend money: Unempl. benefits	37.56	34.475	.306	.657
Q6h: Government should spend money: Culture and arts	37.78	35.236	.300	.659
Q7a: Gov. responsibility: Provide job for everyone	38.94	34.990	.268	.662
Q7b: Gov. responsibility: Control prices	38.60	35.019	.265	.662

After eliminating we get a better score

Reliability Statistics

Cronbach's
Alpha N of Items
.704 15

Now Alpha could be increased if we take away Q5c

Item-Total Statistics								
	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted				
Q5b: Gov. and economy: Financing projects for new jobs	36.42	32.748	.402	.678				
Q5c: Gov. and economy: Less gov. reg. of business	36.13	35.952	.086	.717				
Q5d: Gov. and economy: Support industry to develop new products	36.20	32.818	.373	.681				
Q5e: Gov. and economy: Support declining industries to protect jobs	35.49	30.707	.456	.668				
Q5f: Gov. and economy: Red. working week for more jobs	35.32	33.695	.237	.700				
Q6a: Government should spend money: Environment	35.94	34.253	.325	.688				
Q6b: Government should spend money: Health	36.37	34.074	.348	.685				
Q6c: Government should spend money: Law enforcement	35.66	34.262	.294	.691				
Q6d: Government should spend money: Education	36.28	34.317	.317	.689				
Q6e: Government should spend money: Defence	35.00	35.095	.206	.701				
Q6f: Government should spend money: Retirement	36.18	33.351	.395	.680				
Q6g: Government should spend money: Unempl. benefits	35.17	33.541	.328	.687				
Q6h: Government should spend money: Culture and arts	35.41	34.396	.315	.689				
Q7a: Gov. responsibility: Provide job for everyone	36.55	34.037	.293	.691				
Q7b: Gov. responsibility: Control prices	36.22	34.109	.285	.692				

Alpha increases once more!

