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What constitutes a dangerous equation? 
There are two obvious interpretations: 

Some equations are dangerous if you know 
them, and others are dangerous if you do not. 
The first category may pose danger because 
the secrets within its bounds open doors be-

hind which lies terrible peril. The obvious win-
ner in this is Einstein’s iconic equation e = mc2, 
for it provides a measure of the enormous 
energy hidden within ordinary matter. Its 
destructive capability was recognized by Leo 
Szilard, who then instigated the sequence of 

Figure 1. Trial of the pyx has been performed since 1150 a.d. In the trial, a sample of minted coins, say 100 at a time, is compared with a stan-
dard. Limits are set on the amount that the sample can be over- or underweight. In 1150, that amount was set at 1/400. Nearly 600 years later, in 
1730, a French mathematician, Abraham de Moivre, showed that the standard deviation does not increase in proportion to the sample. Instead, 
it is proportional to the square root of the sample size. Ignorance of de Moivre’s equation has persisted to the present, as the author relates in 
five examples. This ignorance has proved costly enough that the author nominates de Moivre’s formula as the most dangerous equation.
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events that culminated in the construction of 
atomic bombs.

Supporting ignorance is not, however, the di-
rection I wish to pursue—indeed it is quite the 
antithesis of my message. Instead I am inter-
ested in equations that unleash their danger not 
when we know about them, but rather when 
we do not. Kept close at hand, these equations 
allow us to understand things clearly, but their 
absence leaves us dangerously ignorant. 

There are many plausible candidates, and 
I have identified three prime examples: Kel-
ley’s equation, which indicates that the truth 
is estimated best when its observed value is 
regressed toward the mean of the group that 
it came from; the standard linear regression 
equation; and the equation that provides us 
with the standard deviation of the sampling 
distribution of the mean—what might be 
called de Moivre’s equation: 

x n

where σx
_
 is the standard error of the mean, σ 

is the standard deviation of the sample and 
n is the size of the sample. (Note the square 
root symbol, which will be a key to at least one 
of the misunderstandings of variation.) De 
Moivre’s equation was derived by the French 
mathematician Abraham de Moivre, who de-
scribed it in his 1730 exploration of the bino-
mial distribution, Miscellanea Analytica.

Ignorance of Kelley’s equation has proved 
to be very dangerous indeed, especially to 
economists who have interpreted regression 
toward the mean as having economic causes 
rather than merely reflecting the uncertainty 
of prediction. Horace Secrist’s The Triumph of 
Mediocrity in Business is but one example listed 
in the bibliography. Other examples of failure 
to understand Kelley’s equation exist in the 
sports world, where the expression “sopho-
more slump” merely describes the likelihood 
of an average season following an especially 
good one.

The familiar linear regression equation 
contains many pitfalls to trap the unwary. 
The correlation coefficient that emerges from 
regression tells us about the strength of the 
linear relation between the dependent and 
independent variables. But alas it encourages 
fallacious attributions of cause and effect. It 
even encourages fallacious interpretation by 
those who think they are being careful. (“I 
may not be able to believe the exact value of 
the coefficient, but surely I can use its sign 
to tell whether increasing the variable will 
increase or decrease the answer.”) The linear 
regression equation is also badly non-robust, 
but its weaknesses are rarely diagnosed ap-
propriately, so many models are misleading. 
When regression is applied to observational 
data (as it almost always is), it is difficult to 
know whether an appropriate set of predictors 

has been selected—and if we have an inappro-
priate set, our interpretations are questionable. 
It is dangerous, ironically, because it can be the 
most useful model for the widest variety of 
data when wielded with caution, wisdom and 
much interaction between the analyst and the 
computer program.

Yet, as dangerous as Kelley’s equation and 
the common regression equations are, I find 
de Moivre’s equation more perilous still. I ar-
rived at this conclusion because of the extreme 
length of time over which ignorance of it has 
caused confusion, the variety of fields that 
have gone astray and the seriousness of the 
consequences that such ignorance has caused. 

In the balance of this essay I will describe 
five very different situations in which igno-
rance of de Moivre’s equation has led to bil-
lions of dollars of loss over centuries yielding 
untold hardship. These are but a small sam-
pling; there are many more. 

