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2.0 Introduction 

In the previous chapter, we looked at logistic regression analyses that used a categorical predictor with 2 levels (i.e. a dummy variable) and a 

predictor that was continuous. In this chapter, we will further explore the use of categorical predictors, including using categorical predictors 

with more than 2 levels, 2 categorical predictors, interactions of categorical predictors, and interactions of categorical predictors with continuous 

predictors. We will focus on the understanding and interpretation of the results of these analyses. We hope that you are familiar with the use of 

categorical predictors in ordinary least squares (OLS) regression, as described in Chapter 3 of the Regression with Stata book. Understanding 
how to interpret the results from OLS regression will be a great help in understanding results from similar analyses involving logistic regression. 

This chapter will use the apilog data that you have seen in the prior chapters. We will focus on four variables hiqual as the outcome variable, 

and three predictors, the proportion of teachers with full teaching credentials (cred), the level of education of the parents (pared), and the 

percentage of students in the school receiving free meals (meals). Below we show how you can load this data file from within Stata. 

use http://www.ats.ucla.edu/stat/stata/webbooks/logistic/apilog, clear 

2.1 One Categorical Predictor  

First, let's look at what happens when we use one categorical predictor with three levels. The predictor that we will use is based on the 

proportion of teachers who have full credentials. We have divided the schools into 3 categories, schools that have a low percentage of teachers 

with full credentials, schools with a medium percentage of teachers with full credentials and schools with a high percentage of teachers with full 

credentials. We will refer to these schools as high credentialed, medium credentialed and low credentialed schools. Below we show the 
codebook information for this variable. The variable cred is coded 1, 2 and 3 representing low,medium and high respectively. 

codebook cred 
cred ----------------------------------------- Full Credent Teachers, Lo Med Hi 
                  type:  numeric (byte) 
                 label:  lmh 
 
                 range:  [1,3]                        units:  1 
         unique values:  3                    coded missing:  0 / 1200 
 
            tabulation:  Freq.   Numeric  Label 
                           382         1  low 
                           325         2  medium 
                           493         3  high 

Before we run this analysis using logistic regression, let us look at a crosstab of hiqual by cred. 



 

2 

 

tab hiqual cred, all 
 
Hi Quality | 
School, Hi | Full Credent Teachers, Lo Med Hi 
    vs Not |       low     medium       high |     Total 
-----------+---------------------------------+---------- 
  not high |       351        218        240 |       809  
      high |        31        107        253 |       391  
-----------+---------------------------------+---------- 
     Total |       382        325        493 |     1,200  
 
          Pearson chi2(2) = 182.9062   Pr = 0.000 
 likelihood-ratio chi2(2) = 204.7688   Pr = 0.000 
               Cramér's V =   0.3904 
                    gamma =   0.6398  ASE = 0.033 
          Kendall's tau-b =   0.3663  ASE = 0.023 

Looking at the Pearson Chi Square value (182.9), the results suggest that the quality of the school (hiqual) is not independent of the credential 

status of the teachers (cred). But such a way of looking at these results is very limiting. Instead, lets look at this using a regression framework. 

Lets start by pretending for the moment that our outcome variable is not a 0/1 variable and that it is appropriate to use in a regular OLS analysis. 

Below we show how we could include the variable cred as a predictor and hiqual as an outcome variable in an OLS regression. We use 

the xi command with i.cred to break cred into two dummy variables. The variable _Icred_2 is 1 if cred is equal to 2, and zero otherwise. The 
variable _Icred_3 is one if cred is equal to 3 and 0 otherwise. 

xi: regress hiqual i.cred 
i.cred            _Icred_1-3          (naturally coded; _Icred_1 omitted) 
 
      Source |       SS       df       MS              Number of obs =    1200 
-------------+------------------------------           F(  2,  1197) =  107.63 
       Model |  40.1782656     2  20.0891328           Prob > F      =  0.0000 
    Residual |  223.420901  1197  .186650711           R-squared     =  0.1524 
-------------+------------------------------           Adj R-squared =  0.1510 
       Total |  263.599167  1199   .21984918           Root MSE      =  .43203 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    _Icred_2 |   .2480789   .0326025     7.61   0.000     .1841145    .3120434 
    _Icred_3 |   .4320328   .0294485    14.67   0.000     .3742563    .4898092 
       _cons |   .0811518   .0221046     3.67   0.000     .0377837      .12452 
------------------------------------------------------------------------------ 

We can use the adjust command to get the predicted values for the 3 levels of cred as shown below. 

adjust, by(cred) 
------------------------------------------------------------------------------- 
     Dependent variable: hiqual     Command: regress 
   Variables left as is: _Icred_2, _Icred_3 
------------------------------------------------------------------------------- 
 
---------------------- 
Full      | 
Credent   | 
Teachers, | 
Lo Med Hi |         xb 
----------+----------- 
      low |    .081152 
   medium |    .329231 
     high |    .513185 
---------------------- 
     Key:  xb  =  Linear Prediction 

Note that the low credentialed schools are the omitted group. The coefficient for the constant corresponds to the predicted value for the low 

credentialed group. The coefficient for I_cred_2 represents the difference between the medium credentialed group and the omitted group 

(.329 - .081 = .248). Note that the coefficient for I_cred_3 represents the predicted value for group 3 (the high credentialed minus the omitted 

group (.513 - .081 = .432). 

Seeing how you interpret the parameter estimates in OLS regression will help in the interpretation of the parameter estimates when using logistic 

regression. Now let's run this as a logistic regression and see how to interpret the parameter estimates. As you see below, the syntax for running 
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this as a logistic regression is much like that for an OLS regression, except that we substituted the logit command for the regress command. The 

results are shown using logistic regression coefficients where the coefficient represents the change in the log odds of hiqual equaling 1 for a one 
unit change in the predictor. 

xi: logit hiqual i.cred 
 
i.cred            _Icred_1-3          (naturally coded; _Icred_1 omitted) 
 
Iteration 0:   log likelihood = -757.42622 
Iteration 1:   log likelihood = -661.13514 
Iteration 2:   log likelihood = -655.23229 
Iteration 3:   log likelihood =  -655.0422 
Iteration 4:   log likelihood = -655.04182 
 
Logistic regression                               Number of obs   =       1200 
                                                  LR chi2(2)      =     204.77 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -655.04182                       Pseudo R2       =     0.1352 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    _Icred_2 |   1.715133   .2214491     7.75   0.000     1.281101    2.149165 
    _Icred_3 |    2.47955   .2079086    11.93   0.000     2.072056    2.887043 
       _cons |  -2.426799   .1873679   -12.95   0.000    -2.794033   -2.059565 
------------------------------------------------------------------------------ 

Some prefer to use odds ratios to help make the coefficients more interpretable. The odds ratio is simply the exponentiated version of the logistic 

regression coefficient. For example, exp(1.715) = 5.557 (shown below). After running the logit command from above, we can type logit , 

or  and the results from the last logit command are shown, except using odds ratios. 

logit, or 
(some output omitted) 

------------------------------------------------------------------------------ 
      hiqual | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    _Icred_2 |   5.557413   1.230684     7.75   0.000       3.6006    8.577693 
    _Icred_3 |   11.93589   2.481573    11.93   0.000     7.941136    17.94018 
------------------------------------------------------------------------------ 

Let's interpret these odds ratios. The odds ratio for _Icred_2 is the odds of a medium credentialed school being high quality divided by the 

odds of a low credentialed school being high quality. Likewise, The odds ratio for _Icred_3 is the odds of a high credentialed school being 
high quality divided by the odds of a low credentialed school being high quality. 

Referring back to the crosstabulation of hiqual and cred, we can reproduce these odds ratios. First, using the frequencies from that crosstab, we 
can manually compute the odds of a school being high-quality school at each level of cred. 

• Cred = Low. Odds or a school being high quality = (31 / 351) = .08831909 

• Cred = Medium. Odds or a school being high quality = (107 / 218) = .49082569 

• Cred = High. Odds or a school being high quality = (253 / 240) = 1.0541667 

Now, we can see that the odds ratio for _Icred_2 is the odds of a medium credentialed school being high quality divided by the odds of a low 

credentialed , or (.49082569 / .08831909) = 5.5574134. Likewise, the odds ratio for _Icred_3 is the odds of a high credentialed school being 

high quality divided by the odds of a low credentialed school being high quality, or (1.0541667 / .08831909) = 11.935887. 

