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a b s t r a c t

Stevens’ theory of admissible statistics [Stevens, S. S. (1946). On the theory of scales of measurement.
Science, 103, 677680] states that measurement levels should guide the choice of statistical test, such
that the truth value of statements based on a statistical analysis remains invariant under admissible
transformations of the data. Lord [Lord, F. M. (1953). On the statistical treatment of football numbers.
American Psychologist, 8, 750–751] challenged this theory. In a thought experiment, a parametric test
is performed on football numbers (identifying players: a nominal representation) to decide whether a
sample from themachine issuing these numbers should be considered non-random. This is an apparently
illegal test, since its outcomes are not invariant under admissible transformations for the nominal
measurement level. Nevertheless, it results in a sensible conclusion: the number-issuing machine was
tampered with. In the ensuing measurement-statistics debate Lord’s contribution has been influential,
but has also led to much confusion. The present aim is to show that the thought experiment contains a
serious flaw. First it is shown that the implicit assumption that the numbers are nominal is false. This
disqualifies Lord’s argument as a valid counterexample to Stevens’ dictum. Second, it is argued that the
football numbers do not represent just the nominal property of non-identity of the players; they also
represent the amount of bias in the machine. It is a question about this property – not a property that
relates to the identity of the football players – that the statistical test is concerned with. Therefore, only
this property is relevant to Lord’s argument. We argue that the level of bias in the machine, indicated by
the populationmean, conforms to a bisymmetric structure, whichmeans that it lies on an interval scale. In
this light, Lord’s thought experiment – interpreted by many as a problematic counterexample to Stevens’
theory of admissible statistics – conforms perfectly to Stevens’ dictum.

© 2009 Elsevier Inc. All rights reserved.
1. Admissible statistics and the measurement-statistics debate

In typical introductory statistics classes, psychology students
are taught that the level of measurement should be taken into
account when choosing a statistical test. For example, a t test
should not be performed on data that are of a nominal or
ordinal level. Exactly why this rule should be followed is rarely
explained and not widely known among psychologists; therefore
we reiterate the rationale for it. Supposemathematical proficiency
of children was measured on an ordinal level. In such a case, one is
justified in transforming the data by taking the square for example,
because the ordinal property in the data, the original ordering of
the children, is preserved. For an ordinally measured property,
all monotonically increasing, or order-preserving transformations
of the data are completely equivalent in their representational
capacities, i.e., they all represent the measured property equally
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well—in fact, in measurement theory this is the defining feature of
scale levels (Krantz, Luce, Suppes, & Tversky, 1971).
With respect to the results of parametric statistical analyses

that may be executed on the differently transformed data,
however, no such equivalence exists. For instance, it is possible
that when scores on the aforementionedmathematical proficiency
test are analyzed for sex differences with a t test, different
results are obtained for the original and transformed scores. Boys
may significantly outperform girls when analyzing the original
scores, while boys and girls may not differ significantly in their
performance when analyzing the transformed scores (or vice
versa; seeHand (2004), for some interesting examples). Since there
is no sense in which the original scores are preferable or superior
to the transformed, squared scores, this means that research
findings and conclusions depend on arbitrary, and usually implicit,
scaling decisions on part of the researcher. This hinders scientific
progress because it obscures a factor, namely the choice of scaling,
that is influential in determining conclusions based on empirical
research. It is important, therefore, to have a clear understanding
of how level of measurement can affect our conclusions.
Stevens (1946, 1951) introduced the concept of measurement

levels and ‘rules’ for choosing a statistical test according to
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the dependent variable’s measurement level in order to prevent
arbitrary scaling decisions from affecting research outcomes. His
theory has become known as the theory of admissible statistics
(e.g. Robinson (1965)). The basic idea is that one should only
perform statistical tests that yield conclusions that are invariant
under all so-called ‘admissible transformations’ (admissible in
the purely technical and non-pejorative sense of having the
same representational capacities) of the data. These ‘admissible’
transformations are one-to-one transformations for nominal
data, order-preserving transformations for ordinal data, positive
linear transformations for interval data and transformations that
multiply with a positive constant for ratio data (see Krantz et al.
(1971) and Suppes and Zinnes (1963)). Using ‘admissible’ statistics
ensures that conclusions about the measured property are not
dependent on numerical values arbitrarily chosen to encode the
data. Thus, in respecting the measurement level, one removes a
threat to the validity of the conclusions, which is a good thing.
On first sight, one may expect this simple fact to be universally