The Trial of the Pyx
In 1150, a century after the Battle of Hastings, it 
was recognized that the King of England could 
not just mint money and assign it to have any 
value he chose. Instead the coinage’s value 
needed to be intrinsic, based on the amount of 
precious materials in its make-up. And so stan-
dards were set for the weight of gold in coins—
a guinea, for example, should weigh 128 grains 
(there are 360 grains in an ounce). In the trial of 
the pyx—the pyx is actually the wooden box 
that contains the standard coins—samples are 
measured and compared with the standard. 

It was recognized, even then, that coinage 
methods were too imprecise to insist that all 
coins be exactly equal in weight, so instead the 
king and the barons who supplied the London 
Mint (an independent organization) with gold 
insisted that coins when tested in the aggre-
gate (say 100 at a time) conform to the regu-
lated size plus or minus some allowance for 
variability. They chose 1/400th of the weight, 
which for one guinea would be 0.28 grains 
and so for the aggregate, 28 grains. Obviously, 
they assumed that variability increased pro-
portionally to the number of coins and not to 
its square root, as de Moivre’s equation would 
later indicate. This deeper understanding lay 
almost 600 years in the future.

The costs of making errors are of two types. 
If the average of all the coins was too light, the 
barons were being cheated, for there would be 
extra gold left over after minting the agreed 
number of coins. This kind of error is easily 
detected, and, if found, the director of the mint 
would suffer grievous punishment. But if the 
allowable variability was larger than neces-
sary, there would be an excessive number of too 
heavy coins. The mint could thus stay within the 
bounds specified and still provide the opportu-
nity for someone at the mint to collect these 
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overweight coins, melt them down and recast 
them at the correct lower weight. This would 
leave the balance of gold as an excess payment 
to the mint. The fact that this error continued for 
almost 600 years provides strong support for de 
Moivre’s equation to be considered a candidate 
for the title of most dangerous equation.

Life in the Country: Haven or Threat?
Figure 2 is a map of the locations of of counties 
with unusual kidney-cancer rates. The coun-
ties colored teal are those that are in the lowest 
tenth of the cancer distribution. We note that 
these healthful counties tend to be very rural, 
Midwestern, Southern or Western. It is both 
easy and tempting to infer that this outcome is 
directly due to the clean living of the rural life-
style—no air pollution, no water pollution, ac-
cess to fresh food without additives and so on.

The counties colored in red, however, belie 
that inference. Although they have much the 
same distribution as the teal counties—in fact, 
they’re often adjacent—they are  those that 
are in the highest decile of the cancer distribu-
tion. We note that these unhealthful counties 
tend to be very rural, Midwestern, Southern 
or Western. It would be easy to infer that this 
outcome might be directly due to the poverty 

of the rural lifestyle—no access to good medi-
cal care, a high-fat diet, and too much alcohol 
and tobacco. 

What is going on? We are seeing de Moivre’s 
equation in action. The variation of the mean 
is inversely proportional to the sample size, so 
small counties display much greater variation 
than large counties. A county with, say, 100 
inhabitants that has no cancer deaths would 
be in the lowest category. But if it has 1 cancer 
death it would be among the highest. Counties 
like Los Angeles, Cook or Miami-Dade with 
millions of inhabitants do not bounce around 
like that.

When we plot the age-adjusted cancer rates 
against county population, this result becomes 
clearer still (see Figure 3). We see the typical 
triangle-shaped bivariate distribution: When 
the population is small (left side of the graph) 
there is wide variation in cancer rates, from 20 
per 100,000 to 0; when county populations are 
large (right side of graph) there is very little 
variation, with all counties at about 5 cases per 
100,000 of population. 

The Small-Schools Movement
The urbanization that characterized the 20th 
century led to the abandonment of the rural 

Figure 2. A cursory glance at the distribution of the U.S. counties with the lowest rates of kidney cancer (teal) might lead one to conclude that 
something about the rural lifestyle reduces the risk of that cancer. After all, the counties with the lowest 10 percent of risk are mainly Midwest-
ern, Southern and Western counties. When one examines the distribution of counties with the highest rates of kidney cancer (red), however, 
it becomes clear that some other factor is at play. Knowledge of de Moivre’s equation leads to the conclusion that what the counties with the 
lowest and highest kidney-cancer rates have in common is low population—and therefore high variation in kidney-cancer rates.