The above technique works fine in a simple situation, but if we had additional predictors in the model it would not work as easily. Below we 

demonstrate the same idea but using the adjust command with the exp option to get the predicted odds of a school being high-quality school at 
each level of cred. 

adjust, by(cred) exp 
------------------------------------------------------------------------------- 
     Dependent variable: hiqual     Command: logistic 
   Variables left as is: _Icred_2, _Icred_3 
------------------------------------------------------------------------------- 
 
---------------------- 
Full      | 
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Credent   | 
Teachers, | 
Lo Med Hi |    exp(xb) 
----------+----------- 
      low |    .088319 
   medium |    .490826 
     high |    1.05417 
---------------------- 
     Key:  exp(xb)  =  exp(xb) 

The odds ratio for _Icred_2 should be the odds of a medium credentialed school being high quality (.490) divided by the odds of a low 

credentialed school being high quality (.088). Indeed, we see this is correct. This means that we estimate that the odds of a medium 

credentialed being high quality (odds = .490) is about 5.6 times that of a low credentialed school being high quality (odds = .088). 

display .490 / .088  
5.5681818 

Likewise, the odds ratio for _Icred_3 should be the odds of a high credentialed school being high quality (1.05) divided by the odds of a low 

credentialed school being high quality (.088). Indeed, we see this is correct as well. The odds of a high credentialed school being high 

quality (which is 1.05) is about 11.9 times as high as the odds of a low credentialed school being high quality (which is 0.088). 

display 1.05 / .088  
11.931818 

If this were a linear model (e.g. a regression with two dummies, or an ANOVA), we might be interested in the overall effect of cred. We can test 

the overall effect of cred in one of two ways. First, we could use the testcommand as illustrated below. This produces a Wald Test. Based on 

the results of this command, we would conclude that the overall effect of cred is significant. 

test _Icred_2 _Icred_3 
 
 ( 1)  _Icred_2 = 0.0 
 ( 2)  _Icred_3 = 0.0 
 
           chi2(  2) =  146.58 
         Prob > chi2 =    0.0000 

Instead, you might wish to use a likelihood ratio test, illustrated below. We first run the model with all of the predictors, i.e. the full model, and 

then use the estimates store command to save the results naming the resultsfull (you can pick any name you like). 

xi: logit hiqual i.cred 
 
(some output omitted) 
Logistic regression                               Number of obs   =       1200 
                                                  LR chi2(2)      =     204.77 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -655.04182                       Pseudo R2       =     0.1352 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    _Icred_2 |   1.715133   .2214491     7.75   0.000     1.281101    2.149165 
    _Icred_3 |    2.47955   .2079086    11.93   0.000     2.072056    2.887043 
       _cons |  -2.426799   .1873679   -12.95   0.000    -2.794033   -2.059565 
------------------------------------------------------------------------------ 
estimates store full 

Next, we run the model omitting the variable(s) we wish to test, in this case, omitting i.cred.  

xi: logit hiqual 
 
(some output omitted) 
 
Logistic regression                               Number of obs   =       1200 
                                                  LR chi2(0)      =      -0.00 
                                                  Prob > chi2     =          . 
Log likelihood = -757.42622                       Pseudo R2       =    -0.0000 
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------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |  -.7270914   .0615925   -11.80   0.000    -.8478105   -.6063722 
------------------------------------------------------------------------------ 

We can then use the lrtest command to compare the current model (specified as a period) to the model we named full. 

lrtest . full 
Likelihood-ratio test                                  LR chi2(2)  =    204.77 
(Assumption: . nested in full)                         Prob > chi2 =    0.0000 

This test is also clearly significant. If you look back to the crosstab output of hiqual and cred you will see a line that reads 

 likelihood-ratio chi2(2) = 204.7688 Pr = 0.000 

which, interestingly enough, matches the likelihood ratio test shown above. Both of these tests use a likelihood ratio method for testing the 

overall association between cred and hiqual. 

2.2 Two categorical predictors 

2.2.1 A 2 by 2 Layout with Only Main Effects  

Now let's look at an analysis that involves 2 categorical predictors. We have created a variable called cred_hl which is a dummy variable that is 

1 if the school has a high percentage of teachers with full credentials (high credentialed), and 0 if the school has a low percentage of teachers 

with full credentials (low credentialed). (Note that the medium group has been omitted. This is not a customary thing to do, but this will be 

useful to us later.) Likewise, we have created a variable called pared_hl which is a binary variable that is coded 1 if the parents education 

is high (which we will call high parent education, and 0 if the parents education is low (which we will call low parent education. (Again, note 

that the medium group has been omitted.) The model below looks at the effects of teacher's credentials and parents education on whether the 
school is a high quality school, but does not include an interaction term. 

logit hiqual cred_hl pared_hl 
 
Iteration 0:   log likelihood = -369.63859 
Iteration 1:   log likelihood = -295.88905 
Iteration 2:   log likelihood = -291.08927 
Iteration 3:   log likelihood = -290.89287 
Iteration 4:   log likelihood = -290.89221 
 
Logistic regression                               Number of obs   =        580 
                                                  LR chi2(2)      =     157.49 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -290.89221                       Pseudo R2       =     0.2130 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     cred_hl |   2.732386   .2705797    10.10   0.000      2.20206    3.262712 
    pared_hl |  -.1699762   .2084613    -0.82   0.415    -.5785529    .2386005 
       _cons |  -2.470522   .2463809   -10.03   0.000    -2.953419   -1.987624 
------------------------------------------------------------------------------ 

We then use the logit , or command to obtain odds ratios. 

logit , or 
(some output omitted) 
------------------------------------------------------------------------------ 
      hiqual | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     cred_hl |   15.36951   4.158678    10.10   0.000      9.04362    26.12029 
    pared_hl |   .8436849   .1758757    -0.82   0.415     .5607092    1.269471 
------------------------------------------------------------------------------ 

To help interpret the odds ratios for cred_hl, let's look at the predicted odds broken down by cred_hl and pared_hl using the adjust command. 

adjust, by(cred_hl pared_hl) exp 
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-------------------------------------------------------------------------------- 
     Dependent variable: hiqual     Command: logistic 
-------------------------------------------------------------------------------- 
 
---------------------------- 
Full      |     Parents      
Credent   | Education, Hi vs 
Teachers, |        Lo        
Hi vs Lo  |     low     high 
----------+----------------- 
      low | .084541  .071326 
     high | 1.29935  1.09624 
---------------------------- 
     Key:  exp(xb) 

For example, the odds ratio for pared_hl is the odds of a school being high quality for high parent education schools divided by the odds of a 

school being high quality for low parent education schools. 

display 1.09624 / 1.29935  
.84368338 

Likewise, the odds ratio for cred_hl is the odds of being a high quality school for high credentialed schools divided by the odds of being high 

quality for low credentialed schools, as illustrated below. 

display 1.299/.0845 
15.372781 

Note that the above example used the odds for low parent education schools. Note that we get the same results if we use the odds for high 

parent education schools, as illustrated below. 

display 1.09624 / .071326 
15.369431 

The above results indicate that the odds of being a high quality school for high credentialed schools is about 15.3 times as high as the odds 
of low credentialed schools being high quality. 

Because we did not include an interaction in this model, it assumes that the impact of credentials is the same regardless of the level of education 

of the parents. As we saw above, the odds ratio comparing high versus low credentialed schools was the same (15.3) for schools with low parent 

education and schools with high parent education. Let's look at how reasonable this assumption is by comparing the predicted probabilities of 

the schools being high quality for the 4 cells with the actual probabilities of the schools being high quality. Below we see the predicted 
probabilities. 

adjust, by(cred_hl pared_hl) pr 
------------------------------------------------------------------------- 
     Dependent variable: hiqual     Command: logistic 
------------------------------------------------------------------------- 
 
---------------------------- 
Full      |     Parents      
Credent   | Education, Hi vs 
Teachers, |        Lo        
Hi vs Lo  |     low     high 
----------+----------------- 
      low | .077951  .066577 
     high | .565095  .522956 
---------------------------- 
     Key:  Probability 

Below we see the actual probabilities of the schools being high quality broken down by the 4 cells. 

table cred_hl pared_hl, contents(mean hiqual) 
------------------------------ 
Full      | 
Credent   | Parents Education, 
Teachers, |      Hi vs Lo      
Hi vs Lo  |      low      high 
----------+------------------- 
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      low | .0523256  .1190476 
     high | .5984849        .5 
------------------------------ 

Based on these probabilities, let's look at the odds ratio for cred when parents education is low. When parents education is low, the observed 

odds ratio is about 27. 

      p2 / (1 - p2)     odds2     0.60 / (1 - 0.60)     1.490 
or = --------------- = ------- = ------------------- = ------- = 27.000 
      p1 / (1 - p1)     odds1     0.05 / (1 - 0.05)     0.055 

Let's compare the above result to the odds ratio for cred when parents education is high. When parents education is high the observed odds ratio 

for cred is about 7.4. 

      p2 / (1 - p2)     odds2     0.50 / (1 - 0.50)     1.000 
or = --------------- = ------- = ------------------- = ------- = 7.403 
      p1 / (1 - p1)     odds1     0.12 / (1 - 0.12)     0.135 

As you see, when we included just main effects in the model, the overall odds ratio for cred was 15.3, but when parents education is low the 

odds ratio is about 27 and when parents education is high the odds ratio is 7.4. These odds ratios seem considerably different, yet because we 

only included main effects the model, the model just estimates one overall odds ratio for cred. However, if we include an interaction term in the 

model, then the model will estimate these odds ratios separately. 