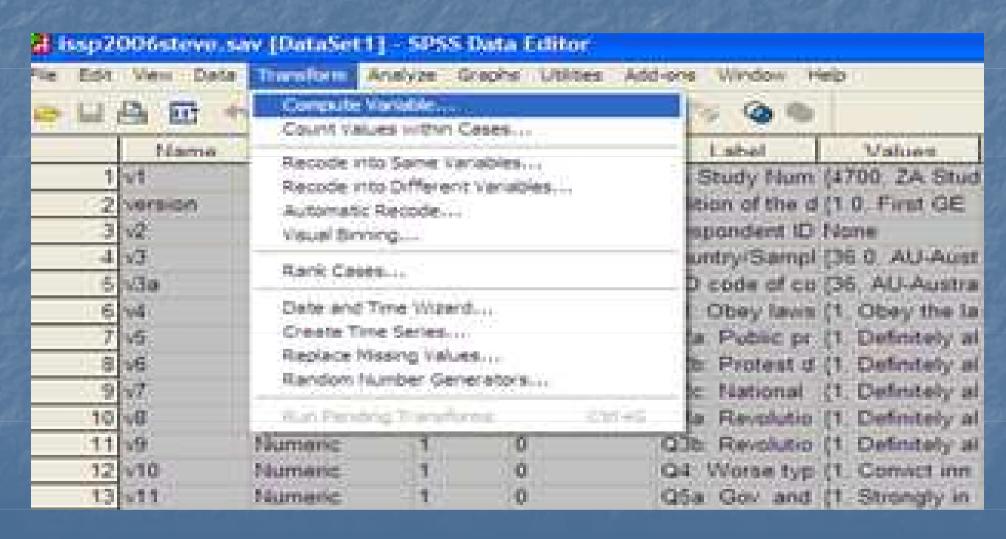
Reliability Statistics

Cronbach's
Alpha N of Items
.716 14

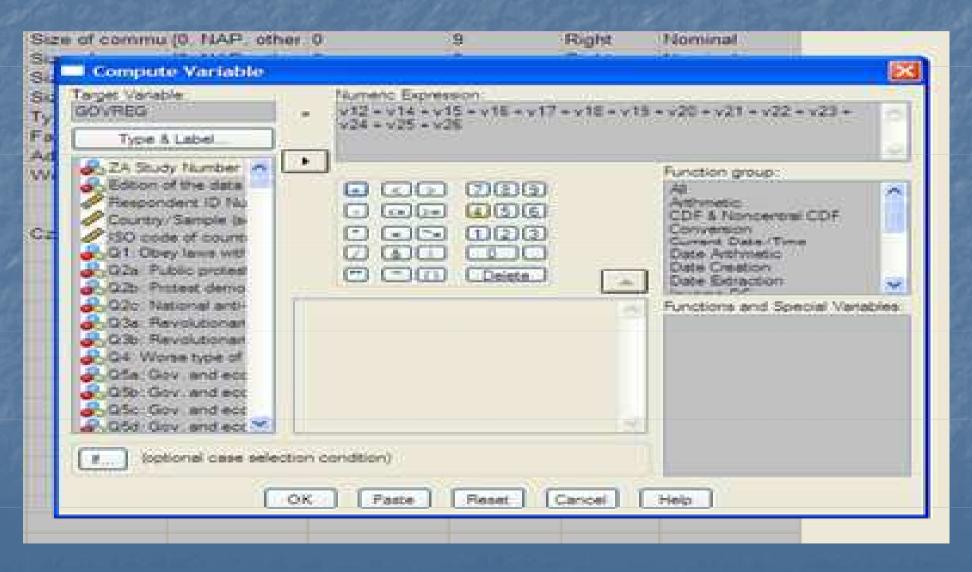
Now Alpha cannot be increased by removing an item, as it would be less than .716 if any were removed

14	Tatal	Ctatiatian
item	-ıotai	Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
Q5b: Gov. and economy: Financing projects for new jobs	34.05	31.021	.367	.696
Q5d: Gov. and economy: Support industry to develop new products	33.82	31.303	.320	.702
Q5e: Gov. and economy: Support declining industries to protect jobs	33.13	28.525	.471	.680
Q5f: Gov. and economy: Red. working week for more jobs	32.96	31.615	.234	.715
Q6a: Government should spend money: Environment	33.57	32.159	.318	.702
Q6b: Government should spend money: Health	34.00	31.877	.358	.698
Q6c: Government should spend money: Law enforcement	33.29	31.993	.307	.703
Q6d: Government should spend money: Education	33.90	32.337	.301	.704
Q6e: Government should spend money: Defence	32.64	32.919	.207	.714
Q6f: Government should spend money: Retirement	33.82	31.076	.415	.691
Q6g: Government should spend money: Unempl. benefits	32.81	31.101	.358	.697
Q6h: Government should spend money: Culture and arts	33.03	32.263	.314	.702
Q7a: Gov. responsibility: Provide job for everyone	34.19	31.638	.321	.701
Q7b: Gov. responsibility:		a . =aa		

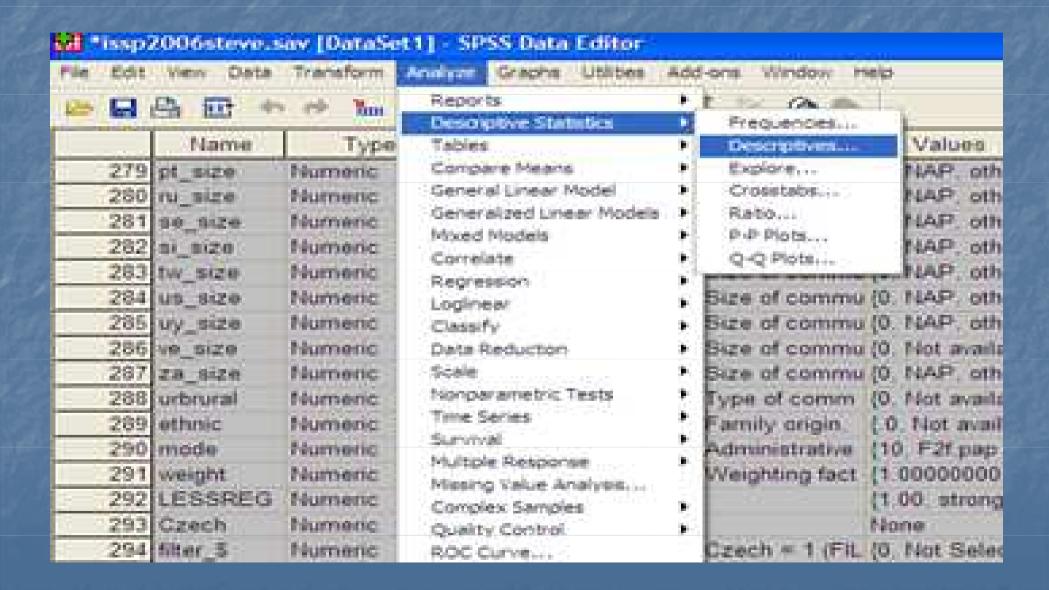

One little problem....