252     American Scientist, Volume 95 © 2007 Sigma Xi, The Scientific Research Society. 
Reproduction with permission only. Contact perms@amsci.

lifestyle and, with it, an increase in the size 
of schools. The era of one-room schoolhouses 
was replaced by one with large schools—often 
with more than a thousand students, dozens 
of teachers of many specialties and facilities 
that would not have been practical without the 
enormous increase in scale. Yet during the last 
quarter of the 20th century, there were the be-
ginnings of dissatisfaction with large schools 
and the suggestion that smaller schools could 
provide a better education. In the late 1990s 
the Bill and Melinda Gates Foundation began 
supporting small schools on a broad-ranging, 
intensive, national basis. By 2001, the Foun-
dation had given grants to education proj-
ects totaling approximately $1.7 billion. They 
have since been joined in support for smaller 
schools by the Annenberg Foundation, the 
Carnegie Corporation, the Center for Col-
laborative Education, the Center for School 
Change, Harvard’s Change Leadership Group, 
the Open Society Institute, Pew Charitable 
Trusts and the U.S. Department of Education’s 
Smaller Learning Communities Program. The 
availability of such large amounts of money 
to implement a smaller-schools policy yielded 
a concomitant increase in the pressure to do 
so, with programs to splinter large schools 
into smaller ones being proposed and imple-
mented broadly (New York City, Los Angeles, 
Chicago and Seattle are just some examples).

What is the evidence in support of such a 
change? There are many claims made about the 
advantages of smaller schools, but I will focus 
here on just one—that when schools are smaller, 
student achievement improves. The supporting 
evidence for this is that among high-performing 

schools, there is an unrepresentatively large 
proportion of smaller schools. 

In an effort to see the relation between small 
schools and achievement, Harris Zwerling and 
I looked at the performance of students at all 
of Pennsylvania’s public schools, as a function 
of school size. As a measure of school perfor-
mance we used the Pennsylvania testing pro-
gram (PSSA), which is very broad and yields 
scores in a variety of subjects and over the en-
tire range of precollegiate school years. When 
we examined the mean scores of the 1,662 
separate schools that provide 5th-grade-read-
ing scores, we found that of the top-scoring 
50 schools (the top 3 percent) six were among 
the smallest 3 percent of the schools. This is 
an over-representation by a factor of four. If 
size of school was unrelated to performance, 
we would expect 3 percent to be in this select 
group, yet we found 12 percent. The bivari-
ate distribution of enrollment and test score is 
shown in Figure 4.

We also identified the 50 lowest-scoring 
schools. Nine of these (18 percent) were among 
the 50 smallest schools. This result is complete-
ly consonant with what is expected from de 
Moivre’s equation—smaller schools are expect-
ed to have higher variance and hence should be 
over-represented at both extremes. Note that the 
regression line shown on the left graph in Figure 
4 is essentially flat, indicating that overall, there 
is no apparent relation between school size and 
performance. But this is not always true.

The right graph in Figure 4 depicts 11th-
grade scores in the PSSA. We find a similar 
over-representation of small schools on both ex-
tremes, but this time the regression line shows 
a significant positive slope; overall, students 
at bigger schools do better. This too is not un-
expected, since very small high schools can-
not provide as broad a curriculum or as many 
highly specialized teachers as can large schools. 
A July 20, 2005, article in the Seattle Weekly de-
scribed the conversion of Mountlake Terrace 
High School in Seattle from a large suburban 
school with an enrollment of 1,800 students 
into five smaller schools, greased with a Gates 
Foundation grant of almost a million dollars. 
Although class sizes remained the same, each 
of the five schools had fewer teachers. Students 
complained, “There’s just one English teacher 
and one math teacher … teachers ended up 
teaching things they don’t really know.” Per-
haps this anecdote suggests an explanation for 
the regression line in Figure 4.

Not long afterward, the small-schools move-
ment took notice. On October 26, 2005, The Se-
attle Times reported:

[t]he Gates Foundation announced last 
week it is moving away from its empha-
sis on converting large high schools into 
smaller ones and instead giving grants 
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Figure 3. When age-adjusted kidney-cancer rates in U.S. counties are 
plotted against the log of county population, the reduction of varia-
tion with population becomes obvious. This is the typical triangle-
shaped bivariate distribution.
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to specially selected school districts with 
a track record of academic improvement 
and effective leadership. Education lead-
ers at the Foundation said they concluded 
that improving classroom instruction and 
mobilizing the resources of an entire dis-
trict were more important first steps to 
improving high schools than breaking 
down the size. 

