Scaling Lab

Scaling outline

First add the country filter
Then we will do Cronbach's Alpha
Then Factor Analysis

Starting to make a one-dimensional scale with Cronbach's Alpha

Add the items

In the present example the score will be low

Why?
I did not RECODE the variables
They should all go in the same direction so that the most points is either for government intervention or against it

Click on "Statistics."Choose "scale" and "scale if item deleted"

pal

Alpha Score in SPSS. Not so bad since in this example I did not recode the variables, so they all go in the same direction

Reliability Statistics

We should delete variables that lower Alpha, which means Alpha>. 675 if Alpha item Deleted. We see that the first question Q5a would increase Alpha if eliminated and that its correlation is negative (perhaps because it was not recoded?)

Item-Total Statistics: Scale ---- if item Deleted

	Mean iID	Var iID	CorritTotCor	Alpha iIDeleted
Q5a: Gov. and economy: Cuts in gov. spending	38.48	38.062	-.037	.704
Q5b: Gov. and economy: Financing projects for new jobs	38.79	33.260	.417	.643
Q5c: Gov. and economy: Less gov. reg. of business	38.51	36.464	.103	.684
Q5d: Gae: Support industry to develop new products	38.58	33.468	.376	.648
Q5e: Gae: Support declining industries to protect jobs	37.87	31.666	.431	.637
Q5f: Gov. and economy: Red. working week for more jobs 37.71	34.531	.226	.669	
Q6a: Government should spend money: Environment	38.33	34.922	.328	.656
Q6b: Government should spend money: Health	38.76	34.806	.345	.654
Q6c: Government should spend money: Law enforcement	38.04	34.856	.305	.658
Q6d: Government should spend money: Education	38.66	35.122	.305	.658
Q6e: Government should spend money: Defence	37.39	35.746	.210	.669
Q6f: Government should spend money: Retirement	38.56	34.101	.389	.648
Q6g: Government should spend money: Unempl. benefits	37.56	34.475	.306	.657
Q6h: Government should spend mone: Culture and arts	37.78	35.236	.300	.659
Q7a: Gov. responsibility: Provide job for everyone	38.94	34.990	.268	.662
Q7b: Gov. responsibility: Control prices	38.60	35.019	.265	.662

After eliminating we get a better score

Reliability Statistics

Cronbach's
 Alpha
 N of Items
 .704 15

Now Alpha could be increased if we take away Q5C

Item-Total Statistics				
	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
Q5b: Gov. and economy: Financing projects for new jobs	36.42	32.748	. 402	. 678
Q5c: Gov. and economy: Less gov. reg. of business	36.13	35.952	. 086	.717
Q5d: Gov. and economy: Support industry to develop new products	36.20	32.818	. 373	.681
Q5e: Gov. and economy: Support declining industries to protect jobs	35.49	30.707	. 456	. 668
Q5f: Gov. and economy: Red. working week for more jobs	35.32	33.695	. 237	. 700
Q6a: Government should spend money: Environment	35.94	34.253	. 325	. 688
Q6b: Government should spend money: Health	36.37	34.074	. 348	. 685
Q6c: Government should spend money: Law enforcement	35.66	34.262	. 294	. 691
Q6d: Government should spend money: Education	36.28	34.317	. 317	. 689
Q6e: Government should spend money: Defence	35.00	35.095	. 206	. 701
Q6f: Government should spend money: Retirement	36.18	33.351	. 395	. 680
Q6g: Government should spend money: Unempl. benefits	35.17	33.541	. 328	. 687
Q6h: Government should spend money: Culture and arts	35.41	34.396	. 315	. 689
Q7a: Gov. responsibility: Provide job for everyone	36.55	34.037	. 293	. 691
Q7b: Gov. responsibility: Control prices	36.22	34.109	. 285	. 692

Alpha increases once more!

Reliability Statistics

Now Alpha cannot be increased by removing an item, as it would be less than . 716 if any were removed

Item-Total Statistics				
	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
Q5b: Gov. and economy: Financing projects for new jobs	34.05	31.021	. 367	. 696
Q5d: Gov. and economy: Support industry to develop new products	33.82	31.303	. 320	. 702
Q5e: Gov. and economy: Support declining industries to protect jobs	33.13	28.525	. 471	. 680
Q5f: Gov. and economy: Red. working week for more jobs	32.96	31.615	. 234	. 715
Q6a: Government should spend money: Environment	33.57	32.159	. 318	. 702
Q6b: Government should spend money: Health	34.00	31.877	. 358	. 698
Q6c: Government should spend money: Law enforcement	33.29	31.993	. 307	. 703
Q6d: Government should spend money: Education	33.90	32.337	. 301	. 704
Q6e: Government should spend money: Defence	32.64	32.919	. 207	. 714
Q6f: Government should spend money: Retirement	33.82	31.076	. 415	. 691
Q6g: Government should spend money: Unempl. benefits	32.81	31.101	. 358	. 697
Q6h: Government should spend money: Culture and arts	33.03	32.263	. 314	. 702
Q7a: Gov. responsibility: Provide job for everyone	34.19	31.638	. 321	. 701

One little problem....