appreciated as a powerful insight on the relation between
measurement and statistics. Therefore, it may be considered
surprising that the concept was not uniformly welcomed by
statisticians, some of whom vehemently rejected the suggestion
that measurement levels could have any bearing on data analysis.
Several arguments have been adduced in support of this view.
Some argue that the level of measurement is often very hard
to determine—Velleman and Wilkinson (1993) maintain that, in
real situations, data do not always fall neatly into the scale levels
describes by Stevens (1946), which is problematic when applying
his ‘rules’. Others have argued that inadmissible statistics can
in theory be arbitrary, but that in fact they rarely are Baker,
Hardyck, and Petrinovich (1966). That is, inadmissible parametric
statistics tend to agree with their more cumbersome admissible
counterparts, so that real harm is rarely done by executing strictly
inappropriate statistical analyses.
These arguments against the idea of admissible statistics are

pragmatic in character (i.e., determining the level of measurement
is too hard, parametric analyses are easier to use, etc.). Hence
it may seem as if substantial agreement exists among scholars
regarding the general validity of Stevens’ ideas, even if adhering to
this idea is not generally advisable. This is not the case, however.
Some are of the opinion that there is a principled problem with
Stevens’ view and think that there exists no connection between
the levels of measurement and the validity of results attained
through statistical analyses at all. Statistical tests simply help the
researcher to decide whether their data, in the form of a set of
numbers, is likely to be a random sample drawn from a larger
population of numbers having a specific distribution. What the
numbers measure is irrelevant to this particular decision, and
hence issues concerning the level of measurement are irrelevant
as well (Burke, 1953; Gaito, 1980).
One of themost important sources of support for this argument

was provided by Lord (1953). He is uniformly cited among
opponents of the theory of admissible statistics (Anderson, 1961;
Baker et al., 1966; Gaito, 1960, 1980; Harwell & Gatti, 2002;
Kampen & Swyngedouw, 2000; Pell, 2005; Velleman & Wilkinson,
1993). Lord introduces a thought experiment in which the use of
an ‘inadmissible’ parametric test on nominal numbers leads to a
legitimate, useful and seemingly non-arbitrary conclusion. Lord
thus appears to present a clear counterexample to Stevens’ theory
of admissible statistics. In doing so, he lends support to the view
that levels of measurement should not influence one’s choice of
statistical analysis. Lord’s argument sparked what we now call
the ‘measurement-statistics debate’, and must be considered the
most influential – and certainly the most entertaining – critique of
the theory of admissible statistics to date. As such, the two-page
letter about a nutty statistics professor has become something of a
locus classicus in the literature on psychological measurement and
statistics.
Notwithstanding its rhetoric force, Lord’s contribution was

severely criticized. Some responded by clarifying the basic
principles of Stevens theory, giving examples where computations
on nominal data lead to absurd conclusions (Behan & Behan,
1954; Bennet, 1954; Stine, 1989). Others pointed out that although
computations can be performed on a nominal variable, the results
have no reference to the empirical world and so they are irrelevant
(Townsend & Ashby, 1984). In our view, however, most of the
published criticisms have not gotten to the heart of the matter,
in that they fail to explain why the conclusion in Lord’s thought
experiment is useful, while at the same time the statistical test is
inadmissible.
Our goal is to unravel this problem, and to show that Lord’s

thought experiment does not provide a valid counterexample to
Stevens’ theory of admissible statistics. To do this we start by
revisiting Lord’s thought experiment in detail. After analyzing an
important, but implicit assumption, it is argued that the validity of
the thought experiment hinges on the question of what property
the numbers represent in relation to the statistical question that is
asked. We then show that in relation to this statistical question,
the numbers clearly do not represent a nominal property. This
conclusion is enough to disqualify Lord’s thought experiment as
a valid counterexample to Stevens’ theory. However, we go on
to show that it is possible to identify a property that actually is
relevant to the statistical question. The structure of this property
and its measurement level is explored. It is argued that the
data can represent this newly identified property on an interval
level, which provides a genuinely new outlook on Lord’s thought
experiment. For in this new light, Lord’s thought experiment is
not a counterexample, but instead a perfect illustration of Stevens’
theory of admissible statistics. We then address related arguments
made by critics of the theory of admissible statistics, and argue that
statistics andmeasurement cannot be viewed separatelywhen one
wants tomakemeaningful inferences about the properties that one
intends to measure. Finally we discuss how researchers can deal
with the implications of our discussion of Lord and incorporate
decisions about measurement levels in their research.