This point of view was amplified in a study 
presented at a Brookings Institution Conference 
by Barbara Schneider, Adam E. Wyse and Ve-
nessa Keesler of Michigan State University. An 
article in Education Week that reported on the 
study quoted Schneider as saying, “I’m afraid 
we have done a terrible disservice to kids.”

Spending more than a billion dollars on 
a theory based on ignorance of de Moivre’s 
equation—in effect serving only to increase 
variation—suggests just how dangerous that 
ignorance can be.

The Safest Cities
In the June 18, 2006, issue of the New York 
Times there was a short article that listed the 
ten safest United States. cities and the ten least 
safe based on an Allstate Insurance Company 
statistic, “average number of years between 
accidents.” The cities were drawn from the 200 
largest cities in the U.S. With an understand-
ing of de Moivre’s equation, it should come as 
no surprise that a list of the ten safest cities, the 

ten most dangerous cities and the ten largest 
cities have no overlap (see Figure 5).

Sex Differences in Performance
For many years it has been well established 
that there is an over-abundance of males at the 
high end of academic test-score distributions. 
About twice as many males as females re-
ceived National Merit Scholarships and other 
highly competitive awards. Historically, some 
observers used such results to make inferences 
about differences in intelligence between the 
sexes. Over the past few decades, however, 
most enlightened investigators have seen that 
it is not necessarily a difference in level but a 
difference in variance that separates the sexes. 
Public observation of this fact has not always 
been greeted gently, witness the recent outcry 
when Harvard (now ex-) President Lawrence 
Summers pointed this out. Among other com-
ments, he said:

It does appear that on many, many, dif-
ferent human attributes—height, weight, 
propensity for criminality, overall IQ, 
mathematical ability, scientific ability—
there is relatively clear evidence that 
whatever the difference in means—which 
can be debated—there is a difference in 
standard deviation/variability of a male 
and female population. And it is true 
with respect to attributes that are and are 
not plausibly, culturally determined.
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Figure 4. In the 1990s, it became popular to champion reductions in the size of schools. Numerous philanthropic organizations and govern-
ment agencies funded the division of larger school based on the fact that students at small schools are over-represented in groups with high 
test scores. Shown here at left are math test scores from 1,662 Pennsylvania 5th-grade schools. The 50 highest-performing schools are shown in 
blue and the 50 lowest in green. Note how the highest- and lowest-performing schools tend to group at low enrollment—just what de Moivre’s 
equation predicts. The regression line is nearly flat, though, showing that school size makes no overall difference to 5th-grade mean scores. 
Math scores for 11th-grade schools were also calculated (right). Once again, variation was greater at smaller schools. In this case, however, the 
regression line has a significant positive slope, indicating that the mean score improved with school size. This stands to reason, since larger 
schools are able to offer a wider range of classes with teachers who can focus on fewer subjects.
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The males’ score distributions are almost al-
ways characterized by greater variance than the 
females’. Thus while there are more males at the 
high end, there are also more at the low end. 

An example, chosen from the National As-
sessment of Educational Progress (NAEP), is 
shown in Figure 7 NAEP is a true survey, so 
problems of self-selection (rife in college en-
trance exams, licensing exams and so on) are 
substantially reduced. The data summarized 
in the table are over 15 years and five sub-
jects. In all instances the standard deviation 
of males is from 3 to 9 percent greater than 
females. This is true both for subjects in which 
males score higher on average (math, science, 
geography) and lower (reading).

Both inferences, the incorrect one about dif-
ferences in level, and the correct one about 
differences in variability, cry out for expla-

nation. The old cry would have been “why 
do boys score higher than girls?” The new-
er one should be “why do boys show more 
variability?” If one did not know about de 
Moivre’s result and only tried to answer the 
first question, it would be a wild goose chase, 
a search for an explanation for a phenomenon 
that does not exist. But if we focus on greater 
variability in males, we may find pay dirt. 
Obviously the answer to the causal question 
“why?” will have many parts. Surely social-
ization and differential expectations must be 
major components—especially in the past, be-
fore the realization grew that a society cannot 
compete effectively in a global economy with 
only half of its workforce fully mobilized. But 
there is another component that is key—and 
especially related to the topic of this essay.