2.2.2 A 2 by 2 Layout with Main Effects and Interaction  

We will create an interaction term by multiplying cred_hl by pared_hl to create cred_ed. 

generate cred_ed = cred_hl*pared_hl 
(620 missing values generated) 

We can then include this interaction term in the analysis. 

logit hiqual cred_hl pared_hl cred_ed 
 
Iteration 0:   log likelihood = -369.63859 
Iteration 1:   log likelihood = -293.82815 
Iteration 2:   log likelihood = -288.35139 
Iteration 3:   log likelihood = -287.98135 
Iteration 4:   log likelihood = -287.97695 
Iteration 5:   log likelihood = -287.97695 
 
Logistic regression                               Number of obs   =        580 
                                                  LR chi2(3)      =     163.32 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -287.97695                       Pseudo R2       =     0.2209 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     cred_hl |   3.295682     .38571     8.54   0.000     2.539704    4.051659 
    pared_hl |   .8950456   .4803744     1.86   0.062    -.0464709    1.836562 
     cred_ed |  -1.294202   .5320893    -2.43   0.015    -2.337078   -.2513256 
       _cons |  -2.896526   .3424121    -8.46   0.000    -3.567641    -2.22541 
------------------------------------------------------------------------------ 

The significant interaction suggest that the effect of cred_hl depends on the level of pared_hl (and likewise, effect of pared_hl depends on the 

level of  cred_hl). We explore this further using the odds ratio metric below. 

logit, or 
Logit estimates                                   Number of obs   =        580 
                                                  LR chi2(3)      =     163.32 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -287.97695                       Pseudo R2       =     0.2209 
 
------------------------------------------------------------------------------ 
      hiqual | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
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     cred_hl |   26.99581   10.41255     8.54   0.000     12.67592    57.49278 
    pared_hl |   2.447447   1.175691     1.86   0.062     .9545923    6.274929 
     cred_ed |   .2741166   .1458545    -2.43   0.015     .0966096    .7777691 
------------------------------------------------------------------------------ 

We can use the adjust command to get the predicted odds broken down by the 4 groups. 

adjust, by(cred_hl pared_hl) exp 
--------------------------------------------------------------------------------- 
     Dependent variable: hiqual     Command: logistic 
    Variable left as is: cred_ed 
--------------------------------------------------------------------------------- 
 
---------------------------- 
Full      |     Parents      
Credent   | Education, Hi vs 
Teachers, |        Lo        
Hi vs Lo  |     low     high 
----------+----------------- 
      low | .055215  .135135 
     high | 1.49057        1 
---------------------------- 
     Key:  exp(xb) 

The odds ratio for pared_hl is the odds of a high parent education school being high quality divided by the odds of a low parent 

education school being high quality, for low credentialed schools (because low credentialed is coded as 0). 

display.135135 /  .055215  
2.4474328 

Likewise, the odds ratio for cred_hl is the odds of a high credentialed school being high quality divided by the odds of a low 

credentialed school being high quality, for low parent education schools (because low parent education is coded 0). 

display 1.49057 /  .055215  
26.995744 

We can see the meaning of the interaction by comparing the odds ratio for the effect of cred_hl for high parent education schools and for low 

parent education schools. When parent education is low, we have seen that the odds ratio for cred_hl is 26.99 (see output from the logistic 
command above). When parent education is high, the odds ratio for cred_hl is shown below. 

display 1 / .1351 
7.4019245 

The odds ratio for the interaction is actually the ratio of two odds ratios. Focusing on the effect of cred_hl, the interaction can be thought of as 

the odds ratio for cred_hl when parents education is high (i.e. 7.4) divided by the odds ratio for cred_hl when parents education is low (i.e., 
26.99). As you see below, the ratio of these two odds ratios is the interaction. 

display 7.4 / 26.99 
.27417562 

Here is another way to look at this. We know the odds ratio for cred_hl is 26.99 for low parent education schools. If we multiply this by the 

interaction term (by .274) we get the odds ratio for the high parent educationschools. As we see below, 26.99 * .274 yields the odds ratio (with 
a touch of rounding error) for high parent education schools. 

display 26.99 * .274 
7.39526 

The impact of cred_hl depends on the level of education of the parents. When parent education is low, the impact of cred_hl is much higher 

than when parent education is high. In particular, when parent education is low, the odds of high credentialed schools being high quality are 27 

times than the odds of low credentialed schools being high quality. By contrast, the odds ratio for cred_hl for schools with high parent 

education is .274 times the low parent education schools. For the high parent education schools, the odds of high credentialed schools being 
high quality is about 7.4 times that of the low credentialed schools. 

2.2.3 A 2 by 3 Layout with Only Main Effects  
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We can extend the above analysis into a 3 by 2 design by looking at all 3 levels of parent education (low, medium and high) by using the 

variable pared instead of pared_hl. We will use this example to illustrate how to run and interpret the results of such an analysis. As above, we 
will start with a model which includes just main effects, and then will move on to a model which includes both main effects and an interaction. 

We can look at a model which includes cred_hl and pared as predictors as shown below. We use the xi prefix with i.pared to break parent 

education into two dummy variables _Ipared_2 which is 1 if parent education is medium, 0 otherwise; and _Ipared_3 which is 1 if parent 
education is high, 0 otherwise. 

xi: logit hiqual cred_hl i.pared 
 
i.pared           _Ipared_1-3         (naturally coded; _Ipared_1 omitted) 
 
Iteration 0:   log likelihood = -551.48395 
Iteration 1:   log likelihood = -454.38244 
Iteration 2:   log likelihood = -448.38948 
Iteration 3:   log likelihood = -448.19569 
Iteration 4:   log likelihood =  -448.1953 
 
Logistic regression                               Number of obs   =        875 
                                                  LR chi2(3)      =     206.58 
                                                  Prob > chi2     =     0.0000 
Log likelihood =  -448.1953                       Pseudo R2       =     0.1873 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     cred_hl |   2.511303   .2123631    11.83   0.000     2.095079    2.927527 
   _Ipared_2 |  -.2761497    .205192    -1.35   0.178    -.6783186    .1260191 
   _Ipared_3 |  -.1296273   .2035595    -0.64   0.524    -.5285967     .269342 
       _cons |  -2.313248   .2083214   -11.10   0.000     -2.72155   -1.904945 
------------------------------------------------------------------------------ 

And below we shown the results using odds ratios. 

logit , or 
(some output omitted) 

------------------------------------------------------------------------------ 
      hiqual | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     cred_hl |   12.32098   2.616521    11.83   0.000     8.126085    18.68138 
   _Ipared_2 |   .7586993    .155679    -1.35   0.178     .5074695    1.134304 
   _Ipared_3 |   .8784227   .1788113    -0.64   0.524     .5894316    1.309103 
------------------------------------------------------------------------------ 

These results indicate that cred_hl is significant, and that the odds of a high credentialed school being high quality is about 12.3 times that 

of low credentialed schools. Neither of the terms for parent education (_Ipared_2 or _Ipared_3) are significant. However, let's test the joint 
influence of these two variables using the test command. 

test  _Ipared_2  _Ipared_3 
 ( 1)  _Ipared_2 = 0.0 
 ( 2)  _Ipared_3 = 0.0 
 
           chi2(  2) =    1.82 
         Prob > chi2 =    0.4020 

As we would have expected based on the individual tests, the overall effect of parents education is not significant. 

Let's now look at the interpretation of the odds ratios. First, let's get the predicted odds for the 6 cells of this design using the adjust command. 

adjust, by(cred_hl pared) exp 
------------------------------------------------------------------------------- 
     Dependent variable: hiqual     Command: logistic 
   Variables left as is: _Ipared_2, _Ipared_3 
------------------------------------------------------------------------------- 
 
------------------------------------- 
Full      | 
Credent   | Parents Education, Lo Med 
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Teachers, |            Hi             
Hi vs Lo  |     low   medium     high 
----------+-------------------------- 
      low | .098939  .075065  .086911 
     high | 1.21903  .924877  1.07082 
------------------------------------- 
     Key:  exp(xb) 

As you would expect, the odds ratio for cred_hl is the odds that a high credentialed school will be high quality divided by the odds that a low 

credentialed school would be high quality. We illustrate this below. 

display 1.219 / .0989 
12.325581 

The above odds ratio was computed when parents education is low, but we get the same result if we use medium or high parent education. This 

is because this model did not contain an interaction between pared andcred_hl. 

display .924 / .075 
12.32 
display 1.07 / .0869 
12.313003 

The odds ratio for _Ipared_2 is the odds that a medium parent education school will be high quality divided by the odds that a low parent 

education school will be high quality, for example. 

display .075 / .0989 
.75834176 

The odds ratio for _Ipared_3 is the odds that a high parent education school will be high quality divided by the odds that a low parent 

education school will be high quality, for example. 

display .0869 / .0989 
.87866532 

These last two effects were computed when credentials was low. If we had computed them when credentials was high, we would have gotten the 
same result (you can try it for yourself). 

This model includes only main effects, so it assumes that the effect of cred_hl are the same across the levels of parent education. We can look at 

the probabilities of being a high quality school by cred_hl and by parent education. 

table cred_hl pared, contents(mean hiqual) 
---------------------------------------- 
Full      | 
Credent   | 
Teachers, | Parents Education, Lo Med Hi 
Hi vs Lo  |      low    medium      high 
----------+----------------------------- 
      low | .0523256  .0952381  .1190476 
     high | .5984849  .4615385        .5 
---------------------------------------- 

Let's now look at the odds ratio for cred_hl at each level of parent education. This model with main effects is assuming that these odds ratios 

will be roughly the same, but we can look at them and see if this appears reasonable. 

Odds ratio for cred_hl when parent education is low 

      p2 / (1 - p2)     odds2     0.60 / (1 - 0.60)     1.488 
or = --------------- = ------- = ------------------- = ------- = 27.119 
      p1 / (1 - p1)     odds1     0.05 / (1 - 0.05)     0.055 

Odds ratio for cred_hl when parent education is medium 

      p2 / (1 - p2)     odds2     0.46 / (1 - 0.46)     0.855 
or = --------------- = ------- = ------------------- = ------- = 8.148 
      p1 / (1 - p1)     odds1     0.10 / (1 - 0.10)     0.105 
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Odds ratio for cred_hl when parent education is high 

      p2 / (1 - p2)     odds2     0.50 / (1 - 0.50)     1.000 
or = --------------- = ------- = ------------------- = ------- = 7.403 
      p1 / (1 - p1)     odds1     0.12 / (1 - 0.12)     0.135 

It seems that the odds ratio for cred_hl is much higher when parent education is low as compared to parents with medium and high levels of 

education. By including an interaction term in the model (as shown below) we can capture these differences in cred_hl across levels of parent 
education. 