1.1. Lord’s statistical treatment of football numbers

Lord (1953) describes a university professor who loves to
compute means and standard deviations of his students’ grades,
which measure proficiency on an ordinal level only. He knows this
is against Stevens’ rules and he feels so guilty that he goes into
early retirement. Instead of a gold watch, the university gives him
an enormous amount (a hundred quadrillion) of two-digit cloth
numbers and a vending machine. He can sell these numbers to
the football teams, so they can use the numbers to distinguish
players on the field. In somewhat oblique terms, one could say that
the numbers ‘measure’ the uniqueness of the players, obviously
on a nominal level. After making an inventory of the numbers,
the professor shuffles them, puts them in the vending machine,
and sells a large pile of numbers (1600 to be exact), first to the
sophomore team and then to the freshman team. After a few days
the freshmen come back with a complaint. The sophomores have
been making fun of them for having received lower numbers. The
professor now faces a problem: The freshmen receiving lower
numbers could be either a coincidence or the result of foul play.
The professor decides to ask a statistician for help. The statistician
computes means and standard deviations for the population and
the freshmen sample, computes a critical ratio test statistic, which
is essentially a one group t test comparing the sample mean to
the population mean using the population standard deviation. He
then applies Chebyshev’s inequality (since the population is not
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normally distributed) and finds a very small p value. The professor
of course protests heavily that such a test is inadmissible for a
variable measured on a nominal level. The statistician responds by
challenging him to draw new samples from the vending machine
and to see howmany times he finds amean equal to, or lower than
the freshman mean. The professor does so many times and finds
only two such values. He is now satisfied that the machine was
tampered with and provides the freshmen with new numbers. He
is so heartened by this meaningful use of a parametric test on a
variable measured on a nominal level, that he decides to come out
of retirement.

1.2. A closer look at the reasoning implicit in Lord’s thought
experiment

The covertmoral in this parable seems to be that Stevens’ theory
of admissible statistics is incorrect, because the argument provides
a counterexamplewhere an inadmissible test leads to ameaningful
result. But does this conclusion necessarily follow from Lord’s
thought experiment? A more structured approach may clarify this
issue. The implicit argument Lord makes can be represented by a
logical statement about two propositions:

(P1) performing interval manipulations on data that represent
measurement on the nominal level results in a meaningless
conclusion (i.e. Stevens’ theory of admissible statistics is
valid);

(P2) performing a parametric test on the football numbers results
in a meaningless conclusion.

The logical statement is: if (P1), then (P2); if Stevens’ theory
of admissible statistics is valid, then what Lord’s statistician
does, results in a meaningless conclusion. But the results are not
meaningless, for they lead to a useful conclusion; based upon the
results of the test, it is concluded that the machine was tampered
with and decided that the freshmen should receive new numbers.
So, (P2) is false, which, by modus tollens, entails that (P1) is false;
since performing a parametric test in this situation is sensible,
performing inadmissible statistical tests on data must be justified,
at least in some instances. Lord’s parable thus leads the reader to
the conclusion that levels of measurement are not always relevant
to the choice of statistics.
The above representation, however, does not paint a full picture

of Lord’s thought experiment. There is an implicit assumption
concerning the measurement level of the football numbers that is
not included as a proposition. Lord’s parable is better represented
by making this assumption explicit:

(P1a) performing interval manipulations on data that represent
measurement on the nominal level results in a meaningless
conclusion (i.e. Stevens’ theory of admissible statistics is
valid);

(P1b) the football numbers measure a property on the nominal
level;

(P2) performing a parametric test on the football numbers results
in a meaningless conclusion.

The logical statement now becomes: if (P1a) and (P1b), then
(P2); if Stevens’ theory of admissible statistics is valid and the
football numbers measure a property on the nominal level, then
what the statistician does is nonsensical. It now becomes clear
that the reason that (P2) does not hold could lie elsewhere. If
(P2) is false, either (P1a), or (P1b), or both, must be false. (P1b) is
not questioned in Lord’s parable; the football numbers obviously
‘measure’ a property on the nominal level. But is it really so
obvious that the relevant property in Lord’s thought experiment is
a property on a nominal scale? If it can be shown that (P1b) is false,
then (P1a), and with it the theory of admissible statistics, does not
have to be rejected.
2. What do the football numbers measure?

