which relaxes the assumption of the independence of irrelevant a:lternatiy_es. Fi-

nally, we present the rank-ordered logistic regression model, in which the cutcome
: -

is the ranking of a set of alternatives.

Chapter 8 on count outcomes presents the Poisson and negative_: binom1a1. Lir;g:,rres—
sion models. We show how to test the Poisson mod_el’s‘ assgmptlon of equi 1speﬂr-
ston and how to incorporate differences in exposure tlI'IlE.‘ 1r{to t}?e models. g ei-
next two models, the zero-truncated Poisson and negative binomial moc.iels, he::t
with the common problem of having no zeros in your data. We combine these
models with the logit model to construct the hurdle moc.lel for counts. W‘; S;on—
clude by considering two zero-inflated models that are designed for data with zero

counts.

Chapter 9 covers more topics that extend material presented ea.rher. We dlscuscs1
the use and interpretation of categorical independent variables, 1nteraclt1ons, an
nonlinear terms. We also provide tips on how to use Stata more efficiently and

effectively.

4 Models for binary outcomes

Regression models for binary outcomes are the foundation from which more complex
models for ordinal, nominal, and count models can be derived. Ordinal and nominal
regression models are equivalent to the simultaneous estimation of a series of binary
outcomes. Although the link is less direct in count models, the Poisson distribution can
be derived as the outcome of many binary trials. More importantly for our purposes, the
zero-inflated count models that we discuss in chapter 8 merge a binary logit or probit
with a standard Poisson or negative binomial model. Consequently, the principles of
fitting, testing, and interpreting hinary models provide tools that can be readily adapted
to models in later chapters. Thus although each- chapter is largely self-contained, this
chapter provides somewhat more detailed explanations than Iater chapters. Asa result,
even if your interests are in models for ordinal, nominal, or count outcomes, you should
benefit from reading this chapter.

Binary dependent variables have two values, typically coded as 0 for a negative .
outcome (i.e., the event did not oceur) and 1 as a positive outcome (ie., the event did
occur). Binary outcomes are ubiquitous, and examples come easily to mind. Did g
person vote? Is a manufacturing firm unionized? Is someone a feminist or nonfeminist?

- Did a startup company go bankrupt? Five years after a person was diagnosed with

cancer, is he or she still alive? Was a purchased item returned to the store or kept?

Regression models for binary outcomes allow a researcher to explore how each ex-
planatory variable affects the probability of the event occurring. We focus on the two
most often used models, the binary logit and binary probit models, referred to Jjointly
as the binary regression model (BRM). Because the model is nonlinear, the magnitude
of the change in the outcome probability that is associated with given change in one
of the independent variables depends on the levels of all the independent variables. The
challenge of interpretation is to find a summary of the way in which changes in the inde-
pendent variables are associated with changes in the outcome that best reflect the key
substantive processes without overwhelming yourself or your readers with distracting
detail.

The chapter begins by reviewing the mathematical structure of binary models. We
then examine statistical testing and fit, and finally, methods of interpretation. These
discussions are intended as a review for those who are familiar with the models. For a
tomplete discussion, see Long (1997). You can obtain sample do-files and data files that
reproduce the examples in this chapter by downloading the spost9 do and spost9_ado
packages (see chapter 1 for details).
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4.1.1 A latent-variable model
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There are three ways to derive the BRM, with each method leading to the same mathe-
matical model. First, an unobserved or latent variable can be hypothesized along with
a measurement model relating the latent variable to the observed, binary outcome. Sec-
ond, the model can be constructed as a probability model. Third, the model can be
generated as a random utility or discrete-choice model. This last approach is not con-
sidered in our review: see Long (1997, 155-156) for an introduction or Pudney (1989)
for a detailed discussion. -

Assume a latent or unobserved variable y* ranging from —oo to oo that is related to
the observed independent variables by the structural equation

yi = Xz‘ﬁffi

where i indicates the observation and ¢ is a random error. For one independent variable,
we can simplify the notation to

g = o i+ e

"These equations are identical to those for the linear regression model except that the
dependent variable is unobserved.

The link between the observed binary y and the latent y* is made with a simple
measurement equation:
1 Hyf >0
T 0 ity <0

Caseswith-positive-values of ¢* are observed as y =1 whereas cases with negative or
zero values of 4 are observed as y = 0.

Imagine a survey item that asks respondents if they agree or disagree with the
proposition that “a working mother can establish just as warm and secure a relationship
with her children as a mother who does not work”. Obviocusly, respondents vary greatly
in their opinions on this issue. Some people adamantly agree with the proposition,
some adamantly disagree, and still others have only weak opinions one way or the
other. We can imagine an underlying continuum of possible responses to this item, with
every respondent having some value on this continuum (i.e., some value of y*). Those
respondents whose value of 3 is positive answer “agree” to the survey question (y = 1),
and those whose value of y* is 0 or negative answer “disagree” (y = 0). A shiff in
a respondent’s opinion might move them from agreeing strongly with the position to
agreeing weakly with the position, which would not change the response we observe.
Or, the respondent might move from weakly agreeing to weakly disagreeing, in which
case we would observe a change from y =1ftoy =0,