2.2.4 A 2 by 3 Layout with Main Effects and Interaction  

The analysis above only included main effects of parent education and the credentials of the teachers, but did not include an interaction of these 
two variables. The analysis below includes this interaction. 

xi: logit hiqual i.cred_hl*i.pared 
 
i.cred_hl         _Icred_hl_0-1       (naturally coded; _Icred_hl_0 omitted) 
i.pared           _Ipared_1-3         (naturally coded; _Ipared_1 omitted) 
i.cr~hl*i.pared   _IcreXpar_#_#       (coded as above) 
 
Iteration 0:   log likelihood = -551.48395 
Iteration 1:   log likelihood = -451.33208 
Iteration 2:   log likelihood = -444.62299 
Iteration 3:   log likelihood = -444.24823 
Iteration 4:   log likelihood = -444.24435 
Iteration 5:   log likelihood = -444.24435 
 
Logistic regression                               Number of obs   =        875 
                                                  LR chi2(5)      =     214.48 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -444.24435                       Pseudo R2       =     0.1945 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
 _Icred_hl_1 |   3.295682     .38571     8.54   0.000     2.539704    4.051659 
   _Ipared_2 |   .6452338   .4575493     1.41   0.158    -.2515463    1.542014 
   _Ipared_3 |   .8950456   .4803744     1.86   0.062    -.0464709    1.836562 
_IcreXpar_~2 |   -1.19854   .5144774    -2.33   0.020    -2.206898   -.1901832 
_IcreXpar_~3 |  -1.294202   .5320893    -2.43   0.015    -2.337078   -.2513256 
       _cons |  -2.896526   .3424121    -8.46   0.000    -3.567641    -2.22541 
------------------------------------------------------------------------------ 

And here are the odds ratios. 

logit , or 
(some output omitted) 

------------------------------------------------------------------------------ 
      hiqual | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
 _Icred_hl_1 |   26.99581   10.41255     8.54   0.000     12.67592    57.49278 
   _Ipared_2 |   1.906433   .8722869     1.41   0.158     .7775975    4.673994 
   _Ipared_3 |   2.447447   1.175691     1.86   0.062     .9545923    6.274929 
_IcreXpar_~2 |   .3016341    .155184    -2.33   0.020     .1100415    .8268076 
_IcreXpar_~3 |   .2741166   .1458545    -2.43   0.015     .0966096    .7777691 
------------------------------------------------------------------------------ 

Let's now look at the interpretation of the odds ratios for this analysis. Previously we have used the adjust command to obtain predicted odds. 

This time, let's do this a bit different (just for some variety, and to try and see this from a different angle). This time let's compute the predicted 
probability of hiqual being 1 using the predict command with the pr option (the default). 

predict predp , pr 
(325 missing values generated) 

Below the table command is used to show the predicted probability of hiqual being 1 when broken down by cred_hl and pared. You might 

think you are having double vision, but note that the top line of the table shows the minimum value of  predp and the second line shows the 
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maximum value of predp, both of which are the same, showing that the predicted values are all identical within each cell (as they should be, 
since there are no other covariates in the model). We can then use these values to illustrate the meaning of the odds ratios from the above model. 

table cred_hl pared, contents(min predp max predp) 
 
---------------------------------------- 
Full      | 
Credent   | 
Teachers, | Parents Education, Lo Med Hi 
Hi vs Lo  |      low    medium      high 
----------+----------------------------- 
      low | .0523256  .0952381  .1190476 
          | .0523256  .0952381  .1190476 
          |  
     high | .5984849  .4615385        .5 
          | .5984849  .4615385        .5 
---------------------------------------- 

The odds ratio for _Icred_hl_1 represents the odds ratio of hiqual being 1 for cred_hl when parent education is low (because this was the 

omitted group for pared). This is shown below, illustrating that when parent education is low, the odds of a high credentialed school being high 

quality is about 27 times that of a low credentialed school. 

display ( .5984849 / (1 - .5984849)) / (.0523256 / (1 - .0523256)) 
26.995803 

The odds ratio for _Ipared_2 is the odds ratio formed by comparing schools with medium parent education with schools with low parent 

education for schools with low teacher credentials (because this is the reference group for cred_hl). We illustrate this below, which shows that 

when when teacher credentials are low, schools with medium parent education have an odds or being high quality that is about 1.9 times of 
schools with low parent education; however this effect is not statistically significant. 

display ( .0952381 / ( 1 - .0952381)) / ( .0523256 / ( 1 - .0523256)) 
1.9064321 

The effect of  _Ipared_3 is very similar to _Ipared_2, except that this compares the effect of high parent education schools with low parent 

education schools, that is, 

display ( .1190476 / ( 1 - .1190476)) / ( .0523256 / ( 1 - .0523256)) 
2.4474461 

This effect is not statistically significant. 

The variable _IcreXpar_~2 is an interaction term that crosses cred_hl with _Ipared_2. Because _Ipared_2 compares medium parent 

education schools with low parent education schools, the odds ratio for_IcreXpar_~2 is a comparison of the odds ratio 

for cred_hl for medium parent education schools as compared to low parent education schools. We can illustrate this below. The odds ratio 
for cred_hl for medium parent education schools is 

display (.4615385  / (1 - .4615385 )) / ( .0952381 / (1 - .0952381)) 
8.142858 

and the odds ratio for cred_hl for low parent education schools is 

display ( .5984849 / (1 - .5984849)) / (.0523256 / (1 - .0523256)) 
26.995803 

So the ratio of these odds is the coefficient for _IcreXpar_~2. In other words, the odds ratio for cred_hl when parent education is medium is 
about .3 (about 30%) of the size of the odds ratio for cred_hl when parent education is low. 

display 8.146 / 26.9927 
.3017853 

If we invert this odds ratio (1 / .3017) we get about 3.31, so we could likewise say that the odds ratio for cred_hl for low parent 

education schools is about 3.3 times that for medium parent education schools. This effect is statistically significant. 

The interpretation for _IcreXpar_~3 is similar to _IcreXpar_~2, except that it compares the odds ratios for cred_hl for the high parent 
education schools with the low parent education schools.  
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We should emphasize that when you have interaction terms, it is important to be very careful when interpreting any of the terms involved in the 

interaction. For example, in the above model you might be tempted to interpret_Ipared_2 as some kind of overall comparison of medium 

educated to low educated parents, as you normally would. However, because this term was part of an interaction, the interpretation is different. 

It is not the overall effect of high versus low education, but it is this effect when the other terms in the interaction are at the reference category 

(i.e., when cred_hl was low). Likewise, the effect of _Icred_hl_1 is not the overall effect ofcred_hl, but it is the effect 
of cred_hl when pared is at the reference category (i.e., when pared is low). 

2.3 Categorical and Continuous Predictors 

All of the prior examples in this chapter have used only categorical predictors. In chapter 1, we saw models which included categorical 

predictors, continuous predictors, and models that included categorical and continuous predictors. This section will focus on models that include 
both continuous and categorical predictors, as well as models that include interactions between a continuous and categorical predictor. 

2.3.1 A Continuous and a Two Level Categorical Predictor  

Let's first consider a model with one categorical predictor (with 2 levels) and one continuous predictor. The model below 
predicts hiqual from cred_hl and meals (the percentage of students receiving free meals). 

logit hiqual cred_hl meals 
 
Iteration 0:   log likelihood = -551.48395 
Iteration 1:   log likelihood = -272.58457 
Iteration 2:   log likelihood = -222.88248 
Iteration 3:   log likelihood = -207.71944 
Iteration 4:   log likelihood = -205.32492 
Iteration 5:   log likelihood =  -205.2436 
Iteration 6:   log likelihood = -205.24348 
 
Logistic regression                               Number of obs   =        875 
                                                  LR chi2(2)      =     692.48 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -205.24348                       Pseudo R2       =     0.6278 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     cred_hl |   .9843681   .3097759     3.18   0.001     .3772184    1.591518 
       meals |  -.1060442   .0078372   -13.53   0.000    -.1214048   -.0906836 
       _cons |   2.711355   .3792046     7.15   0.000     1.968128    3.454582 
------------------------------------------------------------------------------ 

And here are the results expressed using odds ratios. 

logit , or 
(some output omitted) 

------------------------------------------------------------------------------ 
      hiqual | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     cred_hl |    2.67612   .8289977     3.18   0.001     1.458223    4.911198 
       meals |   .8993849   .0070486   -13.53   0.000     .8856753    .9133066 
------------------------------------------------------------------------------ 

Let's now make a graph of the predicted values showing the predicted logit by meals. 

predict yhat, xb 
(325 missing values generated) 

We would like to make a graph which shows the predicted value for low credentialed and high credentialed using separate lines for each type 

of school.  To do this, we need to make a separate variable that has the predicted value for the low credentialed and high 

credentialed schools.  We can use the separate command below to take the predicted value (yhat) and make separate variables for each level 

of cred_hl (i.e., makingyhat0 for the low credentialed schools, and yhat1 for the high credentialed schools).   

separate yhat, by(cred_hl) 
              storage  display     value 
variable name   type   format      label      variable label 
------------------------------------------------------------------------------- 
yhat0           float  %9.0g                  yhat, cred_hl == low 
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yhat1           float  %9.0g                  yhat, cred_hl == high 

We can now show a graph of the predicted values using separate lines for the two types of schools.  

graph twoway line yhat0 yhat1 meals, xlabel(0 10 to 100) /// 
  ylabel(-8 -7 to 4) ytitle(Predicted Logit) sort scheme(s2mono) 

 

Let's look at the coefficients for this model, and relate those coefficients to the predicted logits in the graph above. The coefficient for meals is -

.106, which reflects the slope of the lines in the above graph. The coefficient for cred_hl represents the difference in the heights of the two lines 

(with the line for high credentialed) schools being .984 units higher than the line for the low credentialed schools. (Note that the units in this 

graph are the log odds of a school being high quality.)  Rather than focusing on the particular meaning of these coefficients, we wish to 

emphasize that the predicted logits in this model for the two groups form 2 parallel lines. The lines are parallel because the outcome is in the 

form of logits and the model only has main effects. We will soon look at a model which has an interaction of meals and cred_hl, which would 
then permit the lines to be non-parallel. 