The professor in Lord’s thought experiment repeatedly empha-
sizes that the numbers are nominal representations of the unique-
ness of the players. Now, the numbers can certainly be used to
distinguish players on the field; but this is not the property for
which the statistician uses the numbers. Instead, the professor asks
a question anddraws a conclusion about themachine—namely that
it was unlikely to be in its original state (randomly shuffled by the
professor) when the freshman numbers were issued. Thus, while
an informative inference to the state of the world has been made,
this inference does not concern the uniqueness of the football play-
ers at all. The level of measurement that the numbers have with
respect to these players is completely irrelevant to the thought ex-
periment. Since the players are where the numbers get their sta-
tus as nominal measurements from, a further conclusion must be
drawn: whether a nominal level of measurement plays any role
at all in the argument is as yet unsubstantiated. For this reason,
premise (P1a) cannot figure in the argument as described by Lord.1
This observation puts us back at square one, for the basic

premise that should support Lord’s logical construction – and the
many papers that have used it to substantiate arguments against
the theory of admissible statistics – is left in doubt. The relevance
of Lord’s argument to Stevens’ theory is no longer obvious. The
property that fosters measurement level claims (uniqueness of
players) and the property that the statistical conclusion refers
to (state of the machine) should be one and the same. This
is plainly not the case in Lord’s parable. We could stop our
treatment of Lord’s parable here, since this conclusion alone is
enough to disqualify the thought experiment as a counterexample
to Stevens’ dictum. However, the intriguing question why the
conclusion based on the parametric test seems so sensible remains
unanswered. Perhaps Lord’s story about the nutty professor does
have some relevance to Stevens’ theory, but in a way different
from how it is generally viewed. To evaluate such relevance –
if there is any – we need to reconsider the basic question what
the football numbers measure and, especially, what the associated
level of measurement may be.2

3. Measuring machines

Lord’s statistician uses the statistical results to make an
inference about the state of the vending machine, and decides that
the freshman mean did not come from the machine in its original
state. Thus, Lord’s inference concerns the state of the machine
relative to another (possible) state of the machine. His reference
class is not a set of football players, but a set of possible states of
the machine (e.g., fair and biased states). Insofar as measurement
is taking place in the thought experiment, therefore, it relates
to the assignment of a label to the machine. And in this regard,

1 We are not the first tho point out that irrelevance of the football players (Behan
&Behan, 1954; Bennet, 1954). Earlier criticsmaintain that the numbers donot relate
to any empirical property; Adams, Fagot and Robinson actually state (Adams, Fagot,
& Robinson, 1965, p. 125): ‘‘In other words, the hypothesis [. . .] has nothing to
do with [. . .] measurable properties of objects’’. Unfortunately, these critics fail to
explicate the difference between the nominal property and the property that the
reference is about. They also fail to note that the numbers may to another property
that is relevant, namely the degree to which the machine is biased.
2 The reader might be tempted to think that since the statistician performs a
test against a fixed population mean, the results will not be invariant under any
transformation, so that he actually assumes an absolute scale. This line of reasoning
is invalid however. Establishing a measurement level implies the invariance of
statistical tests with respect to the class of admissible transformations, but the
reverse is not necessarily true: the invariance of statistical tests with respect to a
class of admissible transformations does not imply a measurement level.
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Fig. 1. Graphical representation of measurement on the nominal level of the uniqueness of the football players (left panel) and measurement on the interval level of the
bias in n vending machines (right panel).
Lord’s example is in perfect accordance with Steven’s theory of
admissible statistics.
To see this, it is necessary to first consider how the machine

came to be in its altered condition. If we have a better idea what
we mean by the ‘state of the machine’, we may develop a better
insight into the nature of the inference being made. Lord gives us
a clue how the state of the machine could have been altered by
hinting that the professor suspects foul play by the sophomores.
Now, the sophomores could have tampered with the machine in
severalways. For example, the vendingmachine could be imagined
as an enormous stacked pile of numbers. The numbers are issued
one by one from the top of the stack. The sophomores could have
tampered with the vending machine by replacing or removing
specific numbers at the top of the stack. This way they could
ensure that the freshmen received an inordinate amount of even
numbers, or numbers ranging from 20 to 30, or prime numbers;
the possibilities are endless.
If we do not make any assumptions about the way in which

themachinewas tamperedwith, wemay reformulate the question
posed to the statistician into the following research hypothesis:
is the machine tampered with or not? This ‘state of tampering’
can be conceived of as a property of the machine that can be
represented nominally, with two distinct categories: ‘tampered’
with and ‘not tampered with’. However, it is clear that this way
of thinking about Lord’s method is in poor accordance with the
statistical procedure utilized. That is, if the question were merely
‘was the machine tampered with or not?’, then the test that the
statistician performs is not a very good one. It is possible, for
instance, that the sophomores removed all the numbers from 01
to 30 and from 70 to 99. The machine would, in this case, clearly
be tampered with, but the expected sample mean would not be
different from the populationmean in the long run. The tampering
would not show up in a test were the mean is used to detect a
deviation in the sample from the population; the sensitivity of the
assignment procedure would be very low.
Now consider the fact that Lord provided the statistician with