Consider a second example, which we use throughout this chapter. Tety=1ifa
woman is in the paid labor force and y = 0 if she is not. The independent variables
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i;l;}i;lif ixrflazihaiaii (s):(;l;ras Elumblejrof cllllildren, education, and expected wages. Not all
ce {(y = 1) are there with th i i
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Figure 4.1: Relationship between latent variable y* and Pr{y = 1) for the BRM

The latent-variable model for binar i i
1 ¥ outcomes is shown in fisure 4.1 f i
pendent variable. For a given value of #, we see that ’ o one fude

Pr(y=1]z) =Pr(y* > 0| z)

Substituting the structural model and rearranging terms
¥

Pr(y=1|z) =Pr(c > — [a + Bx] | z) (4.1)
This equation shows that the probability depends on the distribution of the error, £

'I'wo distributions of £ are commonly assumed, both with an assumed mean of 0

First, ¢ is assumed $o be distributed no i
. ) rmally with Va =1 is i
probit model, in which (4.1) becomes ’ ) s leads t0 tho binary

P a+3x 1 tQ
ry=1]z) = \/_Q_ﬂeXp(T) ot

Alternatively, ¢ is assumed to be distri isti
' : istributed logistically with Var(e) = =2 i
the binary logit model with the simpler equation (€)= /3 deading to
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exp (e + Gx) - : 49
Pr(y:llf):l+exg(a+ﬁ$) (4.2)

The peculiar value assumed for Var(e) in the logit model illustrates a basic pOiII)lt
about the identification of models with latent outcomes. In the LRM, Var(e) can be

estimated because y is observed. For the BRM, the value of Var(g) must be assumed -

becanse the dependent variable is unobserved. The model i.s unidentlﬁedvun}es)s—arll
assumption is made about the variance of the errors. For problt, we assume Var Em;d
because this leads to a simple form of the model. If a dlﬂ‘ere:nt value. Wer(ﬂi assIu th,;
this would simply change the values of the struct.ural coefﬁments' umfo;:m y.. 1(14 2
logit model, the variance is set to 72/3 because this leads to the sunpled or‘m lltl H.ed; .
Although the value assumed for Var(e) is arbitrary, the value chosen does not a

the computed value of the probability (see Long 1997, 49-50 for a simple proof). In

effect, changing the assumed variance affects the spread of the distribution but not the
! .
proportion of the distribution above or below the threshold.

Panel A: Plot of y*
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Figure 4.2: Relationship between the linear model y* = a + Gz + £ and the nonlinear -

probability model Pr(y =1 | z) = F{a + 8z).

For both models, the probability of the event occurring is the -cumulative density
function {cdf) of ¢ evaluated af given values of the independent variables:

Pr(y = 1|x) = F (xB)
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where F'is the normal cdf & for the probit model and the logistic cdf A for the logit
model. The relationship between the linear latent-variable model and the resulting
nonlinear probability model is shown in figure 4.2 for a model with one independent,
variable. Panel A shows the error distribution for nine values of x, which we have
labeled 1, 2, ..., 9. The area where y™ > 0 corresponds to Pr(y = 1| 2) and has been
shaded. Panel B plots Pr (y=1]x) corresponding to the shaded regions in panel A.
As we move from 1 to 2, only a portion of the thin tail crosses the threshold in panel A,
resulting in a small change in Pr (y=1}z) in panel B. As we move from 2 to 3 to 4,
thicker regions of the error distribution slide over the threshold, and the increase in

Pr{y =1|z) becomes larger. The resulting curve is the well-known S-curve associated
with the BRM.

---4.1.2 A nonlinear probability model

Can all binary dependent variables be conceptualized as observed manifestations of some
underlying latent propensity? Although philosophically interesting, perhaps, the ques-
tion is of little practical importance, as the BRM can also be derived without appealing
to a latent variable. This is done by specifying a nonlinear model relating the 2’s to
the probability of an event. Following Theil (1970), the logit model can be derived by
constructing a model in which the predicted Pr(y =1 ! x) is forced to be within the
range 0 to 1. For example, in the linear probability model,

Priy=1]x)=x@+¢

the predicted probabilities can be greater than 1 and less than 0. To constrain the
predictions to the range 0 to 1, we first transform the probability into the odds,

Priy=1]x%) Priy=1{x)
Q(X):Pr(yzﬁ)]x) T 1-Priy=11x)

which indicate how often something happens (y = 1) relative to how often it does not
happen (y = 0), and range from 0 when Pr (¥ = 1|x) = 0to oo when Pr (y=1|x)=1.
The log of the odds, or logit, ranges from —oc to oo, This range suggests a model that
Is linear in the logit:

In8 {x) = x3

This equation can be shown to be equivalent to the logit model from (4.2). Interpretation
of this form of the logit model often focuses on factor changes in the odds, which are
discussed below.

Other binary regression models are created by choosing functions of x(3 that range
from 0 to 1. Cumnulative distribution functions have this property and readily provide
several examples. For example, the odf for the standard normal distribution results in
the probit model. ‘
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4.2 Estimation using logit and probit

Logit and probit can be fitted with the following commands and their basic options:

logit depvar [indepvars] [if] [in] |weight] [, noconstant level(#) or

robust cluster(varname) nolog|

probit depvar [indepvars| [if ] [in] [weight] [, noconstant Level(#)

robust cluster (varname) nolog]

We have never had a problem with either of these models converging, even with small
samples and data with wide variation in scaling.