We can view the same type of graph, except showing the predicted probability (instead of the predicted logit).  Rather than making new 

variables to contain the predicted values, let's use the same variable names, yhat yhat0 and yhat1, so let's drop these variables from the data file 
so we may use these variable names again. 

drop yhat yhat0 yhat1 

Now let's generate the predicted value, but this time in terms of the predicted probability, using the pr option. 

predict yhat, pr 
(325 missing values generated) 

And let's separate these into two different variables based on cred_hl. 

separate yhat, by(cred_hl) 
              storage  display     value 
variable name   type   format      label      variable label 
------------------------------------------------------------------------------- 
yhat0           float  %9.0g                  yhat, cred_hl == low 
yhat1           float  %9.0g                  yhat, cred_hl == high 

And below we see the graph showing the relationship between meals and the predicted probability of being a high quality school, with separate 

lines for high credentialed and low credentialed schools.  Although these lines do not look exactly parallel, they are parallel in that they both 
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reflect the same odds ratio. The odds ratio for meals is .899, so for every unit increase in meals, the odds of a school being high quality changes 
by .899. This is the same for the high credentialed and low credentialed schools. 

graph twoway line yhat0 yhat1 meals, xlabel(0 10 to 100) /// 
  ylabel(0 .1 to 1) ytitle(Predicted Probability) sort scheme(s2mono) 

 
  

2.3.2 A Continuous and a Two Level Categorical Predictor with Interaction  

Now let's include an interaction between cred_hl and meals which allows the relationship between meals and hiqual to be different for the high 

credentialed and low credentialed schools, i.e., allowing the lines of the predicted values to be non-parallel. 

We will use the xi command in this model to make it easy to create the interaction of cred_hl and meals. 

xi: logit hiqual i.cred_hl*meals 
 
i.cred_hl         _Icred_hl_0-1       (naturally coded; _Icred_hl_0 omitted) 
i.cred_hl*meals   _IcreXmeals_#       (coded as above) 
 
Iteration 0:   log likelihood = -551.48395 
Iteration 1:   log likelihood = -255.68833 
Iteration 2:   log likelihood = -213.88872 
Iteration 3:   log likelihood = -204.10454 
Iteration 4:   log likelihood = -202.74095 
Iteration 5:   log likelihood =   -202.666 
Iteration 6:   log likelihood = -202.66558 
 
Logistic regression                               Number of obs   =        875 
                                                  LR chi2(3)      =     697.64 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -202.66558                       Pseudo R2       =     0.6325 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
 _Icred_hl_1 |    2.22788   .6102254     3.65   0.000     1.031861      3.4239 
       meals |  -.0817427   .0114861    -7.12   0.000    -.1042552   -.0592303 
_IcreXmeal~1 |  -.0364404   .0153391    -2.38   0.018    -.0665045   -.0063763 
       _cons |   1.860882   .4916155     3.79   0.000     .8973332    2.824431 
------------------------------------------------------------------------------ 
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And here are the results expressed as odds ratios. 

logit , or 
(some output omitted) 

------------------------------------------------------------------------------ 
      hiqual | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
 _Icred_hl_1 |   9.280175   5.662998     3.65   0.000     2.806282    30.68887 
       meals |    .921509   .0105846    -7.12   0.000     .9009954    .9424897 
_IcreXmeal~1 |   .9642156   .0147902    -2.38   0.018     .9356587     .993644 
------------------------------------------------------------------------------ 

Note that the interaction term is significant. 

Let's now make a graph of the predicted values showing the predicted logit by meals. As we have done before, we will use the drop command 
to drop the variables we have used before. 

drop yhat yhat0 yhat1 

We use the predict command to get the predicted logit. 

predict yhat, xb 
(325 missing values generated) 

And we use the separate command to make separate variables for the high credentialed and low credentialed schools. 

separate yhat, by(cred_hl) 
              storage  display     value 
variable name   type   format      label      variable label 
------------------------------------------------------------------------------- 
yhat0           float  %9.0g                  yhat, cred_hl == low 
yhat1           float  %9.0g                  yhat, cred_hl == high 

Below we graph the relationship between meals and the predicted logit for a school being high quality. 

graph twoway line yhat0 yhat1 meals, xlabel(0 10 to 100) /// 
  ylabel(-8 -7 to 4) ytitle(Predicted Logit) sort scheme(s2mono) 
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You can clearly see that the lines of the predicted logits for the two groups are not parallel. This makes sense since the variable representing the 

interaction, _IcreXmeal~1, was significant. In fact, as you look at the graph above you can see that it looks like there are really two regression 

lines, one for the low credentialed group and another for the high credentialed group. To make this explicit, let's re-write the logit model from 

the results above as two separate equations, one for each group. 

low credentialed group 

logit(hiqual) = 1.86 + -0.0817*meals 

high credentialed group 

logit(hiqual) = (1.86 + 2.22)  + (-0.0817 + -.036)*meals 

    or more simply 
logit(hiqual) = 4.088  + -.118*meals 

Note that the low credentialed group has an intercept of 1.86 and a slope of -.08, while the high credentialed group has an intercept of 4.088 and 
a slope of -.118. 

Let's look at the same graph except substituting the predicted probabilities for the predicted logits by using the pr option on 
the predict command when we compute the predicted probabilities. 

drop yhat yhat0 yhat1 
predict yhat, pr 
separate yhat, by(cred_hl) 
graph twoway line yhat0 yhat1 meals, xlabel(0 10 to 100) /// 
  ylabel(0 .1 to 1) ytitle(Predicted Probability) sort scheme(s2mono) 

 

You can see that the differences in the shape of these two lines as well. Because we included an interaction term, the odds ratio for the high 

credentialed schools is different from the odds ratio for the low credentialedschools. In fact, if we look at the results of the logistic command, 

we can see that the odds ratio for the low credentialed schools (the reference group) is .921. The odds ratio for the high credentialed schools is 

.921 * .964 or .887. Note that we took the odds ratio for the reference group and then multiplied that by the interaction term, and that yielded the 

odds ratio for the high credentialed schools (in contrast to when the we were dealing with predicted logits we added these terms together, but 

when we are dealing with predicted probabilities we multiply these together). Another way of thinking about this is that the interaction term is 

the odds ratio for the high credentialed schools divided by the odds ratio for the low credentialed schools. In this case, the odds ratio for 
the high credentialed schools is .964 of that of the low credentialed schools. 



 

18 

 

The odds ratio for _Icred_hl_1 is a bit tricky to interpret because it is part of the interaction term. You might be temped to interpret this as a 

kind of overall effect of cred_hl; however, this is not the case. The odds ratio for_Icred_hl_1 is the odds ratio when meals is 0. Looking at the 

graph, think of forming the odds ratio for cred_hl based on the predicted probabilities when meals is 0 (i.e., about .98 vs .84). Based on this 

rough estimate we can compute the odds ratio for cred_hl when meals is 0 and compare that to the coefficient for _Icred_hl_1. 

      p2 / (1 - p2)     odds2     0.98 / (1 - 0.98)     49.000 
or = --------------- = ------- = ------------------- = ------- = 9.333 
      p1 / (1 - p1)     odds1     0.84 / (1 - 0.84)     5.250 

Indeed, the coefficient corresponds to what we see in the graph. However, very few schools have a value of meals being 0, so this may not be a 

very useful value for this coefficient. Instead, we can center the variablemeals to have a mean of 0 by subtracting the mean, and then this term 

would represent the odds ratio for cred_hl when meals is at the overall average. 