- If we are comparing several groups, like men and women or Sweden and France, then we could compare the means and say that French score higher than Swedes or Women score higher than men
- Because I was lazy in making this presentation, I did not recode the questions 7 a and 7 b , but since they are on a scale of $1-4$, while the others are on a scale of $1-5$, I really should have transformed them by multiply the scores by 1.25 , so they too would have the same scale.
There would still be a problem, because even though they would all have the same maximum value, they would not have the same minimum.
The best would be to rescale ALL the variables used, so that instead of 1-5 they would be $0,2,3,4$
- Then rescale the 1-4 scale so the scale would be $0,1.33,2.67,4.0$

The scale scores

Once we made these transformations so that all questions have a scale of 0-4
AND they all go in the same direction, so that 4 for EVERY question either means support for government intervention or opposition to government intervention
THEN we can compare the average scores among groups
There are 14 questions in our scale, if all questions are from $0-4$, then the scale would be from 0-56

Making the Scale in SPSS: Go back to compute variable

Fher		Tiumbrer	Arevz	Crover	Utintil	Addres	Mrabu		
B 4							Q		
	Pama						Lextell		Vahuer
1	Vi	 Huthentic Petade. Whap timing-					Study Fhum (2700, 2ABtuc etin of the d 110 . Fint ce bonderat in Hene viryisumpl pe di Aurait		
2	voriman								
3	12								
4	17								
5	Wa	Hare Coneri.					obeylyertt oby thela		
6	*	Date ene Time Murnt.,							
7	15	Chate Time Selmin					- Putic		Detriesy
a	, 6	Predaco Masing Yiuth... Meriow limber genermpin					2 Proldit		Petntery
9	7						= Pustor		Depritere al
19	- 0	minferungt muturtic					- $\mathrm{Re}+\mathrm{mb}$		Detritely al
11	v9	Pumars	1	0		95	Stunt		Detrity
12	V10	Pumans	1	0		04	Morse i		Cumbtr int
13	W11	Thimate	1	0		95a	- Gow ar		Strmipy in

Make a new variable by adding the items together than comprise the Alpha score (that is minus Q5a and Q5c)

Your alpha assignment

Choose the variables that you will want to include in your scale.

- Make sure that you have recoded variables so that each question has the same scale (like 0-4)
- Make sure that each question is also scaled in the same direction. You should have already done this during previous computer labs.
- Run the alpha analysis
- Eliminate variables if you can improve the score
- Create a scale

Compare the means for two groups, like for Czechs and Swedes or for men and women. You can do this by making a filter for each group (like Czech and Swedes).
Then apply the filter for one group (Czech) and go to ANALYZE>DESCRIPTIVE STATISTICS $->$ DESCRIPTIVES

Like this....

Click on OK

You can see the average score now (the mean)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
GOVREG	993	19.00	63.00	36.0806	5.98280
Valid N (listwise)	993				

After checking the alpha scale you can run multiple regressions on it

Factor Analysis

Fi isepandestovestuv IDopasht I spss Data Editor

Fin Edt	Wetw Dats	Trassform
E \#	[4] [iti	[8 m
	Plame	Type
1	N1	Pumenc
2	vernion	Thumper
3	12	Pumenc
4	W3	1urmonc
5	-30	Thurnvis
6	-4	Numeric
7	15	Murnetic
B	16	Pumpric
9	107	Pumenc
10	8	1 Lumporic
11	+ 9	Mumenc
12	$\checkmark 10$	Thimenc
13	v11	Wurtenc
14	V12	Aumnnic
15	-13	1ament
16	V14	Thumenc
17	V15	Whimenc