- If we are comparing several groups, like men and women or Sweden and France, then we could compare the means and say that French score higher than Swedes or Women score higher than men
- Because I was lazy in making this presentation, I did not recode the questions 7a and 7b, but since they are on a scale of 1-4, while the others are on a scale of 1-5, I really should have transformed them by multiply the scores by 1.25, so they too would have the same scale.
- There would still be a problem, because even though they would all have the same maximum value, they would not have the same minimum.
- The best would be to rescale ALL the variables used, so that instead of 1-5 they would be 0, 2,3,4
- Then rescale the 1-4 scale so the scale would be 0, 1.33, 2.67, 4.0


The scale scores

- Once we made these transformations so that all questions have a scale of 0-4
- AND they all go in the same direction, so that 4 for EVERY question either means support for government intervention or opposition to government intervention
- THEN we can compare the average scores among groups
- There are 14 questions in our scale, if all questions are from 0-4, then the scale would be from 0-56

Making the Scale in SPSS: Go back to compute variable


Make a new variable by adding the items together than comprise the Alpha score (that is minus Q5a and Q5c)

Your alpha assignment

- Choose the variables that you will want to include in your scale.
- Make sure that you have recoded variables so that each question has the same scale (like 0-4)
- Make sure that each question is also scaled in the same direction. You should have already done this during previous computer labs.
- Run the alpha analysis
- Eliminate variables if you can improve the score
- Create a scale
- Compare the means for two groups, like for Czechs and Swedes or for men and women. You can do this by making a filter for each group (like Czech and Swedes).
- Then apply the filter for one group (Czech) and go to ANALYZE DESCRIPTIVE STATISTICS -> DESCRIPTIVES

Like this....

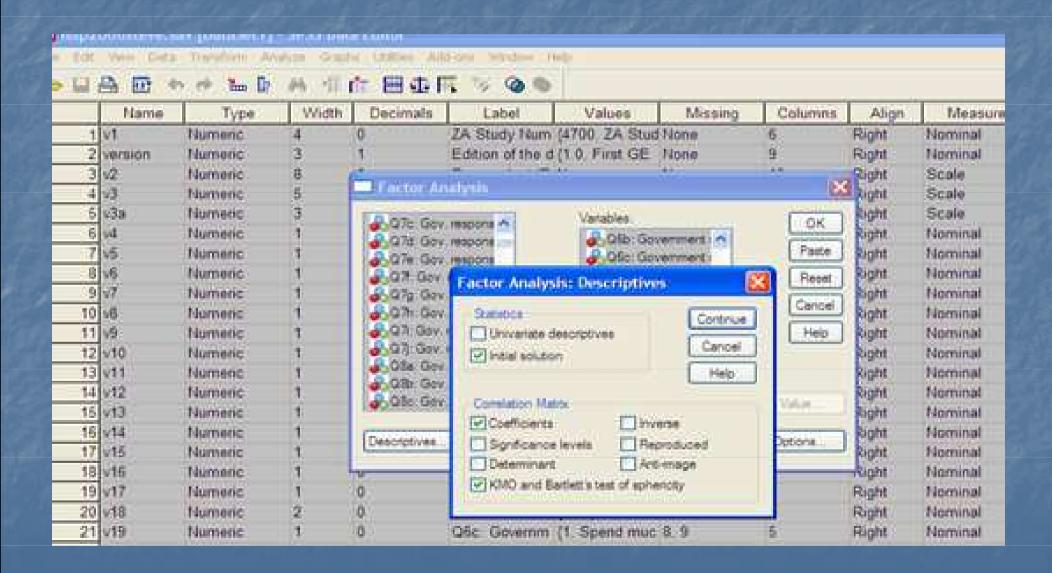
Click on OK

You can see the average score now (the mean)