First, below we center the variable meals creating a new variable called mealcent. 

summarize meals 
generate mealcent=meals-r(mean) 
summ mealcent 
    Variable |     Obs        Mean   Std. Dev.       Min        Max 
-------------+----------------------------------------------------- 
    mealcent |    1200   -4.77e-07   31.23653     -52.15      47.85 

Next, we include mealcent as the continuous variable in our model. 

xi: logit hiqual i.cred_hl*mealcent 
 
i.cred_hl         _Icred_hl_0-1       (naturally coded; _Icred_hl_0 omitted) 
i.cre~hl*meal~t   _IcreXmealc_#       (coded as above) 
 
Iteration 0:   log likelihood = -551.48395 
Iteration 1:   log likelihood = -255.68833 
Iteration 2:   log likelihood = -213.88872 
Iteration 3:   log likelihood = -204.10454 
Iteration 4:   log likelihood = -202.74095 
Iteration 5:   log likelihood =   -202.666 
Iteration 6:   log likelihood = -202.66558 
Iteration 7:   log likelihood = -202.66558 
 
Logistic regression                               Number of obs   =        875 
                                                  LR chi2(3)      =     697.64 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -202.66558                       Pseudo R2       =     0.6325 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
 _Icred_hl_1 |   .3275149   .3919626     0.84   0.403    -.4407176    1.095747 
    mealcent |  -.0817427   .0114865    -7.12   0.000    -.1042558   -.0592296 
_IcreXmeal~1 |  -.0364404   .0153394    -2.38   0.018     -.066505   -.0063758 
       _cons |  -2.402002   .3009785    -7.98   0.000    -2.991909   -1.812095 
------------------------------------------------------------------------------ 

And here are the results as odds ratios 

logit , or 
(some output omitted) 

------------------------------------------------------------------------------ 
      hiqual | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
 _Icred_hl_1 |   1.387516   .5438542     0.84   0.403     .6435744    2.991418 
    mealcent |    .921509   .0105849    -7.12   0.000     .9009948    .9424903 
_IcreXmeal~1 |   .9642156   .0147904    -2.38   0.018     .9356583    .9936445 
------------------------------------------------------------------------------ 

Note that the only term that changed in the model was _Icred_hl_1 which now reflects the effect of cred_hl when meals is at the mean (about 

52). Note that this effect is significant. We can eyeball this value by computing the odds ratio for these two groups when meals is 52, which is 
about .09 versus .13 (see below). This eyeball value is about 1.5, which is close to the actual value (1.38). 
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      p2 / (1 - p2)     odds2     0.13 / (1 - 0.13)     0.149 
or = --------------- = ------- = ------------------- = ------- = 1.511 
      p1 / (1 - p1)     odds1     0.09 / (1 - 0.09)     0.099 

Now let's consider a model with a three level categorical predictor. 

2.3.3 A Continuous and a Three Level Categorical Predictor 

Let us extend this example further to include 3 categories for the variable cred, including schools with low, medium and high credentialed 

teachers. We start by looking at a model with just main effects (no interaction). 

xi: logit hiqual i.cred mealcent 
 
i.cred            _Icred_1-3          (naturally coded; _Icred_1 omitted) 
 
Iteration 0:   log likelihood = -757.42622 
Iteration 1:   log likelihood = -393.01669 
Iteration 2:   log likelihood = -328.35404 
Iteration 3:   log likelihood = -309.75082 
Iteration 4:   log likelihood = -307.17923 
Iteration 5:   log likelihood = -307.11337 
Iteration 6:   log likelihood = -307.11332 
 
Logistic regression                               Number of obs   =       1200 
                                                  LR chi2(3)      =     900.63 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -307.11332                       Pseudo R2       =     0.5945 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    _Icred_2 |   .7536416   .3268903     2.31   0.021     .1129484    1.394335 
    _Icred_3 |    .984952   .3089191     3.19   0.001     .3794817    1.590422 
    mealcent |  -.1054114   .0065193   -16.17   0.000     -.118189   -.0926337 
       _cons |  -2.806948   .3003886    -9.34   0.000    -3.395699   -2.218197 
------------------------------------------------------------------------------ 

And here are the results as odds ratios. 

logit , or 
(some output omitted) 

------------------------------------------------------------------------------ 
      hiqual | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    _Icred_2 |   2.124723   .6945514     2.31   0.021     1.119574    4.032291 
    _Icred_3 |   2.677683   .8271875     3.19   0.001     1.461527     4.90582 
    mealcent |   .8999542   .0058671   -16.17   0.000     .8885281    .9115273 
------------------------------------------------------------------------------ 

First, let's look at the odds ratios for cred_hl. The odds ratio for _Icred_2 compares the medium credentialed schools to the low 

credentialed schools (because the low credentialed) schools are the reference group. This indicates that a medium credentialed school has an 

odds of being high quality that is 2.12 times that of the low credentialed schools. Likewise, the effect for _Icred_3 indicates that the odds of 

being high quality forhigh credentialed schools is 2.677 that of the low credentialed schools. Note that since we did not have an interaction 
term in the model, we can talk about these overall effects without needing to worry about other predictors in the model. 

The effect of mealcent indicates that for every unit increase in mealcent, the odds of being a high quality school changes by a factor of .8999 

(about .9). Because this model does not include an interaction term, this model provides a single estimate for the effect of mealcent for all 3 

levels of cred. Below we can create and plot the predicted probabilities for the 3 levels of cred. 

drop yhat yhat0 yhat1  
predict yhat, pr 
separate yhat, by(cred) 
graph twoway line yhat1 yhat2 yhat3 mealcent, /// 
  xlabel(-50 -40 to 50) ylabel(0 .1 to 1) ytitle(Predicted Probability) /// 
  sort scheme(s2mono) 
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The above graph illustrates that as mealcent increases, the probability of being a high quality school decreases. We can see that the shape of this 

relationship is basically the same across the three levels of cred (because we have only included main effects in the model). Now let's look at a 
model where we include interactions. 

2.3.4 A Continuous and a Three Level Categorical Predictor with Interaction 

This model is the same as the one we examined above, except that it includes an interaction of cred and mealcent. 

xi: logit hiqual i.cred*mealcent 
 
i.cred            _Icred_1-3          (naturally coded; _Icred_1 omitted) 
i.cred*mealcent   _IcreXmealc_#       (coded as above) 
 
Iteration 0:   log likelihood = -757.42622 
Iteration 1:   log likelihood = -375.90053 
Iteration 2:   log likelihood =  -319.1446 
Iteration 3:   log likelihood = -306.19596 
Iteration 4:   log likelihood = -304.60216 
Iteration 5:   log likelihood = -304.52497 
Iteration 6:   log likelihood = -304.52455 
Iteration 7:   log likelihood = -304.52455 
 
Logistic regression                               Number of obs   =       1200 
                                                  LR chi2(5)      =     905.80 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -304.52455                       Pseudo R2       =     0.5979 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    _Icred_2 |   .3751273   .4088819     0.92   0.359    -.4262664    1.176521 
    _Icred_3 |   .3275149   .3919626     0.84   0.403    -.4407176    1.095747 
    mealcent |  -.0817427   .0114865    -7.12   0.000    -.1042558   -.0592296 
_IcreXmeal~2 |  -.0222125   .0164334    -1.35   0.176    -.0544214    .0099964 
_IcreXmeal~3 |  -.0364404   .0153394    -2.38   0.018     -.066505   -.0063758 
       _cons |  -2.402002   .3009785    -7.98   0.000    -2.991909   -1.812095 
------------------------------------------------------------------------------ 
xi: logistic hiqual i.cred*mealcent 
i.cred            _Icred_1-3          (naturally coded; _Icred_1 omitted) 
i.cred*mealcent   _IcreXmealc_#       (coded as above) 
 
Logit estimates                                   Number of obs   =       1200 
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                                                  LR chi2(5)      =     905.80 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -304.52455                       Pseudo R2       =     0.5979 
 
------------------------------------------------------------------------------ 
      hiqual | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    _Icred_2 |   1.455177   .5949954     0.92   0.359     .6529424    3.243072 
    _Icred_3 |   1.387516   .5438542     0.84   0.403     .6435744    2.991418 
    mealcent |    .921509   .0105849    -7.12   0.000     .9009948    .9424903 
_IcreXmeal~2 |   .9780324   .0160724    -1.35   0.176     .9470329    1.010047 
_IcreXmeal~3 |   .9642156   .0147904    -2.38   0.018     .9356583    .9936445 
------------------------------------------------------------------------------ 

We now must be much more careful in the interpretation of these results due to the interaction term. But first, let us make a graph of the 

predicted probabilities to help us picture the results as we interpret them. 

drop yhat yhat1 yhat2 yhat3 
predict yhat, pr 
separate yhat, by(cred) 
graph twoway line yhat1 yhat2 yhat3 mealcent, /// 
  xlabel(-50 -40 to 50) ylabel(0 .1 to 1) ytitle(Predicted Probability) /// 
  sort scheme(s2mono) 

 

This graph has 3 lines, but unlike the prior example these lines are not forced to be parallel. Each line has it own odds ratio determining its 

shape. As you can see, the dashed (cred=medium) and dotted (cred=high) schools have a similar shape, which is different from the solid line 

(cred=low). If we run the logistic regressions separately for each level of cred we can obtain the odds ratios for each of these 3 lines (the output 
has been edited to make it more brief). 

sort cred 
by cred: logit hiqual mealcent 
 
------------------------------------------------------------------------------- 
-> cred = low 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    mealcent |  -.0817427   .0114865    -7.12   0.000    -.1042558   -.0592297 
       _cons |  -2.402002   .3009784    -7.98   0.000    -2.991909   -1.812095 
------------------------------------------------------------------------------ 
 
------------------------------------------------------------------------------- 
-> cred = medium 
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------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    mealcent |  -.1039552   .0117517    -8.85   0.000    -.1269882   -.0809223 
       _cons |  -2.026875   .2767457    -7.32   0.000    -2.569286   -1.484463 
------------------------------------------------------------------------------ 
 
------------------------------------------------------------------------------- 
-> cred = high 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    mealcent |  -.1181831    .010166   -11.63   0.000    -.1381081   -.0982581 
       _cons |  -2.074487   .2510819    -8.26   0.000    -2.566598   -1.582376 
------------------------------------------------------------------------------ 
sort cred 
by cred: logistic hiqual mealcent 
-> cred = low 
------------------------------------------------------------------------------ 
      hiqual | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    mealcent |    .921509   .0105849    -7.12   0.000     .9009948    .9424903 
------------------------------------------------------------------------------ 
-> cred = medium 
------------------------------------------------------------------------------ 
      hiqual | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    mealcent |   .9012656   .0105914    -8.85   0.000     .8807441    .9222654 
------------------------------------------------------------------------------ 
-> cred = high 
------------------------------------------------------------------------------ 
      hiqual | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    mealcent |   .8885333   .0090328   -11.63   0.000     .8710045    .9064149 
------------------------------------------------------------------------------ 

These results indicate the odds ratio is .9215 when cred is low, .9012 when cred is medium, and .8885 when cred is high. Looking back at the 

graph, you see the dashed and dotted lines (where cred is medium and low) have the steepest descent, which corresponds to them having the 

smallest odds ratios. By contrast when cred is low, the effect of mealcent is not as strong, and hence the odds ratio for this group is closer to 1. 