Variable lists

depuvar is the dependent variable. indepvars is a list of independent variables. If indep-
vars is not included, Stata fits a model with only an ‘mtercept.

Warning For binary models, Stata defines observations in which depvar = 0. as nega;izz
outcomes and observations in which depvar equals any other _non_m1ss£mg v ue
(including negative values) as positive outcomes. To avoid possible confusion,
urge you to explicitly create a 0/1 variable for use as depuar.

Specifying the estimation_sample
if and in qualifiers can be used to restrict the estimation sample. For exa},mple, 1fdy(]:))u
wanted to fit a logit model for only women who went to college (as- mdlca_dte Y

the variable we), you could specify logit 1fp kb k618 age hc lwg if we==1.

Listwise deletion Stata excludes cases in which there are missing valuses fcu;l any oj
the variables in the model. Accordingly, if two models are _ﬁt'ted using the s}allm
dataset but have different sets of independent variables, it is poss1b.le to da\-rz
different samples. We recommend that you use mark and markout (discussed i
chapter 3) to explicitly remove cases with missing data.

Weights
Both logit and probit can be used with fweights, pweights, and iweights. In chap-

ter 3, we provide a brief discussion of the different types of weights and how weighting )

variables are specified.
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Options '

noconstant specifies that the model should not have a constant term. This would rarely
be used for these models. ' :

level(# ) specifies the level of the confidence interval. By default, Stata provides 95%
confidence intervals for estimated coefficients. You can also change the default level,
say to a 90% interval, with the command set level 90. -

or (logit only) reports the “odds ratios” defined as exp(B). Standard errors and con-
fidence intervals are similarly transformed. Alternatively, our listcoef command
can be used.

robust indicates that robust variance estimates are to be used. When cluster() is
specified, robust standard errors are used automatically. We provide a brief general
discussion of these options in chapter 3.

cluster (varname) specifies that the observations are independent across the groups
specified by unique values of varname but not necessarily within the groups.

nolog suppresses the iteration history.

Example

Our example is from Mroz's (1987) study of the labor force participation of women,
using data from the 1976 Panel Study of Income Dynamics.! The sample consists of
753 white, married women between the ages of 30 and 60 years. The dependent variable
Lfp equals 1 if a woman is employed and otherwise equals 0. Because we have assigned
variable labels, a complete description of the data can be obtained using describe and
summarize:

. use http://ww.stata—press.com/data/lf2/bin1fp2, clear
{Data from 1976 PSID-T Mroz)

- describe 1fp k& k618 age wc hc lwg inc

storage display value
variable name type format Jabel variable label
1fp byte %9.0g 1fplbl Paid Labor Force: l=yes O=no
k5 byte %9.0g # kids < 8
k618 byte 8.0g # kids 6-18
age byte %9.0g Wife’s age in years
we byte %9.0g collbl Wife College: i=yes O=no
he byte %9.0g collbl Husband College: l1=yes O=nc
lug float %9.0g Log of wife’s estimated wages
inc float %9.0g Family income excluding wife’s

1. These data were generously made available by Thomas Mroz.
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. summarize 1fp k5 k618 age wc he lwg inc

Variable Obs Mean S5td. Dev. Min Max
1fp 753 .5683931 . 4956295 4] ;
k5 753 .2377158 .523959 0 >
k618 753 1.353254 1.319874 0 o
age 753 42 53785 8.072574 a0
we 753 2815408 4500494 a 1
o 1
he 753 .3917663 .A884694
1lwg 753 1.097115 .5875564 -2.054124  3.218878
inc 753 20.12897 11.6348 -.0290001 98

Using these data,

with both the logit and probit commands, and then we created a table of results with

estimates table:

we fitted the model

Pl" (1fp = 1) = F(,BQ + )81;51{5 + ﬂk613k618 + ﬂageage
+ .PGWCWC + ﬁhchc + ,Blwglwg + .6incinc)

. logit 1fp k5 k618 age wc hc lwg inc, nolog

isti i Number of cbs = 753
Logistic regression e : roa o
Prob > chi2 = 0.0000
= .1209
Log likelihood = -452.63296 Pseudo R2 0.12
ifp Coef. Std. Err. z P>zl [95% Conf. Intervall
k5 -1.462912  .1970006 -7.43 0.000 -1.849027 71.076322
k618 —.0645707  .0680008 -0.95  0.342 -.1978499 0887 :
age -.0628706 .0127831 -4.82  0.000 -.0879249 —.0378526
we .8072738 2200799 3.51 90.000 . 3565215 1.268
hc 1117336 2060397 0.54__0.588__ -.2920869 ... ..5155664
lug .6046931 .1608176 4.01  ©0.000 . 3090961 .900292;
inc -.0344464  .0082084 -4.,20  0.000 -.0505346 -.0123292
cons 3.18214  .6443751 4.94  0.000 1.919188 4.445
. estimates store logit