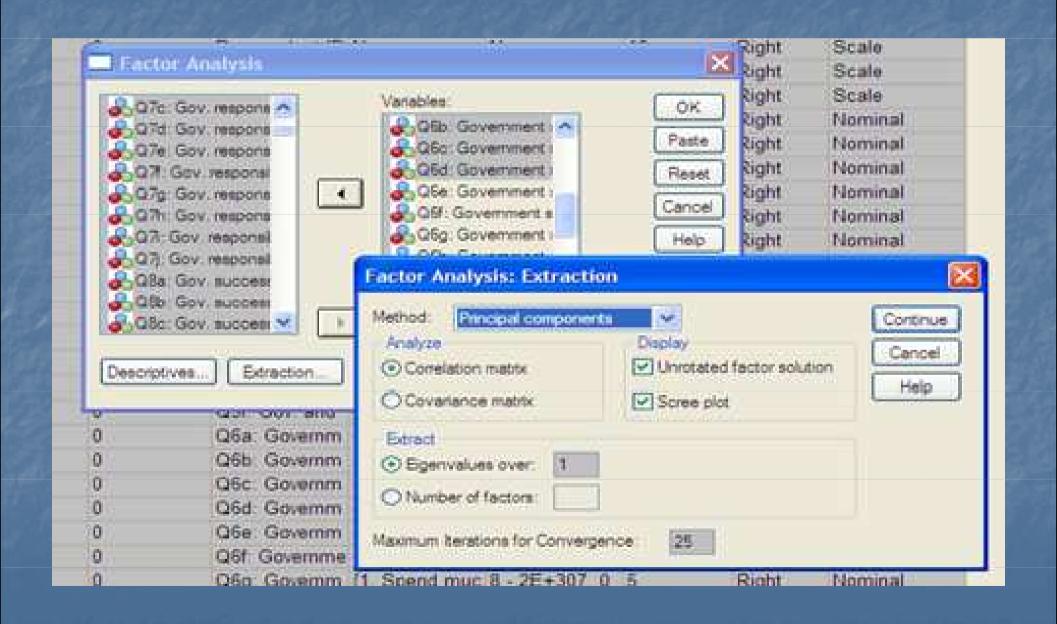
Descriptive Statistics

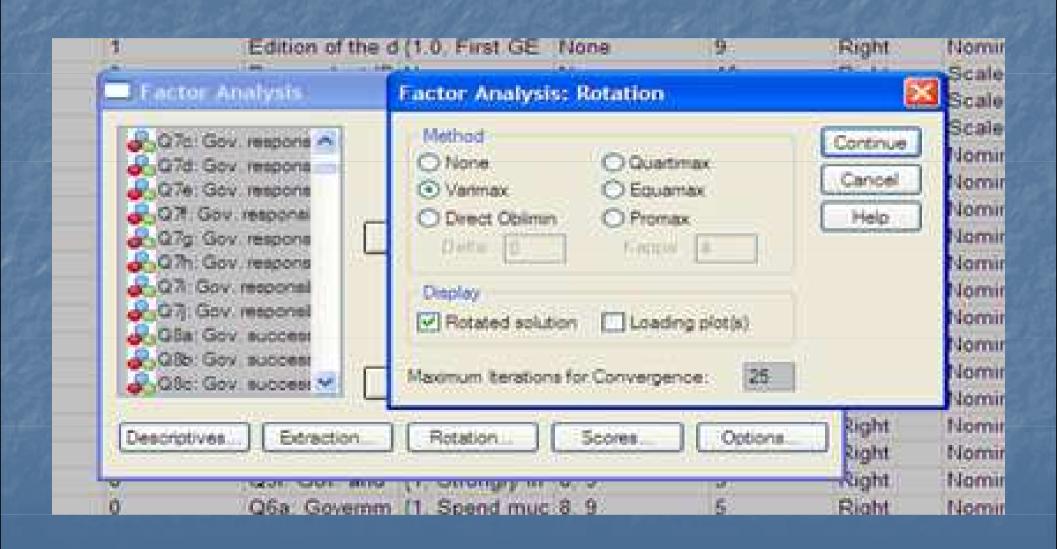
	N	Minimum	Maximum	Mean	Std. Deviation
GOVREG	993	19.00	63.00	36.0806	5.98280
Valid N (listwise)	993				