a good argument to use the mean to discover any tampering.
The freshmen do not just complain that their sample is different
from the expected population, but that the numbers are lower.
The freshmen’s distaste for low numbers does notmagically imbue
the numbers with a higher level of measurement, of course, but it
does give us more information on how the machine was tampered
with. This enables us to refine our understanding of the property of
the machine that we are interested in. Knowing that low numbers
would upset the freshmen could have prompted the sophomores
to remove high numbers from the top of the stack of numbers in
the machine. If we focus on this specific type of tampering we can
say not only whether the machine was tampered with or not, we
can now also say whether the machine was tampered with to a
greater or lesser extent. Bias can be introduced into the machine
(still consisting of a stack of shuffled numbers) by replacing high
numbers with low numbers (or vice versa), resulting in a lower
(or higher) population mean. The tampering method suspected
by Lord’s professor and tested in the statistical analysis is clearly
one that introduces a bias toward lower numbers. The sophomores
could have been very subtle and removed only a fewhigh numbers,
or they could have been extremely overt in their mischief and
removed all the numbers larger than 10. Themore consistently this
replacement is performed, themore bias will be present.
More formally, the amount of bias can be thought of as a

variable by imagining a population of vending machines with
varying amounts of bias. This idea is illustrated in the right panel in
Fig. 1 by machine 1 to n, which is a subset of the total conceivable
population of machines, in which every amount of bias possible
is present. The amount of bias in the machine can be represented
pragmatically by taking the population mean of the numbers as
an indicator of the ordering of locations of the distributions in
question, or by using a nonparametric concept such as stochastic
ordering for this purpose. We may then compare the mean of the
extracted numbers to the population mean of a fair machine. If
there is no bias, the expected value of the samplemean is expected
to be equal to this population mean.
To compare this point of view to Lord’s sketch of the situation,

consider the left panel in Fig. 1. The property of uniqueness or non-
identity of the players is denoted by the relational symbol 6≈. This
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property is represented by using different numbers to represent
unique players, denoted in the figure by the symbol 6=. In the right
panel of Fig. 1, bias in a machine is represented by a mean, in
the same way a football player’s uniqueness is represented by a
single football number. Clearly, the players can only be judged to be
different from one another. Equally clearly, however, themachines
are notmerely different fromone another; they can also be ordered
according to the amount of bias they possess. Normally, relations
between objects on the empirical level are described in qualitative
terms and then the numbers come in to represent these relations
on the numerical level. It might seem a bit strange that in our
case the objects on the empirical level already consist of numbers,
but this is the nature of the vending machine as constructed
by Lord. That is, the numbers in the machine are numbers, not
representations, and therefore relations between these numbers
can be used (in this case by the sophomores) to make up empirical
relational systems that are subsequently represented by a separate
numerical relational system.
It is clear that such an empirical relational system can be

constructed, and that Lord’s measurement problem involves at
least an ordinal structure at the level of the machine. However, it
appears that more structure than mere order can be established
in the property of ‘bias’; one suspects, in fact, that this structure
is quantitative in the sense that it should be meaningful to say
that the difference in bias between two machines is equal to
the difference in bias between two other machines. It turns out
that it is possible to show that the bias in the machines has
quantitative structure and that the number that the statistician
uses to represent it (i.e., the mean) is actually an interval measure
of this structure. To this purpose, we need to show that additive
structure is present in our bias property and that this structure
is represented uniquely up to linear transformations by the
population mean.
To show that the machines’ level of bias towards low numbers

possesses quantitative structure, it suffices to show that an
operation exists that allows us to concatenate machines, and
that the resulting concatenation has the right properties (Krantz
et al., 1971). The operation we propose very loosely follows
the analogy of concatenating temperatures in volumes of liquid.
Two equal volumes of liquid, each of a particular temperature,
can be added to each other. The resulting temperature is the
mean of the separate temperatures. A similar operation on the
machines can be conceptualized; the bias in two machines could
be ‘‘added’’ by concatenating the numbers drawn from each
machine into a new randomly shuffled pile, which functions as the
concatenation of the original machines. This operation allows for
the establishment of a relation that satisfies the requirements for
measurement on an interval level. The operation is based on the
representational measurement theorems describing bisymmetric
structures by Krantz et al. (1971, p. 294), which was developed
for mean structures. A formal treatment of the bisymmetric
structure and how it applies to Lord’s thought experiment
is provided in the Appendix. That the operation results in
measurement on an interval level is intuitively clear. Any
non-linear transformation would stretch or shrink the scale
somewhere and make comparison of differences in bias of
machines impossible. Any linear transformation however, would
represent the bias towards low numbers in thesemachines equally
well.
We have already shown that Lord’s parable does not provide a

counterexample to Stevens’ dictum, because the assumption that
the numbers are on a nominal level is invalid. No further analysis
of Lord’s thought experiment need be made to make this point.
However, when we do take a closer look at its structure, it is clear
that there exists at least one conceptualization of Lord’s thought
experiment in which the statistician is operating in accordance
with Stevens’ principles. Therefore, in addition we have now
shown that the procedure followed can actually be viewed as an
illustration of the theory of admissible statistics. Viewing Lord’s
thought experiment in this way also answers the questionwhy the
statistician’s conclusion seems so sensible. It is sensible because it
is about a relevant property of the machine and because it will be
invariant under linear transformations.