4.2 FEstimation using logit and probit

- probit 1fp kb k618 age wc he 1lwg inc,

nolog
Probit regressicn Number of obs = 753
LR chi2(7) = 124.38
: Prob > chi2 = 0.0000
Log likelihood = -452,69496 Pseudo R2 0.1208
1fp Coef. Std. Err. z P>|z| “[95% Conf. Interval]
k5 ~.8747112 1135533 =7.70  0.000 -1.097281  -.8521411
k618 -.0386945  .0404893 -0.95  0.340 -.117952 .0407631
age —-.0378235  .0075093 -4.97  0.000 —.0527376 -.0229095
we .4883144 1354873 3.60 0.000 L2227642 . 7538645
he -0571704 1240052 0.46  0.645 -.18587564 .3002161
Llug 3656287  .0877792 4.17 0,000 -1935847 -5376727
ine | -.020525 0047769 -4.30  0.000 ~.0298875  -,0111626
_cons 1.918422  .3806536 5.04 0.000 1.172355 2.66449

. estimates store probit
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Although the iteration log was suppressed by the nolog option, the value of the log
likelihood. at convergence is listed as Log likelihood. The information in the header
and table of coefficients is in the same form as discussed in chapter 3.

We can use estimates table to create a table that combines the results:

- estimates table logit probit, b(%9.3f) t label varwidth (30)

Variable logit probit
# kids < 6 -1.4863 -0.875
-7.43 =7.7¢
# kids 6-18 -0.085 -0.039
-0.95 -0.95
Wife’s age in years -0.063 ~0.038
-4.92 -1.97
Wife College: l=yes O=no 0.807 0.488
3.51 3.60
Husband College: 1=yes O=no 0.112 0.057
.54 0.46
Log of wife’s estimated wvages 0.605 0.366
4.01 4.17
Family income excluding wife’s -0.034 -0.021
-4.20 -4.30
Constant 3.182 1.918
4.94 5.04
legend: b/t

The estimated coefficients differ from lo

git to probit by a factor of about’ 177

For

example, the ratio of the logit to probit coefficient for k5 is 1.67 and for ind'is 1.68.
This illustrates how the magnitudes of the coefficients are affected by the assumed
Var(e). The exception to the ratio of 1.7 is the coefficient for he. This estimate has a

great deal of sampling variability (
1.7 rule often does not hold. Valies

use they are not

ie., a large standard error), and in such cases, the
of the z-tests are quite similar beca
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_affected by the assumed Var(g). The 2-test statistics are not exactly the same because
the two models assume different distributions of the errors.

4.2.1 Observations predicted perfectly

ML estimation is not possible when the dependent variable does not vary within one of
the categories of an independent variable. Say that you are fitting a logit model predict-
ing whether a person voted in the last election, vote, and that one of the independent
variables is whether the person is enrolled in college, college. If you had a small num-

ber of college students in your sample, it is possible that none of them voted in the last

election. That is, vote==0 every time college==1. The model cannot be fifted because
the coefficient for college is effectively negative infinity. Stata’s solution is to drop the
variable college along with all observations where college==1. For example,

. logit wote college phd, nolog

Note: college!=0 predicts failure perfectly
college dropped and 4 obs not used

Logistic regression Number of obs 209

(output omitted }

4.3 Hypothesis testing with test and Irtest

Hypothesis tests of regression coefficients can be conducted with the z-statistics in the
estimation output, with test for Wald tests of simple and complex hypotheses, and

with 1rtest for the corresponding likelihood-ratio tests. We consider the use of each of ~~

these to test hypotheses involving only one coefficient, and then we show you how both
test and 1rtest can be used to test hypotheses involving multiple coeflicients.

4.3.1 Testing individual coefficients

If the assumptions of the model hold, the ML estimators (e.g., the estimates produced
by logit or probit) are distributed asymptotically normally:

~ . 5
B & N (B3 )
= f* can be tested with the z-statistic:

:@—W'

T

s~ The hypothesis Hy:

z is included in the output from 1og1t and probit. Under the assumptlons justifying
} ML, if Hp is true, then z is distributed approximately normally with a mea of Zero,and
g variance of ‘one for large samples. This is shown in the followmg ﬁgure Where the
shadmg shows the rejection region for a two-tailed test at the .05 level:
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1.96

—1.96

For example, consider the results for variable k5 from the logit output generated in
section 4.2:

ifp ' Coef.  8td. Err. P> | zf [¢5% Conf. Interval}

k5 | -1.462913
(output omitted )

Z

. 1970006 -7.43  0.000 -1.848027 -1.076799

working (z = ~7.43, p < 0.01 for a two-tailed test)

One- and two-tailed tests

The probability levels in the output for estimation commands are for two-tailed tests.
That is, the result corresponds to the area of the curve that is either greater than |z| -
or less than —|z|. When past research or theory suggests the sign of the coeflicient, a
one-tailed test can be used, and Hy is rejected only when z is in the expected tail. For
example, assume that my theory proposes that having children can have only a negatlve

‘*Pffect on labor force part1c1pat10n For k618 z=—095 and P>|=z } is .342. This

.direction, we want only the proportlon of the dlStrlbuthIl that is less than —0.95, which
is.342/2 = .171. We conclude that having older children does not significantly affect a
woman’s probability of working (z = —0.95, p = .17 for a _one-tailed test).

You should divide P > | z | by 2 only when the estimated coefficient is in_the
_expected direction. Suppose I am testing a theory that having a husband who went to
college has a negative effect on labor force participation, but the estimated coefficient is
positive with z = 0.542 and P > | z |is.588. The one-tailed significance level would be
the percentage of the distribution less than .542 (not the percentage less than —.542),
which is equal to 1 — (.588/2) = .706, not .588/2 = .204. We conclude that having
& husband who attends college does not significantly affect a woman’s probability of
working (2 = 0.542, p = .71 for a one-tailed test).