Let's relate the odds ratios for the 3 groups to the odds ratios that we get from the original logistic regression analysis. First, note that the odds 

ratio for mealcent represents the odds ratio for the reference group on cred(i.e. when cred is low). Indeed, we see the odds ratio for mealcent is 
.921. 

The odds ratio for _IcreXmeal~2 represents the odds ratio for mealcent for the medium credentialed schools divided by the odds ratio for 

the low credentialed schools, see below. If the odds ratios for these groups were identical, then this ratio would be 1. This result indicates that 
the odds ratio for medium credentialed schools is .978 of that for the low credentialed schools, but this is not a significant effect. 

display .9012656 /  .921509  
.97803234 

Likewise, the odds ratio for _IcreXmeal~3 represents the odds ratio for mealcent for the high credentialed schools divided by the odds ratio 

for the low credentialed schools, see below. The odds ratio for highcredentialed schools is .964 of that for the low credentialed schools, and 
this is a significant effect. 

display .8885333 /  .921509  
.96421554 

The odds ratios for _Icred_2 and _Icred_3 represent the effects of cred when mealcent is at 0 (which is the mean of meals). In 

particular, _Icred_2 tests the difference between low credentialed and medium credentialed schools when meals is at the mean. We have 

repeated the graph from above, but put a vertical line when mealcent is 0 to help you see what is being compared. This odds ratio 

for _Icred_2 compares the dashed line with the solid line at the vertical line (when mealcent is 0). Likewise, _Icred_3 tests the difference 

between low credentialed and medium credentialed schools when meals is at the mean, so this compares the dotted line with the solid line in 
the graph above, at the vertical line (when mealcent is 0). 

graph twoway line yhat1 yhat2 yhat3 mealcent, /// 
  xlabel(-50 -40 to 50) ylabel(0 .1 to 1) ytitle(Predicted Probability) /// 
  sort scheme(s2mono) xline(0) 
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Both of these individual effects are not significant. We can test the overall effect of _Icred_2 and _Icred_3 using the test command as shown 

below.  Note we need to first re-run the original logistic regression with all 3 groups since we had run the separate logistic regressions 
previously, and we use quietly before the command to suppress the output. 

quietly xi: logit hiqual i.cred*mealcent 
quietly xi: logistic hiqual i.cred*mealcent 
test _Icred_2 _Icred_3 
 ( 1)  _Icred_2 = 0.0 
 ( 2)  _Icred_3 = 0.0 
 
           chi2(  2) =    0.99 
         Prob > chi2 =    0.6098 

Note that we could also use the lrtest command as illustrated in lesson 1 to perform this test using a likelihood ratio test. Note that these give 

much the same result. Note that i.cred|mealcent is the same asi.cred*mealcent but omits the main effects for i.cred. 

estimates store model1 
xi: logit hiqual i.cred|mealcent 
 
i.cred            _Icred_1-3          (naturally coded; _Icred_1 omitted) 
i.cred|mealcent   _IcreXmealc_#       (coded as above) 
 
Iteration 0:   log likelihood = -757.42622 
Iteration 1:   log likelihood =  -376.6609 
Iteration 2:   log likelihood =  -319.1809 
Iteration 3:   log likelihood = -306.47587 
Iteration 4:   log likelihood = -305.07359 
Iteration 5:   log likelihood = -305.04574 
Iteration 6:   log likelihood = -305.04573 
 
Logistic regression                               Number of obs   =       1200 
                                                  LR chi2(3)      =     904.76 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -305.04573                       Pseudo R2       =     0.5973 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    mealcent |  -.0768575   .0095242    -8.07   0.000    -.0955246   -.0581904 
_IcreXmeal~2 |   -.031567    .012051    -2.62   0.009    -.0551866   -.0079474 
_IcreXmeal~3 |  -.0441854   .0111627    -3.96   0.000    -.0660638    -.022307 
       _cons |  -2.162198    .156703   -13.80   0.000    -2.469331   -1.855066 
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------------------------------------------------------------------------------ 
 
xi: logistic hiqual i.cred|mealcent 
i.cred            _Icred_1-3          (naturally coded; _Icred_1 omitted) 
i.cred|mealcent   _IcreXmealc_#       (coded as above) 
 
Logit estimates                                   Number of obs   =       1200 
                                                  LR chi2(3)      =     904.76 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -305.04573                       Pseudo R2       =     0.5973 
 
------------------------------------------------------------------------------ 
      hiqual | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    mealcent |   .9260218   .0088196    -8.07   0.000      .908896    .9434703 
_IcreXmeal~2 |    .968926   .0116766    -2.62   0.009     .9463085    .9920841 
_IcreXmeal~3 |   .9567766   .0106802    -3.96   0.000     .9360711      .97794 
------------------------------------------------------------------------------ 
lrtest . model1 
Logistic:  likelihood-ratio test                      chi2(2)     =       1.04 
                                                      Prob > chi2 =     0.5938 

Say that we had wanted to test the effect of cred when meals was 40. We could do this by centering meals around 40 as shown below and then 

re-running the logistic regression. 

generate meal40 = meals - 40 
xi: logit hiqual i.cred*meal40 
 
i.cred            _Icred_1-3          (naturally coded; _Icred_1 omitted) 
i.cred*meal40     _IcreXmeal4_#       (coded as above) 
 
Iteration 0:   log likelihood = -757.42622 
Iteration 1:   log likelihood = -375.90054 
Iteration 2:   log likelihood =  -319.1446 
Iteration 3:   log likelihood = -306.19596 
Iteration 4:   log likelihood = -304.60217 
Iteration 5:   log likelihood = -304.52497 
Iteration 6:   log likelihood = -304.52455 
 
Logistic regression                               Number of obs   =       1200 
                                                  LR chi2(5)      =     905.80 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -304.52455                       Pseudo R2       =     0.5979 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    _Icred_2 |   .6450093   .3127673     2.06   0.039     .0319966    1.258022 
    _Icred_3 |   .7702654   .3004048     2.56   0.010     .1814829    1.359048 
      meal40 |  -.0817427   .0114861    -7.12   0.000    -.1042552   -.0592303 
_IcreXmeal~2 |  -.0222125   .0164332    -1.35   0.176     -.054421    .0099959 
_IcreXmeal~3 |  -.0364404   .0153391    -2.38   0.018    -.0665044   -.0063763 
       _cons |  -1.408828   .2483308    -5.67   0.000    -1.895547   -.9221083 
------------------------------------------------------------------------------ 
 
xi: logistic hiqual i.cred*meal40 
i.cred            _Icred_1-3          (naturally coded; _Icred_1 omitted) 
i.cred*meal40     _IcreXmeal4_#       (coded as above) 
 
Logit estimates                                   Number of obs   =       1200 
                                                  LR chi2(5)      =     905.80 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -304.52455                       Pseudo R2       =     0.5979 
 
------------------------------------------------------------------------------ 
      hiqual | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    _Icred_2 |   1.906005    .596136     2.06   0.039     1.032514    3.518455 
    _Icred_3 |   2.160339   .6489762     2.56   0.010     1.198994    3.892485 
      meal40 |    .921509   .0105846    -7.12   0.000     .9009954    .9424897 
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_IcreXmeal~2 |   .9780324   .0160722    -1.35   0.176     .9470334    1.010046 
_IcreXmeal~3 |   .9642156   .0147902    -2.38   0.018     .9356588     .993644 
------------------------------------------------------------------------------ 
test _Icred_2 _Icred_3 
 ( 1)  _Icred_2 = 0.0 
 ( 2)  _Icred_3 = 0.0 
 
           chi2(  2) =    6.83 
         Prob > chi2 =    0.0329 

Instead of the test command, we could have used lrtest to perform a likelihood ratio test as we showed previously. 

estimates store model2 
xi: logit hiqual i.cred|meal40 
 
i.cred            _Icred_1-3          (naturally coded; _Icred_1 omitted) 
i.cred|meal40     _IcreXmeal4_#       (coded as above) 
 