4. Conclusion

We have examined extensively why the test in Lord’s thought
experiment appears to be inadmissible, while at the same time it
leads to a scientifically useful and informative conclusion. In doing
so we found that Lord’s argument depends on the assumption that
the football numbers represent a property on the nominal level.
Not onlywas it shown that it is immaterial to the argument that the
numbers represent nominal uniqueness of the players, it was also
shown that another property can be identified, namely the level of
bias towards lownumbers that amachine exhibits. The numbers in
fact represent both the property of uniqueness (in relation to the
players) on a nominal level and the property of bias (in relation
to machines) on an interval level. What is important here is that
the property that corresponds to the statistical question must be
considered in determining the admissibility of a test. Because the
freshman complain about lownumbers andbecause the statistician
uses a test of the mean – sensitive to order and differences – we
conclude that Lord’s professor was actually interested in inferring
something about bias in the machine towards low numbers. This
property of bias was argued to have a structure that can be
measured on an interval scale by the population mean, thereby
transforming Lord’s counterexample into a perfect illustration of
Stevens’ theory of admissible statistics.
Our analysis relies on the assumption that a single set of

numbers may have multiple representational purposes. It is
interesting, in this respect, that some of Stevens’ critics have used
the fact that the same data can represent different properties
as an argument against Stevens’ theory of admissible statistics.
Velleman and Wilkinson (1993), for instance, argue that the
level of measurement is not a characteristic of the data. They
state that the same numbers can relate to different properties at
different measurement levels. Why this is an argument against
Stevens might (and should) seem oblique to the reader. It was
probably incited by Stevens’ procedure for determining the level
measurement by assessing the rule used to assign numbers. In
Stevens’ thinking, a property can be represented on an interval
level if participants can judge intervals on this property to be
equal. The rule used to assign numbers thereby determines
the measurement level for these particular numbers; once a
rule is chosen, the measurement level is set. However, even
in Stevens’ original papers, one can identify appeals to the
requirement that the rules used to assign numbers must yield
a numerical structure that is isomorphic to that of the property
measured, or to its behaviour under empirical operations (Stevens,
1946, p. 677). In a more sophisticated form, this requirement
became a cornerstone of representational measurement theory.
When one accepts that representational measurement theory
has replaced Stevens’ original, rather crude theory of levels of
measurement, Velleman and Wilkinson’s point becomes moot. In
representationalmeasurement theory, the level ofmeasurement is
determined jointly by the structure of the property of interest and
the relation that the numerical assignments bear to that structure.
According to this view, nothing prevents the same numbers from
representing different aspects of a property, or different properties
altogether.
Reflection on Lord’s thought experiment and Velleman and

Wilkinson’s critique shows that what our numbers and our
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conclusions refer to is not always as obvious as we may think.
The fact that a simple football number example still puzzles us
after more than fifty years shows that measurement issues in
relation to legitimate inference (a term coined by Michell (1986))
to a measured property deserve our attention. Researchers should
be aware of the inferential power of their statistical conclusions
or the lack thereof. Perhaps surprisingly, Lord would probably
have agreed. In a response to his critics, published a year after
the original article (Lord, 1954), he stated that when one wants
to draw an unambiguous conclusion about a property that at
best can be represented ordinally, independent of the scale that
was used, then nonparametric statistics should be employed. The
point Lord ostensibly intended to make is that Stevens’ rules
should not be applied mindlessly when choosing a statistical
test, but that each situation should be considered anew. In the
football numbers argument, Lord attempted to show that there are
situations conceivable where these rules do not have to be applied.
In all likelihood, however, Lord did not recognize that a relevant
property allowing interval level representation could be identified
in his example. Had Lord recognized that the football numbers
represent the property of bias in the machine on an interval
level, he probably would have agreed that his thought experiment
does not provide a compelling argument against Stevens’ ideas. It
remains to be seen if anyone is able to come up with an example
where a question about a nominally measured property, answered
with a parametric test, results in a truly sensible conclusion
about the same nominal property that the numbers refer to. This
challenge, of course, stands for all those who argue that statistics
andmeasurement are completely disconnected scientific domains.
Unfortunately, Lord’s (1953) publication has had an enormous