We conclude that having young children has a 51gn1ﬁcant effect. on_the probability of
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Testing single coefficients using test

- The z-test included in the output of estimation commands is ‘a,_Wald test, which can

also be computed using test. For example, 16 t'e;c;t{i_ﬁ“g“ﬁm?"_:’ﬁ\f T

. test k5
(1) k5 =20
chi2( 1) = 5B.14
Prob > chiz =

0.0000

We can conclude that the effect of having young children on the probability of entering
the labor force is significant at the .01 level (X2 = 55.14, df = 1, p < .01).

ﬁhe value of a chi-squared test with 1 degree of freedom is identical to the square of
“ the corresponding z-test. For example, using Stata’s display as a caleulator

. display sqrt(55.14)
7.4256313
[
This corresponds to —7.43 from the logit output. Some packages, such as SAS, present

chi-squared tests rather than the corresponding z-test.

Testing single coefficients using irtest

An LR test is computed by comparing the log likelihood from a full model with-that of

a restricted model. To test a single coefficient, we begin by fitting the full model and

storing the results:

. logit 1fp k5 k618 age wc hc lwg inc, nclog

Logistic regression Number of obs = 783
LR chia(?) _ = 122.48
Prob > chi2 = 0.0000
Log likelihcod = -452.63296 Pseudo R2 = 0.1209
{output omitted)
. estimates store fmodel
Then we fit the model without k5 and run lrtest:
. logit 1fp€k618 age wc hc lwg inc, nolog
Logistic regression Number of obs = 763
LR chi2(6) = 58.00
Prob > chiZ = 0.0000
Log likelihood = -485.87503 Pseudo R2 = 0.0563
(output omitted)
. estimates store mmodel
. lrtest fmodel nmodel
Likelihood-ratio test LR chi2(1) = 66.48
(Assumption: nmodel nested in fmodel) Prob > chi2 = 0.000C

The resulting LR test can be interpreted as indicating that the effect of having young
children is significant at the .01 level {LRX? = 66.48, df = 1, p < .01).
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4.3.2 Testing multiple coefficients

Often you may wish fo test complex hypotheses that involve more than one coeﬂicient.g".
For example, we have two variables that reflect education in the family, he and we.
The conclusion that education has (or does not have) a significant effect on Iabor force
participation cannot be based on a pair of tests of single coefficients. But a joint
M}L@Q@ be tested using either test or 1rtest. T

Testing multipie coefficients using test

To test that the effect of the wife attending college and of the husband attending college
on labor force participation are both equal to 0, Hy: Sge = Bue = 0, we Gt the full model
and then

. test he wc

(1) hc=0
(2) we=0
chi2{ 2) = 17.68
Prob > chi2 = 0.0001

We- conclude that the hypothesis that the effects of the husband’s and the wife’s edu-
cation are simultaneously equal to zero can be rejected at the .07 level '
(X2 =17.66, df = 2, p < .01).

This form‘ of the test command can be readily extended to hypotheses regarding more
than two independent variables by listing more variables; for example, test wc he k5.

test can also be used to test the equality of coefficients. For example, to test that
the effect of the wife attending college on labor force participation is equal to the effect
of the husband attending college, Hy: 8, = Bne:

- test he=wc
(1) - wc + he =0

chi2( 1)
Preb > chi?2

3.54
0.08600

Here test has translated fyc = Gy into the equivalent expression —fye + Fue = 0. We
conclude that the null hypothesis that the effects of husband’s and wife’s education are
equal is marginally significant at the .05 level (X?=354,df =1,p= .06). This result
suggests that we have weak evidence that the effects are not equal. T

e e
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Testing multiple coefficients using Irtest

To compute an LR test of multiple coeflicients, we first fit the full model and then save
the results using the command estimates store. Then to test the hypothesis that the
effect of the wife attending college and of the hushand attending college on labor force
participation are both equal to zero, Hy: Bec = Bac = 0, we fit the model that excludes
these two variables and then run lrtest: :

. logit 1lfp k5 k618 age wc hc lwg inc, nolog
(output omitted )

. estimates store fmade];

. logit 1fp k5 k618 age ﬁ:ig inc, nolog
(output omitted )

. estimates store nmodel
. lrtest fmodel nmodel

Likelihoocd-ratio test LR chi2(2)
(Assumption: nmodel nested in fmodel) Prob > chi2

18.50
0.0001

We conclude that the hypothesis that the effects of the husband’s and the wife’s edu-
cation are simultaneously equal to zero can be rejected at the .01 level -
(LRX? = 1850, df = 2, p < .01). T T

This logic can be extended to exclude other variables. Say that we wish to test the
null hypothesis that all the effects of the independent variables are simrultaneously equal
to zero. We do not need to fit the full model again because the results are stilt saved

from our use of estimates store fmodel above. We fit the model with no independent

variables and run lrtest:

. logit 1fp, nclog
{output omitted )

estimates-store.intercept_only

. lrtest fmodel intercept_only

Likelihood-ratio test LR chi2(7}
(Assumption: intercept_only nested in fmodel) Prob > chi2

124.48
0.0000

We can reject the hypothesis that all coefficients except the intercept are zero at the
01 level (LRX? = 12448, df = 7, p < .01). This test is identical to the test in the
“header of the Logit output: T
LR chi2(7) = 124.48.