In discussing Lawrence Summers’s remarks 
about sex differences in scientific ability, Chris-
tiane Nüsslein-Volhard, the 1995 Nobel laure-
ate in physiology and medicine, said: 

He missed the point. In mathematics and 
science, there is no difference in the intel-
ligence of men and women. The differ-
ence in genes between men and women 
is simply the Y chromosome, which has 
nothing to do with intelligence. 

But perhaps it is Professor Nüsslein-Volhard 
who missed the point here. The Y chromosome 
is not the only genetic difference between the 
sexes, although it may be the most obvious. 
Summers’s point was that when we look at ei-
ther extreme of an ability distribution we will 
see more of the group that has greater varia-
tion. Mental traits conveyed on the X chro-
mosome will have larger variability among 
males than females, for females have two X 
chromosomes, whereas males have an X and a 
Y. Thus, from de Moivre’s equation we would 
expect, all other things being equal, about 40 
percent more variability among males than fe-
males. The fact that we see less than 10 percent 
greater variation in NAEP scores demands 
the existence of a deeper explanation. First, de 
Moivre’s equation requires independence of 
the two X chromosomes, and with assortative 
mating this is not going to be true. Addition-
ally, both X chromosomes are not expressed 
in every cell. Moreover, there must be major 
causes of high-level performance that are not 
carried on the X chromosome, and still others 
that indeed are not genetic. But for some skills, 
perhaps 10 percent of increased variability is 
likely to have had its genesis on the X chromo-
some. This observation would be invisible to 
those, even those with Nobel prizes for work 
in genetics, who are ignorant of de Moivre’s 
equation.

It is well established that there is evolution-
ary pressure toward greater variation within 
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Figure 5. Allstate Insurance Company ranked the ten safest and ten least-safe U.S. 
cities based on the number of years drivers went between accidents. The New York 
Times reported on this in 2006. By now the reader will not be surprised to find that 
none of the ten largest cities are among either group. 
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species—within the constraints of genetic 
stability. This is evidenced by the dominance 
of sexual over asexual reproduction among 
mammals. But this leaves us with a puzzle. 
Why was our genetic structure built to yield 
greater variation among males than females? 
And not just among humans, but virtually all 
mammals. The pattern of mating suggests an 
answer. In most mammalian species that re-
produce sexually, essentially all adult females 
reproduce, whereas only a small proportion of 
males do (modern humans excepted). Think 
of the alpha-male lion surrounded by a pride 
of females, with lesser males wandering aim-
lessly and alone in the forest roaring in frustra-
tion. One way to increase the likelihood of off-
spring being selected to reproduce is to have 
large variance among them. Thus evolutionary 
pressure would reward larger variation for 
males relative to females.

Conclusion
It is no revelation that humans don’t fully 
comprehend the effect that variation, and es-
pecially differential variation, has on what 
we observe. Daniel Kahneman’s 2002 Nobel 
prize in economics was for his studies on in-
tuitive judgment (which occupies a middle 
ground “between the automatic operations 
of perception and the deliberate operations of 
reasoning”). Kahneman showed that humans 
don’t intuitively “know” that smaller hospitals 
would have greater variability in the propor-
tion of male to female births. But such inability 
is not limited to humans making judgments in 
Kahneman’s psychology experiments.

Routinely, small hospitals are singled out 
for special accolades because of their exempla-
ry performance, only to slip toward average 
in subsequent years. Explanations typically 
abound that discuss how their notoriety has 
overloaded their capacity. Similarly, small mu-
tual funds are recommended, after the fact, by 
Wall Street analysts only to have their subse-
quent performance disappoint investors. The 
list goes on and on adding evidence and sup-
port to my nomination of de Moivre’s equa-
tion as the most dangerous of them all. This 
essay has been aimed at reducing the peril that 
accompanies ignorance of that equation.
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Figure 7. Data from the National Assessment of Educational Progress show just the 
effect that Lawrence Summers claimed. The standard deviation for males is from 3 
to 9 percent greater on all tests, whether their mean scores were better or worse than 
those of females. 

Figure 6. Former Harvard President Lawrence Summers received some sharp criti-
cism for remarks he made concerning differences in science and math performance 
between the sexes. In particular, Summers noted that variance among the test scores 
of males was considerably greater than that of females and that not all of it could be 
considered to be based on differential environments. 
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