influence on the measurement statistics debate; nearly every
contributing author refers to this publication. All of Stevens’
opponents use Lord’s thought experiment and the infamous quote
‘the numbers don’t know where they came from’3 (Lord, 1953, p.
751) to illustrate their arguments, sometimes even using the
quote itself as an argument (Gaito, 1980, p. 565). In contrast, his
follow-up publication (Lord, 1954) has been cited only three times
(web of science citation search, at the time of publication). This
is unfortunate, because Lord’s intended point was right on the
money: Stevens’ rules should not be applied mindlessly.
Careful deliberation is necessary, because one can easily

lose sight of the correspondence between the property that
is actually being measured and the property about which one
wants to make an inference. When choosing a statistical test,
considerable thought should be given to the property about
which one wants to draw a conclusion, the way this property is
measured, and the level it is measured on. Of course, drawing
firm conclusions about the achieved measurement level is almost
always beyond our reach (see Roberts (1985), on how the theory
of meaningfulness can be applied in psychology). Demanding
that the level of measurement for psychological properties is
unequivocally determined before continuing with substantive
research would bring psychological inquiry to a grinding halt.
We certainly would not want to contribute to such a disastrous
development. We do maintain that researchers should at least
consider the property they want to infer something about and
commit to a level of measurement associated with this property,
preferably using plausible arguments. Most importantly, having
done this, researchers should consider whether the statistics that
they use allow them to draw conclusions that are independent of
the specific scale that was used. Of course, future research could

3 The quote should actually read: ‘‘The numbers don’t know that. . . . Since the
numbers don’t remember where they came from, they behave just the same way,
regardless.’’
always show that the assumptions about the level ofmeasurement
were wrong, but this way the research was at least performed in
a manner that is internally consistent. To paraphrase Lord: The
numbers don’t have to know where they came from; researchers
have to know where they came from, since they assigned them in
the first place.
In conclusion, we think that our analysis shows that Lord’s

parable is ill-suited to serve as an argument against the relevance
ofmeasurement level to the choice of statistical analysis. However,
it may be fruitfully reinterpreted as a warning to researchers that
measurement can be much more complicated than it seems, and
thatmeasurement levels in fact are important, even in cases where
they initially seem irrelevant. Perhaps this point would come
across better if we abandon Stevens’ interpretation of admissibility
of tests, along with the pejorative connotation of this terminology,
and encourage psychological researchers to consider the validity
of their inferences, not the admissibility of their statistical tests.
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Appendix

To show that the bias in Lord’s vending machines is a
quantitative property that allows for an interval representation,
we use the representational measurement theorems describing
bisymmetric structures by Krantz et al. (1971, p. 294), which were
developed for mean structures (means of pairs of numbers). We
use a slightly adapted version, which we denote as an Abelian
bisymmetric structure, for purposes of simplification.4
An Abelian idempotent bisymmetrical structure 〈A,<, ◦〉,

where A is a nonempty set of objects, < is a binary relation on
A and ◦ is a binary operation from A × A into A, exists iff, for all
a, b, b−, b−, c, d ∈ A, the five following axioms hold:

(1) 〈A,<〉 is a weak order.
(2) Commutativity: a ◦ b ∼ b ◦ a (where∼ stands for equality).
(3) Idempotency: a ◦ a ∼ a.
(4) Monotonicity: a < b iff a ◦ c < b ◦ c iff c ◦ a < c ◦ b.
(5) Bisymmetry: (a ◦ b) ◦ (c ◦ d) ∼ (a ◦ c) ◦ (b ◦ d).
(6) Restricted solvability: if b− ◦ c < a < b− ◦ c then there exists
b′ ∈ A such that b′ ◦ c ∼ a.

(7) Archimedean: every strictly bounded standard sequence is
finite where {ai|ai ∈ A, i ∈ N} is a standard sequence iff there
exist p, q ∈ A such that p � q and, for all i, i+ 1 ∈ N, ai ◦ p ∼
ai+1 ◦ q.