Putia crohe utita	Aderent Wridoy	
Retroty		
Desorpters Statates		
Toblet	Linbol	Valuea
Comporemeana	Za Study Pum [4700 ZA Btud 7	
General urest Mode	Fdition of the d [1.0. Firat GE	
Generslated Lneer Modely	Respondent io mone	
Prowed mod	Countryisampl (360. Au Auat it	
Represom	Eo cude of co. po Au-Ammira th	
Loplneer	P1. Obuy lavi (1) Obey the les	
cisury	Diar Public pi [1, Definitely aide.	
Eftanmemern	Pratimin	
5 Fer	Conerpostene Hunvil...	
Pionperanticictests	Cotimel Scaing	
True Serimither	D36 Ruvolutio [1. Definitely as 8	
Srywe	D4: Worne typ25a Goy and	[4. Conveition a
Marem vilue trivers		(1. Strongly in
conplex Saroles	DSb Gor and (1)	[1. Strongly in
Qualtr contral	P5c Gw and	[1. Strengly in
Bec Curum-	D5d Gow and DEe. Gow and	[1) Stromply in
10		(1. Strangly in

Choose the same variables that you chose for the first Cronbach Alpha calculation

Choose the following in DESCRIPTIVES

Go to EXTRACTION and click on SCREE PLOT

Then for ROTATION choose VARIMAX

Go to OPTIONS and choose SORTED BY SIZE and under SUPRESS ABOLUTE VALUES change it to . 30

Click on OK and you get your first result

First let's look at the scree plot

Scree Plot

Analyzing the Scree plot

4 have values above 1
But there seems to be a big dip after two components, which indicates that perhaps there are two dimensions

Let's Look at the explained variance: the first two components explain the most, although the next three do have Eigen values slightly more than 1. However, the third component does have a relatively high eigenvalue. Whether or not to keep the third factor depends partially on whether it makes theoretical sense.

Total Variance Explained									
Component	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%
1	3.612	22.574	22.574	3.612	22.574	22.574	2.289	14.307	14.307
2	1.483	9.267	31.842	1.483	9.267	31.842	1.965	12.283	26.590
3	1.374	8.587	40.429	1.374	8.587	40.429	1.581	9.879	36.470
4	1.100	6.872	47.301	1.100	6.872	47.301	1.523	9.516	45.986
5	1.045	6.528	53.830	1.045	6.528	53.830	1.255	7.844	53.830
6	. 943	5.892	59.721						
7	. 892	5.574	65.296						
8	. 808	5.052	70.348						
9	. 756	4.722	75.070						
10	. 653	4.083	79.153						
11	. 624	3.898	83.050						
12	. 613	3.829	86.879						
13	. 590	3.686	90.565						
14	. 547	3.422	93.987						
15	. 492	3.072	97.059						
16	. 471	2.941	100.000						

Extraction Method: Principal Component Analysis.

In the unrotated matrix many items are highly correlated to several factors

Component Matrix ${ }^{\text {a }}$					
	Component				
	1	2	3	4	5
Q6f: Government should spend money: Retirement	. 645				
Q6g: Government should spend money: Unempl. benefits	. 631				. 311
Q6b: Government should spend money: Health	. 610				
Q6d: Government should spend money: Education	. 581	-. 335			
Q5e: Gov. and economy: Support declining industries to protect jobs	. 545	. 442			
Q7a: Gov. responsibility: Provide job for everyone	. 536	. 389			
Q6h: Government should spend money: Culture and arts	. 531			-. 364	. 388
Q5b: Gov. and economy: Financing projects for new jobs	. 530	. 318			
Q7b: Gov. responsibility: Control prices	. 475	. 351			
Q6c: Government should spend money: Law enforcement	. 410	-. 389		. 352	
Q5f: Gov. and economy: Red. working week for more jobs	. 393	. 303			. 351
Q5c: Gov. and economy: Less gov. reg. of business			. 662		. 336
Q5d: Gov. and economy: Support industry to develop new products	. 353		. 524		-. 359
Q5a: Gov. and economy: Cuts in gov. spending			. 510		. 410
Q6a: Government should spend money: Environment	. 386	-. 404		-. 533	
Q6e: Government should spend money: Defence	. 344	-. 307		. 465	

Extraction Method: Principal Component Analysis.
a. 5 components extracted.

But in the rotated matrix there are only a few overlaps

Rotated Component Matrix					
	Component				
	1	2	3	4	5
Q7a: Gov. responsibility: Provide job for everyone	. 714				
Q6g: Government should spend money: Unempl. benefits	. 608		. 326		
Q7b: Gov. responsibility: Control prices	. 589				
Q5e: Gov. and economy: Support declining industries to protect jobs	. 562			423	
Q5f: Gov. and economy: Red. working week for more jobs	. 558				
Q6c: Government should spend money: Law enforcement		. 728			
Q6e: Government should spend money: Defence		. 637			
Q6b: Government should spend money: Health		. 569			
Q6f: Government should spend money: Retirement	. 453	. 541			
Q6d: Government should spend money: Education		. 500	. 395		
Q6a: Government should spend money: Environment			. 759		
Q6h: Government should spend money: Culture and arts			. 744		
Q5d: Gov. and economy: Support industry to develop new products				. 785	
Q5b: Gov. and economy: Financing projects for new jobs	. 314			. 675	
Q5c: Gov. and economy: Less gov. reg. of business					. 758
Q5a: Gov. and economy: Cuts in gov. spending					. 723
Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. a. Rotation converged in 8 iterations.					