Iteration 0:   log likelihood = -757.42622 
Iteration 1:   log likelihood =   -381.456 
Iteration 2:   log likelihood = -322.22663 
Iteration 3:   log likelihood = -309.37594 
Iteration 4:   log likelihood = -308.13895 
Iteration 5:   log likelihood = -308.11346 
Iteration 6:   log likelihood = -308.11344 
 
Logistic regression                               Number of obs   =       1200 
                                                  LR chi2(3)      =     898.63 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -308.11344                       Pseudo R2       =     0.5932 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      meal40 |  -.0816905   .0102262    -7.99   0.000    -.1017335   -.0616475 
_IcreXmeal~2 |  -.0246449     .01547    -1.59   0.111    -.0549655    .0056757 
_IcreXmeal~3 |  -.0432141    .014391    -3.00   0.003    -.0714199   -.0150082 
       _cons |  -.8618526    .115093    -7.49   0.000    -1.087431   -.6362744 
------------------------------------------------------------------------------ 
 
xi: logistic hiqual i.cred|meal40 
i.cred            _Icred_1-3          (naturally coded; _Icred_1 omitted) 
i.cred|meal40     _IcreXmeal4_#       (coded as above) 
 
Logit estimates                                   Number of obs   =       1200 
                                                  LR chi2(3)      =     898.63 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -308.11344                       Pseudo R2       =     0.5932 
 
------------------------------------------------------------------------------ 
      hiqual | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      meal40 |   .9215572    .009424    -7.99   0.000     .9032703    .9402143 
_IcreXmeal~2 |   .9756563   .0150934    -1.59   0.111     .9465178    1.005692 
_IcreXmeal~3 |   .9577064   .0137824    -3.00   0.003     .9310708    .9851038 
------------------------------------------------------------------------------ 
lrtest . model2 
Logistic:  likelihood-ratio test                      chi2(2)     =       7.18 
                                                      Prob > chi2 =     0.0276 

These results show that the overall effect of cred is significant when meals is 40. In particular, odds ratio for _Icred_3 is 2.160339, indicating 

that high credentialed schools have an odds about 2.16 times that of low credentialed schools of being high quality when the percent of 

students receiving free meals is 40%.  This effect is statistically significant.  Likewise the odds ratio for _Icred_2 is about 1.9, indicating 

that medium credentialed schools have an odds about 1.9 times that of low credentialed schools of being high quality when meals is 40%, and 
this is also significant.  

2.4 More on Interpreting Coefficients and Odds Ratios 
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At the start of this chapter, we noted that if you understand how to interpret coefficients for models with categorical variables with OLS 

regression, then this will help you be able to interpret coefficients and odds ratios in logistic regression. In fact, the interpretation of coefficients 

for OLS and logistic regression are identical, except that in OLS the outcome variable is the dependent variable, whereas in logistic regression 

the outcome variable is the "log odds of the outcome variable being 1".  Aside from this difference, the interpretation of the coefficients is the 

same because both of these methods are linear models. However, it is much easier to interpret odds ratios than it is to interpret coefficients but 

the meaning of the odds ratios does not have a direct relationship to OLS like the coefficients.  Where OLS (and logistic regression coefficients) 

form comparisons by subtraction, we have seen that odds ratios form comparisons by division. We illustrate this below with a small fictitious 

data file that has one outcome variable y, two categorical predictors x1 and x2 and a variable representing the product of these two 
variables, x12. You can access this file from within Stata like this. 

use http://www.ats.ucla.edu/stat/stata/webbooks/logistic/compare  

We then analyze this data using OLS (via the regress command), using logistic regression with coefficients (with the logit command) and using 

logistic regression with odds ratios (via the logistic command).  The table below shows the commands issued to obtain these 3 analyses, and the 

results of the respective 3 regressions and the predicted values broken down by x1 and x2. We then show the interpretation of the coefficient (in 

the case of OLS and Logistic using Logits) and the odds ratio (in the case of using Logistic with Odds Ratios).  Let's compare the 
coefficients/odds ratios for these analyses with respect to the predicted values in each analysis. 

Note the similarity in the coefficients for OLS and logistic with respect to their predicted values.  The coefficient for x1 in OLS compares, when 

x2 is 0, the predicted value when x1 is 1 minus the predicted value when x1 is 0, .666 - .5.  Likewise,  the coefficient for x1 in Logistic with 

Logits compares, when x2 is 0, the predicted value when x1 is 1 minus the predicted value when x1 is 0, .693 - .0. Even though the predicted 

values are different, the relationship between the predicted values and the coefficients is the same. Now, compare these two methods with 

Logistic with Odds Ratios.  For that analysis,  the coefficient for x1 compares, when x2 is 0, the predicted value when x1 is 1 divided by the 

predicted value x1 is 0, 2 / 1. Note that all three of these methods are comparing, when x2 is 0, the predicted value when x1 is 1 to the predicted 

value when x1 is 0, but OLS and Logistic with Logits makes this comparison by subtraction whereas Logistic with Odds Ratios makes this 

comparison by division.  If you examine the predicted values and the interpretation of the odds ratios/coefficients for these three methods 
for x2 and for x12 you will see that this same relationship holds.   

Likewise, this holds true for the other examples shown in this chapter.  If you knew how to interpret the coefficients using OLS regression, you 

could then infer the interpretation of the coefficients when using Logistic with Logits and when using Logistic with Odds Ratios.  The main leap 

is that when OLS makes comparisons using subtraction, you would substitute the subtraction with division to arrive at the comparisons that 
would be made using Logistic with Odds Ratios. 

  OLS Logistic with Logits Logistic with Odds Ratios 

Stata Command for analysis  
. regress y x1 x2 x12 
adjust , by(x1 x2) 

. logit y x1 x2 x12 
adjust , by(x1 x2) 

. logistic y x1 x2 x12 
adjust , by(x1 x2) exp 

Regression Results 

   x1 .166 
   x2 .3 
  x12 .018 
_cons .5 

   x1   .693 
   x2  1.386 
  x12  2.079 
_cons  0.0 

   x1  2 
   x2  4 
  x12  8 

Predicted Values by x1 and x2. 

   |   x2        
x1 | 0     1 
---+---------- 
 0 | .5   .8 
 1 | .666 .984 

    |   x2        
 x1 | 0     1 
----+----------- 
  0 | 0    1.386 
  1 | .693 4.158 

    |   x2        
 x1 | 0    1 
----+----------- 
  0 | 1    4 
  1 | 2    64 

Interpretation of coefficient/odds 

ratio for X1 

The difference between .666 and 

.5 = .166, (the effect of  x1 when 

x2 is 0). 

The difference between .693 and 0 

= .693, (the effect of  x1 when x2 

is 0). 

The ratio of 2 / 1, (the effect of  x1 

when x2 is 0). 

Interpretation of coefficient/odds 

ratio for X2 

The difference between .8 and .5 

= .3, (the effect of x2 when x1 is 

0). 

The difference between 1.386 and 

0 = 1.386, (the effect of x2 when 

x1 is 0). 

The ratio of 4 / 1, (the effect of  x2 

when x1 is 0). 

Interpretation of coefficient/odds 

ratio for X12 

The difference between (.984 - .8) 

and (.666 - 5) = .018, (the effect of 

x1 when x2=1 minus the effect of 

x1 when x2=0). 

The difference between (4.15 - 

1.38) and (.693 - 0) = 2.077, (the 

effect of x1 when x2=1 minus the 

effect of x1 when x2=0). 

The ratio of (64 / 4) divided by ( 

2 / 1), (the effect of x1 when 

x2=1 divided by the effect of x1 

when x2=0). 

Notes on interpretation   

Note that the interpretation of the 

results is identical to OLS.  The 

only difference is the predicted 

value is a "Logit", but the 

relationship between the 

coefficients and the predicted 

values is the same as with OLS. 

The interpretation of the results 

similar to OLS and Logits, except 

that the coefficients in OLS and 

Logits reflect the differences in 

predicted values, the Odds Ratios 

reflect the ratios of the predicted 

values. 

2.5 Summary 
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This chapter has covered a variety of logistic models involving categorical predictors, including models with a single categorical predictor, with 

two categorical predictors with just main effects, models with two categorical predictors with an interaction, models with continuous and 

categorical predictors with just main effects and models with continuous and categorical predictors with an interaction.  The interpretation of the 

results from a simple logistic regression can be very tricky, and as we have seen in this chapter it is important to exercise extra caution in 

interpreting the results of models with categorical predictors, especially if your models have interactions. In the presence of interactions, the 
meaning of the lower order effects changes and they need to be interpreted in light of the interaction.   

If the interaction involves two categorical variables (say x1 and x2), we showed examples illustrating that tables showing the predicted values 

broken down by x1 and x2 can be useful in seeing the nature of the interaction, and for relating the tests formed by the coefficients to the 

predicted odds ratios (or predicted probabilities).  If the interaction is between a continuous variable (say x1) and a categorical variable (say x2) 

then showing graphs of the predicted probabilities by x1 with separate lines for x2 is a useful way of illustrating the interaction.  This allows you 

to see how the lines are not parallel and allows you to visualize making comparisons of the categorical variable at certain levels of the 
continuous variable.   

The examples from this chapter showed how important it is to test for and, when needed, include such interaction terms because if such an 

interaction is present in the data, but not in your model, the predicted values can be quite discrepant from the actual data, leading to poor model 

fit and a poorer understanding of your data.  The next chapter will address diagnostics when using logistic regression to help you assess the 
quality of your model and to see whether it is accurately reflecting your data. 
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