Bias towards low numbers in vending machines, introduced
by replacing high numbers with low numbers, is the property of
interest. This method of introducing bias is assumed here because
its formalization is the most straightforward. The imagined
procedure for ascertaining bias consists of drawing a number from
the machine with replacement an infinite number of times and
taking the mean of these draws. The objects in our empirical
relational structure (ERS) are the football number producing
machines; represented in a numerical relational structure (NRS)
by the set of positive real numbers R+. The ERS further consists
of the relation of weak ordering of the machines according
to their means, denoted by the symbol <, represented in the
NRS by the symbol ≥. The ERS also includes an empirical

4 The authors would like to thank professor Duncan Luce for his suggestion to
simplify the bisymmetric structure in this way.
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concatenation operation, denoted by the symbol ◦. This operation
can be conceptualized as follows: two machines a and b are
concatenated by alternately drawing a number from eachmachine
with replacement an infinite number of times. The concatenation
of bias is the mean of these draws, which equals .5 µa + .5 µb,
where µa and µb represent the population means of machines
a and b. Trivially, this matches taking the mean of the means of
the two machines, represented in the NRS by (a + b)/2, where
a and b represent the means of two machines. Concatenating
machines a and b into a◦b and then concatenating c is achieved by
drawing alternately from (a ◦ b) and c. The resulting bias equals
.25 µa + .25 µb + .5 µc . In the numerical relational structure
this corresponds to first taking the mean of the means of a and
b ((a + b)/2), then taking the mean of the resulting mean and
the mean of c: (((a + b)/2) + c)/2. It is important to note that
this method of concatenation ensures that the size of a machine
is irrelevant, which automatically entails that the operation is not
associative.
The axioms of weak order, commutativity, idempotency,

monotonicity and bisymmetry hold. The machines can be weakly
ordered according to their means, where a lower values obviously
indicates more bias; the ordering is transitive, connected and
reflexive. A structure is commutative when the order in which
two machines are added does not matter; this is clearly the
case. A structure is idempotent when the concatenation of two
objects, equal in terms of the relevant property, is equal to either
of the original objects. This holds: concatenating equally biased
machines results in an unchanged amount of bias. Monotonicity
holds also; if one machine has a lower mean than another,
then concatenating each with another machine will not affect
their ordering. Bisymmetry means that the order in which
concatenations are primarily and secondarily concatenated is
irrelevant. Concatenating a and b into ab, c and d into cd, and
the resulting concatenations ab and cd into abcd is equivalent
to concatenating a and c into ac , b and d into bd and ac and
bd into acbd. In the primary concatenations, the same number
of machines are concatenated, namely two. The elements a, b, c
and d all contribute equally in the primary and the secondary
concatenation. Therefore the combination of elements one chooses
to concatenate first is arbitrary and thus the requirement of
bisymmetry is met.
Axiom (6) and (7) are structural, or existential axioms.

Restricted solvability ensures that a bounded set of objects is
sufficiently dense. Normally, such an axiom could never be shown
to hold in a real setting with a finite set of objects. Fortunately,
in a thought experiment we can imagine an infinite number of
machines, limited only by the structure of the machines and
the tampering method we assumed. With a hundred quadrillion
numbers per vending machine, that Lord providentially provided,
we could construct a machine to be equal to any concatenation
of two other machines. The Archimedean axiom entails that no
element can be infinitely small or large. This axiomobviously holds
in our case, where a and b are always positive rational numbers.5
With all the requirements met, we may assume that the

structure of bias in the machine can be represented and is
additive. Now we want to know how different instantiations of
numerical representations relate to each other, i.e. what level
of measurement can be achieved. The uniqueness theorem for
bisymmetrical structures that states how different numerical

5 If the reader is uncomfortable with these structural axioms: Krantz et al. (1971,
p. 297) also provide a representation and uniqueness theorem for the finite, equally
spaced case. This version of the bisymmetric structure however, seems less intuitive
and therefore the more readily interpretable theorems for the general case were
used here.
representations of bias relate to each, proven by Krantz et al.
(1971, p. 295), has again been altered to fit our Abelian idempotent
bisymmetrical structure:
Given the Abelian idempotent bisymmetric structure 〈A,<, ◦〉,

there exist real numbers µ = ν = 1/2 and a real-valued function
ϕ on A, such that for a, b ∈ A:

I. a < b iff ϕ(a) ≥ ϕ(b).
II. ϕ(a ◦ b) = µϕ(a)+ νϕ(b).
III. If µ′, ν ′, ϕ′ is another representation fulfilling I and II, then
there exist constants α > 0 and β such that:

ϕ′ = αϕ + β,

µ′ = µ, ν ′ = ν.

Krantz et al. (1971, p 295) show that µ and ν equal 1/2 follows
directly from the fact that our concatenation operation is
idempotent and commutative. The function that translates one
numerical representation of the bisymmetric structure into
another is linear (ϕ′ = αϕ+ β). This means that vending machine
bias can be represented on the interval level by any linear trans-
formation of the mean of the football numbers.
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