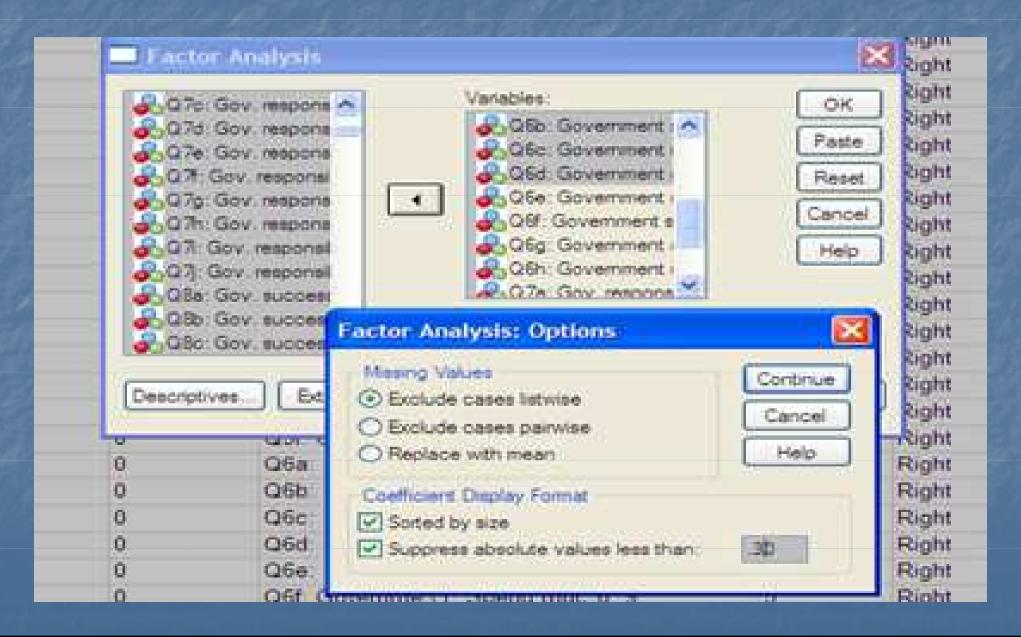
After checking the alpha scale you can run multiple regressions on it


Factor Analysis

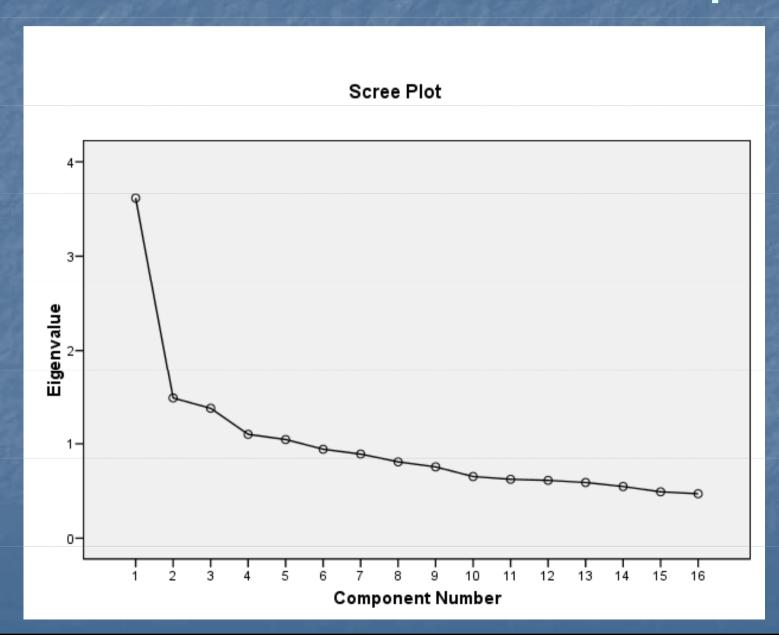
Pile Edit Veto D	ata Transform	Analyze Graphs Utilities Ac	di-ons Window H	ep		
	to et lim	Reports Descriptive Statistics	T 70 00			
Name	Type	Tables	Label	Values		
1 93	Numeric	Compare Means	ZA Study Num	(4700 ZA Stud N		
2 version	Numeric	General Unear Model	Edition of the d	(1.0. First GE N		
3 1/2	Numeric	Generalized Linear Models •	Respondent ID	None I		
4 v3	Numeric	Moxed Models Correlate	Country/Sampl	(36.0, AU-Aust N		
5 v3a	Téurneme	Regression	30 code of co	(36, AU-Austra fi		
6 v4	Numeric	Logineer	Q1. Obey laws	(1, Obey the la 8		
7 45	Numeric	Classify	 Q2a Public pr (1, Definitely at 			
8 v6	Numeric	Data Reduction	Poctor	# B		
9 47	Numeric	Scale	Correspondence	1000		
10 16	16umenc	Nonparametric Tests	Optimal Scaling.			
11 19	Numeric	Time Series	Q3b: Revolutio	(1. Definitely at 8		
12 010	Mumoric	Survival Multiple Response	D4: Worse typ	(1. Convict inn 8		
13 v11	Numeric	Missing Value Analysis	Q5a: Gov. and	(1. Strongly in 8		
14 V12	Numeric	Complex Samples	Q5b Gov and	(1, Strongly in 8		
15 V13	Numeric	Quality Control	Q5c Gev and	(1. Strongly in 8		
16 y14	Numeric	ROC Curve	Q5d Goy and	(1 Strongly in 8		
17 V15	Numeric	1 0	Q5e: Gov. and	(1. Strongly in 8		