Second Attempt

I will remove the last 4 items, Q5d, Q5b, Q5c and Q5a, because they belong to components 4 and 5
Please note: I am only making an example.
If I were to do this seriously, I would first have to recode all the questions, so that they have the same scale (0-4 or 1-5) AND they must go in the same direction.

- It is very possible that these last 4 items really do fit in well, but they are coded in opposite directions - in some cases 5 denotes support for government intervention and in some cases it denotes opposition to intervention.

After removing these items, press OK

Rotated Component Matrix

Now there are only 3 factors. We see after rotation that some items are highly correlates with several components, so they should be eliminated.
If Q6g and Q6e are eliminated, then we see that factor 3 makes sense: the culture and environment deal with quality of life rather than economic issues.
Now we can eliminate as well Q6f because it is also highly correlated with two factors

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
a. Rotation converged in 3 iterations.

New results: Q6b is highly related to two components, so should be eliminated

Extraction Method: Principal Component Analysis
Rotation Method: Varimax with Kaiser Normalization.
a. Rotation converged in 4 iterations.

Now the rotated matrix looks very nice!

Rotated Component Matrix

	Component		
	1		2
Q7a: Gov. responsibility: Provide job for everyone	.733		
Q7b: Gov. responsibility: Control prices Q5e: Gov. and economy: Support declining industries to protect jobs	.697		
Q5f: Gov. and economy: Red. working week for more jobs	.686		
Q6a: Government should spend money: Environment	.535		
Q6h: Government should spend money: Culture and arts		.831	
Q6c: Government should spend money: Law enforcement		.762	
Q6e: Government should spend money: Defence			

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
a. Rotation converged in 5 iterations.

Each factor explains a lot of the variance (at least 16\%)

Total Variance Explained

	Initial Eigenvalues				Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
Component	Total	\% of Variance	Cumulative $\%$	Total	\% of Variance	Cumulative $\%$	Total	$\%$ of Variance	Cumulative $\%$	
1	2.136	26.705	26.705	2.136	26.705	26.705	1.823	22.791	22.791	
2	1.324	16.546	43.251	1.324	16.546	43.251	1.364	17.055	39.846	
3	1.041	13.014	56.265	1.041	13.014	56.265	1.314	16.419	56.265	
4	.905	11.316	67.581							
5	.763	9.537	77.118							
6	.675	8.439	85.558							
7	.595	7.437	92.995							
8	.560	7.005	100.000							

Extraction Method: Principal Component Analysis.

Now we can look at the test statistics

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.	.661	
Bartlett's Test of	Approx. Chi-Square	31305.627
Sphericity	df	28
	Sig.	.000

The Kaiser-Olkin measure is over.6, so it is acceptable
And the Bartlett's Test is also significant

- So the model seems to be OK.

Now we must interpret these factors and give them names

Factor 1 seems to do with the government intervening in the economy.

Factor 2 seems to deal with government responsibility for the quality of life

- Factor 3 has to do with security.

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
a. Rotation converged in 5 iterations.

Now there are two possibilities

A: One can create three different scales by using the COMPUTE VARIABLE function as in creating the Cronbach Alpha scale

- Or one can let SPSS create a factor value for each factor.
- I favor the first method.

To let SPSS create a factor value, go back to the function for factor analysis and click on SCORES...
Then click on the save as variables box and press continue and run factor analysis one more time.

Creating factor scores

Now you can see that 3 new factors were created. You can rename them so that the factors have more meaning, such as GOVECINT

Finally you can conduct multivariate regressions on each factor

Try to create a model for each 3 factor.
Choose again some independent variables that you think might be able to explain attitudes toward these factors, such as AGE, SEX, EDUCATION, INCOME, etc.
Examine whether the same independent variables are significant for each factor.
If some variables are more important for explaining one factor than another, think about why this could be the case.

THEORY!

Please remember that I have presented everything inductively now to show you how statistics work. You should actually begin with theory. From the beginning you should have hypotheses based on previous studies as to which variables should be able to predict your outcomes.
Also you should make use of theory to choose what questions you will put in your original factor analysis. You should have a hypothesis about how many factors there will be.
Even if your hypothesis is proven wrong, you should think theoretically about how to name the factors that you end up with.