4.3.3 Comparing LR and Wald tests

Although the LR and Wald tests are asymptotically equivalent, their values differ in
finite samples. For example,
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LR test Wald test
Hypothesis df G? P w »

Gus=0 1 6648 <01 55.14  <.01
Boe=Fec=0 2 1850 <.01 17.66  <.01 g
All slopes=0 7 12448 <.01 95.0 < .01 '

Statistical theory is unclear on whether the LR or Wald test is to be preferred in models
for categorical outcomes, although many statisticians, ourselves included, prefer the
LR test. The choice of which test to use is often determined by convenience, personal
preference, and convention within an area of research.

4.4 Residuals and influence using predict

Examining residuals and outliers iz an important way to assess the fit of a regression
model. Residuals are the difference between a model’s predicted and observed outcome
for each observation in the sample. Cases that fit poorly (i.e., have large residuals) are
known as outliers. When an observation has a large effect on the estimated parameters,
it is said to be influential.

Not all outliers are influential, as figure 4.3 shows. In the top panel, we show a
scatterplot of some simulated data, and we have drawn the line that results from the
linear regression of ¥ on #. The residual of any observation is its vertical distance from
the regression line. The observation highlighted by the box has a very large residual
and so is an outlier. Even so, it is not very influential on the slope of the regression line.
In the bottom panel, the only observation whose value has changed is the highlighted
one. Now the magnitude of the residual for this observation is much smaller, but it is
very influential; its presence is entirely responsible for the slope of the new regression
line being positive instead of negative.

(Continued on next page)
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@ outlier

With influential observation

Without influential cbservation

Figure 4.3: The distinction between an outlier and an influential observation.

Building on the analysis of residuals and influence in the linear regression model
(see Fox 1991 and Weisberg 1980, chapter 5 for details), Pregibon (1981) extended
these ideas to the BRM,
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4.41 Residuals

1f we define the predicted probability for a given set of independent variables as

m=Pr(y; =1]x)
then the deviations y; — m; are heteroskedastic, with
Var (y; — m | %) = 7 (1 — ;)

This implies that the variance in a binary outcome is greatest when m; = .5 and least
as m; approaches 0 or 1. For example, .5(1 —.5) = .25 and .01(1 —.01) = .0099. In
other words, there is heteroskedasticity that depends on the probability of a positive
outcome. This suggests the Pearson residual, which divides the residual y — 7 by its

~ standard deviation:

Yi — T
, Vi (1—1)
Large values of » suggest a failure of the model to fit a given observation. Pregibon

(1981) showed that the variance of  is not 1, as Var(y; — ;) # #; (1 — 7;), and proposed
the standardized Pearson residual

Ty =

r$td = i
1—hy
where P

Although r5% is preferred over r because of its constant variance, we find that the two
residuals are often similar in practice. But, because r™* is simple to compute in Stata,
we recommend that you use this measure.

Example

An index plot is a useful way to examine residuals by simply plotting them against the
observation number. The standardized residuals can be computed by specifying the rs
option with predict. For example,

. logit lfp k5 k618 age wc hc lwg. ine, nclog
(output omitted }

. predict rstd, rs

. label var rstd "Standardized Residual®
. sort inc, stabla

. generate index = _n

- label var index "Observation Number"

Here we first fit the logit model. Second, we use the rs option for predict to specify
that we want standardized residuals, which are placed in & new variable that we have
named rstd. Third, we sort the cases by income, so that observations are ordered from
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lowest to highest incomes. This results in a plot of residuals in which cases are ordered
from low income to high income. The next line creates a new variable index, whose
value for each observation is that observation’s number (i.e., row) in the dataset. Note
that n on the right side of generate inserts the observation number. Al} that remains
is to plot the residuals against the index using the commands?

. graph twoway scatter rstd index, xlabel{0(200)800) ylabel(-4(2)4) ///
> xtitle("Observation Number") yline(Q) msymbol(Oh)

which produces the following index plot of standardized Pearson residuals:

E ;_.S.tandé;'di.zédlﬁ_e{s.i:dl_j_al )

S T - 200 G o 800
R : " Observation Number B

There is no hard-and-fast rule for what counts as a “large” residual. Indeed, in their
detaiteddiscussiorof residuwals andowtiiers i the binsry vegression model, Hosmer
and Lemeshow (2000, 176) sagely caution that it is impossible to provide any absolute
standard: “In practice, an assessment of ‘large’ is, of necessity, a judgment call based
on experience and the particular set of data being analyzed”.

One way to search for problematic residuals is to sort the residuals by the value of
& variable that you think may be a problem for the model. Here we sorted the data by
income before plotting. If this variable had been primarily responsible for the lack of fit
of some observations, the plot would show a disproportionate number of cases with large
residuals among either the low-income or the high-income observations in our model.
However, this does not appear to be the case for these data.