Choose the same variables that you chose for the first Cronbach Alpha calculation


Choose the following in DESCRIPTIVES


Go to EXTRACTION and click on SCREE PLOT

Then for ROTATION choose VARIMAX



Go to OPTIONS and choose SORTED BY SIZE and under SUPRESS ABOLUTE VALUES change it to .30

Click on OK and you get your first result

First let's look at the scree plot

Analyzing the Scree plot

- 4 have values above 1
- But there seems to be a big dip after two components, which indicates that perhaps there are two dimensions

Let's Look at the explained variance: the first two components explain the most, although the next three do have Eigen values slightly more than 1. However, the third component does have a relatively high eigenvalue. Whether or not to keep the third factor depends partially on whether it makes theoretical sense.

Total Variance Explained

	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.612	22.574	22.574	3.612	22.574	22.574	2.289	14.307	14.307
2	1.483	9.267	31.842	1.483	9.267	31.842	1.965	12.283	26.590
3	1.374	8.587	40.429	1.374	8.587	40.429	1.581	9.879	36.470
4	1.100	6.872	47.301	1.100	6.872	47.301	1.523	9.516	45.986
5	1.045	6.528	53.830	1.045	6.528	53.830	1.255	7.844	53.830
6	.943	5.892	59.721						
7	.892	5.574	65.296						
8	.808	5.052	70.348						
9	.756	4.722	75.070						
10	.653	4.083	79.153						
11	.624	3.898	83.050						
12	.613	3.829	86.879						
13	.590	3.686	90.565						
14	.547	3.422	93.987						
15	.492	3.072	97.059						
16	.471	2.941	100.000						

Extraction Method: Principal Component Analysis.

In the unrotated matrix many items are highly correlated to several factors

Component Matrix

			Component		
	1	2	3	4	5
Q6f: Government should spend money: Retirement	.645				
Q6g: Government should spend money: Unempl. benefits	.631				.311
Q6b: Government should spend money: Health	.610				
Q6d: Government should spend money: Education	.581	335			
Q5e: Gov. and economy: Support declining industries to protect jobs	.545	.442			
Q7a: Gov. responsibility: Provide job for everyone	.536	.389			
Q6h: Government should spend money: Culture and arts	.531			364	.388
Q5b: Gov. and economy: Financing projects for new jobs	.530	.318			
Q7b: Gov. responsibility: Control prices	.475	.351			
Q6c: Government should spend money: Law enforcement	.410	389		.352	
Q5f: Gov. and economy: Red. working week for more jobs	.393	.303			.351
Q5c: Gov. and economy: Less gov. reg. of business			.662		.336
Q5d: Gov. and economy: Support industry to develop new products	.353		.524		359
Q5a: Gov. and economy: Cuts in gov. spending			.510		.410
Q6a: Government should spend money: Environment	.386	404		533	
Q6e: Government should spend money: Defence	.344	307		.465	

Extraction Method: Principal Component Analysis.

a. 5 components extracted.

But in the rotated matrix there are only a few overlaps

Rotated Component Matrix

	Component					
	1	2	3	4	5	
Q7a: Gov. responsibility: Provide job for everyone	.714					
Q6g: Government should spend money: Unempl. benefits	.608		.326			
Q7b: Gov. responsibility: Control prices	.589					
Q5e: Gov. and economy: Support declining industries to protect jobs	.562			.423		
Q5f: Gov. and economy: Red. working week for more jobs	.558					
Q6c: Government should spend money: Law enforcement		.728				
Q6e: Government should spend money: Defence		.637				
Q6b: Government should spend money: Health		.569				
Q6f: Government should spend money: Retirement	.453	.541				
Q6d: Government should spend money: Education		.500	.395			
Q6a: Government should spend money: Environment			.759			
Q6h: Government should spend money: Culture and arts			.744			
Q5d: Gov. and economy: Support industry to develop new products				.785		
Q5b: Gov. and economy: Financing projects for new jobs	.314			.675		
Q5c: Gov. and economy: Less gov. reg. of business					.758	
Q5a: Gov. and economy: Cuts in gov. spending					.723	

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 8 iterations.

Second Attempt

- I will remove the last 4 items, Q5d, Q5b, Q5c and Q5a, because they belong to components 4 and 5
- Please note: I am only making an example.
- If I were to do this seriously, I would first have to recode all the questions, so that they have the same scale (0-4 or 1-5) AND they must go in the same direction.
- It is very possible that these last 4 items really do fit in well, but they are coded in opposite directions in some cases 5 denotes support for government intervention and in some cases it denotes opposition to intervention.

After removing these items, press OK

- Now there are only 3 factors.
- We see after rotation that some items are highly correlates with several components, so they should be eliminated.
- If Q6g and Q6e are eliminated, then we see that factor 3 makes sense: the culture and environment deal with quality of life rather than economic issues.
- Now we can eliminate as well Q6f because it is also highly correlated with two factors

Rotated Component Matrix

	Component				
	1	2	3		
Q7a: Gov. responsibility: Provide job for everyone	.724				
Q5e: Gov. and economy: Support declining industries to protect jobs	.653				
Q7b: Gov. responsibility: Control prices	.644				
Q6g: Government should spend money: Unempl. benefits	.546		.347		
Q5f: Gov. and economy: Red. working week for more jobs	.540				
Q6c: Government should spend money: Law enforcement		.740			
Q6b: Government should spend money: Health		.599			
Q6e: Government should spend money: Defence		.598			
Q6d: Government should spend money: Education		.527	.423		
Q6f: Government should spend money: Retirement	.431	.520			
Q6a: Government should spend money: Environment			.770		
Q6h: Government should spend money: Culture and arts			.749		

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 3 iterations.

New results: Q6b is highly related to two components, so should be eliminated

Rotated Component Matrix

		Component	
	1	2	3
Q7a: Gov. responsibility: Provide job for everyone	.730		
Q7b: Gov. responsibility: Control prices	.691		
Q5e: Gov. and economy: Support declining industries to protect jobs	.681		
Q5f: Gov. and economy: Red. working week for more jobs	.533		
Q6c: Government should spend money: Law enforcement		.805	
Q6e: Government should spend money: Defence		.720	
Q6b: Government should spend money: Health		.453	.347
Q6a: Government should spend money: Environment			.831
Q6h: Government should spend money: Culture and arts			.740

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 4 iterations.

Now the rotated matrix looks very nice!

Rotated Component Matrix

		Component	
	1	2	3
Q7a: Gov. responsibility: Provide job for everyone	.733		
Q7b: Gov. responsibility: Control prices	.697		
Q5e: Gov. and economy: Support declining industries to protect jobs	.686		
Q5f: Gov. and economy: Red. working week for more jobs	.535		
Q6a: Government should spend money: Environment		.831	
Q6h: Government should spend money: Culture and arts		.762	
Q6c: Government should spend money: Law enforcement			.790
Q6e: Government should spend money: Defence			.783

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 5 iterations.

Each factor explains a lot of the variance (at least 16%)

Total Variance Explained

		Initial Eigenvalu	es	Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings			
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	
1	2.136	26.705	26.705	2.136	26.705	26.705	1.823	22.791	22.791	
2	1.324	16.546	43.251	1.324	16.546	43.251	1.364	17.055	39.846	
3	1.041	13.014	56.265	1.041	13.014	56.265	1.314	16.419	56.265	
4	.905	11.316	67.581							
5	.763	9.537	77.118							
6	.675	8.439	85.558							
7	.595	7.437	92.995							
8	.560	7.005	100.000							

Extraction Method: Principal Component Analysis.

Now we can look at the test statistics

KMC	O and Bartlett's Test	
Kaiser-Meyer-Olkin Medequacy.	Measure of Sampling	.661
Bartlett's Test of Sphericity	Approx. Chi-Square	31305.627 28
	Sig.	.000

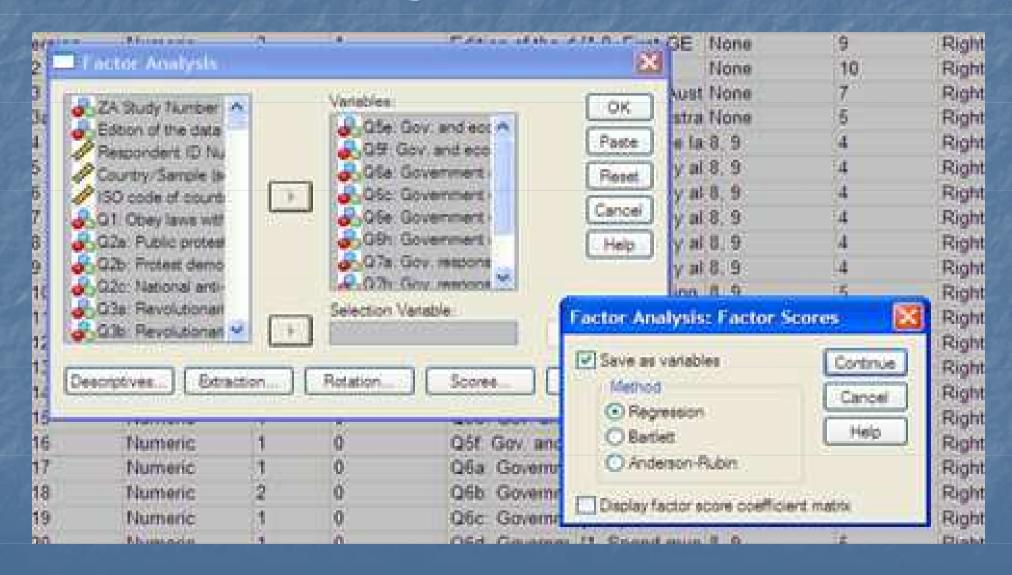
- The Kaiser-Olkin measure is over.6, so it is acceptable
- And the Bartlett's Test is also significant
- So the model seems to be OK.