Still, in our plot, several residuals stand out as being large relative to the others. In
such cases, it is important to identify the specific chservations with large residuals for
further inspection. We can do this by instructing graph to use the observation number
to label each point in our plot. Recall that we just created a new variable called index

2. The /// is just a way of executing long lines in do-files. You should not type these characters if
you are working from the Command window. :
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whose value is equal to the observation number for each observation. We want the
values of this index variable to be the marker symbols. We do this by labeling the
marker with the index value and then placing the label over an invisible marker. In the
command below, msymbol (none) makes the marker symbol invisible, mlabel{index)
spectfies that the variable index contains the labels, and mlabposition(0) causes the
label to be positioned where the marker would have appeared. For example,

- graph twoway scatter rstd index, xlabel (0{200)800) ylabel(-4(2)4)} ///
> xtitle("Observation Number") yline(0) 7/
> msymbol{none} mlabel(index) mlabposition(D)

:IS:t'_}a-nda_rdi'zed‘ﬁ'

TR0 a0
i Observation Numbet <)

Although labeling points with observations leads to chaos where there are many points,
it effectively highlights and identifies the isolated cases. You can then easily Hst these
cases. For example, observation 142 stands out and should be examined:

. list in 142, noobs

1lfp k5 k618 age wC he lvg inc rstd  index

inlF 1 2 36 NoCol NoCol -2.054124 i1.2  3.191524 142

(Continued on next page)
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Cases with large positive or negative residuals should not simply be discarded from the

We can also use list to list all observations with large residuals: } : 1
analysis but rather should be examined to determine why they fit so poorly.

. list rstd index if rstd>2.5 | rstd<-2.5

4.4.2 Influential cases

ratd index

As shown in figure 4.3, large residuals do not necessarily have a strong influence on

142. | 3.191524 142
345. | 2.873378 345 : . . . _ .

e | 3 ar7ans 11 the es.tunated pa,r&mete%"s, an'd observations with relatively small residuals can have &
555, | -2.871972 555 large influence. Influential points are also sometimes called high-leverage points. These
762. 3.192648 752 can be determined by examining the change in the estimated 3 that occurs when the

ith observation is deleted. Although estimating a new logit for each case is usually
impractical (although as the speed of computers increases, this may soon no longer
be s0), Pregibon (1981) derived an approximation that requires fitting the model only
once. This measure summarizes the effect of removing the sth observation on the entire
vector 3, which is the counterpart to Cook’s distance for the linear regression model.
The measure is defined as

‘We can then check the listed cases to see if there are problems.

An initial review of the cases with large positive or negative residuals suggests that
these could be related to the number of children a scientist has. To explore this further,
we modify the last graph to plot only large residuals and to label these residuals with

the number of young children a scientist hag. To do this, 2 by

T (1 — hy)”

. graph twoway scatter rstd index if (rstad>1.7) | (rstd<-1.7), ///
where hy; was defined in (4.3). In Stata, which refers to Cook’s distance as dbeta, we

> msymbol (none) mlabel(k5) mlabposition(0) 1/
> caption("Values indicate # of young children®) i can compute and plot Coak’s dis .
> xlabel (0{200)800) xtitle("Observation Number"} i/ p P stance as follows:

> ylabel(-4({2)4) yline(0) . predict cook, dbeta

. label var cock "Cook’s Statistic"

. graph twoway scatter cook index, xlabel(0(200)}800) ylabel(0{.1).3) ///
> xtitle("Ubservation Number") yline(.1 .2) /17
> msymbol (none} mlabel(index) mlabposition(0)

These commands produce the following plot, which shows that cases 142, 309, and 752
merit further examination:

782

142

=
LR 309
gl
o
B
i
B
T 108
-O_w— 214 345 382 .
: 73 407 721
636
43 305 743

217 257 317, a7 565 838 7 720
3 480011 6@}353 9
48 B

#8 114 R385 2&?@7
§"§ 213380, 3

Here all the cases with negative residuals correspond to individuals without young
children, whereas most cases with positive residuals have children. This suggests that o
we should further consider the way in which the number of children has been modeled. . L IS

o T RR TR 0l = 800
- t: Observation Nurnbe e A

Regardless of which method is used, further analyses of the highlighted cases might
reveal either incorrectly coded data or some inadequacy in the specification of the model.
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Methods for plotting residuals and outliers can be extended in many ways, including
plots of different diagnostics against one another. Details of these plots are found in
Cook and Weisberg (1999), Hosmer and Lereshow (2000), and Landwehr, Pregibon,
and Shoernaker (1984). B

4.4.3 Least likely observations

A common motivation for examining residuals in the linear regression model is to un-
cover the largest residuals and to check if there is some reason why the model fits
these observations so poorly. Observations with large residuals are those for which the
observed values of the dependent variable are most “surprising” given the regression
coefficients and the values of the independent variables. Maximum likelihood estimates
maximize the probability of observing the outcomes that were actually observed. In
this conbext, we can think of the most surprising outcomes as those that have the small-
est predicted probabilities of observing that outcome. These cases may warrant closer
inspection precisely because observations with large residuals do in the more familiar
linear regression model. Our command leastlikely (Freese 2002) will list the least
likely observations. For example, for a binary model, leastlikely will list both the
observations with the smallest Pr (y = 0} among cases in which y = 0 and the smallest
Pr (y = 1) for cases in which ¥ = 1. In addition to logit and probit, leastlikely
can be used after most binary models in which the option p for predict generates
the predicted probabilities of a positive outcome (e.g., cloglog, scobit, hetprob) and
after many models for ordinal or nominal outcomes in which the option outcome(#)
for predict generates the predicted probability of outcome # (e.g., ologit, oprobit,
mlogit, mprobit, slogit). leastlikely is not appropriate for models in which the
probabilities produced by predict are probabilities within groups or panels, such as
clogit, nlogit, or asmprobit.