Now we must interpret these factors and give them names

- Factor 1 seems to do with the government intervening in the economy.
- Factor 2 seems to deal with government responsibility for the quality of life
- Factor 3 has to do with security.

Rotated Component Matrix

		Component	
	1	2	3
Q7a: Gov. responsibility: Provide job for everyone	.733		
Q7b: Gov. responsibility: Control prices	.697		
Q5e: Gov. and economy: Support declining industries to protect jobs	.686		
Q5f: Gov. and economy: Red. working week for more jobs	.535		
Q6a: Government should spend money: Environment		.831	
Q6h: Government should spend money: Culture and arts		.762	
Q6c: Government should spend money: Law enforcement			.790
Q6e: Government should spend money: Defence			.783


Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 5 iterations.

Now there are two possibilities

- A: One can create three different scales by using the COMPUTE VARIABLE function as in creating the Cronbach Alpha scale
- Or one can let SPSS create a factor value for each factor.
- I favor the first method.
- To let SPSS create a factor value, go back to the function for factor analysis and click on SCORES...
- Then click on the save as variables box and press continue and run factor analysis one more time.

Creating factor scores

Now you can see that 3 new factors were created. You can rename them so that the factors have more meaning, such as GOVECINT

286 ve so	e Nume	ne :	2	0	Size of community: Venezuela	(0, Not available	0	3	Right	Nominal
287 20 10	e Nume	oc i	2	Ō	Size of community: South Africa	(0, NAP, other	0	9	Right	Hominal
288 urbrur	al Nume	ric :		0	Type of community: Rs self-assessment	(0, Not available	0.9	10	Right	Nominal
289 athnic	Nume	ne i			Family origin, ethnic group, identity	(0, Not availab	0.99,0	4	Right	Scale
290 mode	Nume	ile i	2	0	Administrative mode of data-collection	(10, F2f.pap a	0	Ē.	Right	Nominal
291 weigh	Nume	nc :	11	8	Weighting factor	[1.00000000.	None.	tt	Right	Scale
292 LESS	REG Nume	nc (2	77.00.000.000.0000	(1.00, strongly	None.	10	Right	Scale
293 Czeci	Nume	fic (2		None	None.	10	Right	Scale
294 Ster 3	Nume	60	1	0	Czech = 1 (FILTER)	(0, Not Selecte	None	10	Right	Scale
295 GOV	EG Nume	rie (2		None	None	10	Right	Scale
296 FAC1	1 Nume	nc '	11	5	REGR factor score 1 for analysis 1	None	None	13	Right	Scale
297 FAC2	1 Nume	nc :	11	5	REGR factor score 2 for analysis 1	None	None	13	Right	Scale:
.298 FAC3	1 Nume	ne :	11	5	REGR factor score 3 for analysis 1	None	None	13	Right	Scale

Finally you can conduct multivariate regressions on each factor

- Try to create a model for each 3 factor.
- Choose again some independent variables that you think might be able to explain attitudes toward these factors, such as AGE, SEX, EDUCATION, INCOME, etc.
- Examine whether the same independent variables are significant for each factor.
- If some variables are more important for explaining one factor than another, think about why this could be the case.

THEORY!

- Please remember that I have presented everything inductively now to show you how statistics work.
- You should actually begin with theory.
- From the beginning you should have hypotheses based on previous studies as to which variables should be able to predict your outcomes.
- Also you should make use of theory to choose what questions you will put in your original factor analysis. You should have a hypothesis about how many factors there will be.
- Even if your hypothesis is proven wrong, you should think theoretically about how to name the factors that you end up with.