Syntax
The syuntax for leastlikely is as follows:
leastlikely [varlisﬁ] [zf] [m] [ » n(#) generate(varname) [M]gisplay
nolabel @bs]
where varlist contains any variables whose values are to be listed in addition to the
observation numbers and probabilities.
Options

n(#) specifies the maumber of observations to be listed for each level of the outcome
variable. The default is n(5). For multiple observations with identical predicted
probabilities, all observations will be listed.
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generate (varname) specifies that the probabilities of observing the outcome that was
observed should be stored in varngme.

Options controlling the list of values

leastlikely can also include any of the options available after 1ist. These include
the following: '

[no]display fqrces the format into display or tabular (nodisplay) format. If you
do not specify one of these two options, Stata chooses the one it decides will be
most readable.

nolabel causes numeric values rather than labels to be displayed.
noobs suppresses printing of the observation numbers.

For Vexample,' we can use leastlikely to identify the least likely observations for
our model of labor force participation and to list the values of the variables k5, k618
and wc for these observations. ' ’

. use http://www.stata—press.com/data/lf2/binlfp2
(Data from 1976 PSID-T Mroz}

- logit 1fp kB k618 age wec he lwg inc
(output omitted )

. leastlikely k5 k618 wc
Outcome: 0 (NotInLF)

Prob k5 k618 we

60. .1231792 0 1 College
172, -1490344 0 2  College
221. .1470691 0 2 College
235. -1666358 0 4 College
262. .1088271 [} 0  College

Gutcome: 1 (inlF)

Prob k5 k618 we
338. . 1760865 1 2  College
534, -0910262 1 2 NoCol
568, .178205 1 5 NoCol
635. -0816614 1 3 College
662, -10927Q9 2 0 NoCol

Among women not in the labor force (1fp is 0), we find that the lowest predicted
probability of not being in the labor force oceurs for those who attended college and
have young children. For women in the labor force (1£p is 1} with the lowest probabilities
of being in the labor force, all individuals have young children and most have more than
one older child. This suggests further consideration of how labor force participation is
aflected by having children in the family.
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4.5 Measuring fit

As discussed in chapter 3, a scalar measure of fit can be useful in Con.aparing conpeting
models. Within a substantive area, measures of it provide a rough 1lnf:1ex _Of Whetl_ler a
model is adequate. For example, if prior models of labor force p&rtlf:lpatlon routm?ly
have values of .4 for a given measure of fit, you would expect that new ar%alyses' "willth
a different sample or with revised measures of the variables' Woul(.i result in a similar
value for that measure of fit. Remember: there is no convincing eVIden.ce that selecting
a model that maximizes the value of a given measure of fit results in a model that
is optimal in any sense other than the model’s having a larger value of that measure.
" Details on these measures are presented in chapter 3. .

4.5.1 Scalar measures of fit using fitstat

To illustrate the use of scalar measures of fit, consider two models. M contfnns (;Izr
original specification of independent variables k5, k618, age, we, 1.1c, lwg, and mfc. 2
drops the variables k618, hc, and lwg and adds agesq, which is the square of age.
These models are fitted, and measures of fit are computed:

. quietly logit 1fp k5 k618 age wc hc lwg inc, noleg
. estimates store modell

. gquietly fitstat, save

. gen agesq = age*age

. quietly logit 1fp k5 age agesq wc inc, nolog

. estimates store model2

We used quietly to suppress the output from logit and now use estimates table to
combine the results from the two logits:

. estimates table modell model2, b(¥9.3f) t

Variable modell model2
k5 -1.463 -1.380
~-7.43 -7.06
k518 -0.065
-0.95
age -0.063 0.057
-4.92 0.50
we 0.307 1.094
3.51 5.50
hc 0.112
0.54
iwg 0.6056
4.01
inc -0.034 -0.0432
-4.20 -4.18
agesq -0.001
-1.c0
_cons 3.182 0.979
4.94 Q.40

legend: b/t
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The output from fitstat for M, was suppressed, but the results were saved to be listed
by & second call to fitstat using the diff option:

. fitstat, diff
Measures of Fit for iogit of 1lip

" Current Saved Difference
Model: logit - logit
N: 763 753 ¢
Log-Lik Intercept Unly -514.873 -514.873 6.000
Log-Lik Full Model -461.653 -452.,633 -2.020
D 923.306(747) 905,266(745) 18.040(2)
LR 106.441(5) 124.480(7) 18.040(2)
Prob > LR 0.000 0.000 0.000¢
McFadden’s R2 0.103 0.121 ~0.018
McFadden’s Adj R2 0.092 0.105 -0.014
ML (Cox-Snell) R2 0.132 0.152 -0.021
Cragg-Uhler(Nagelkerke) R2 0.177 0.204 -0.028
McKelvey & Zavoina’s R2 0.182 0.217 -0.035
Efron’s R2 0.135 0.155 -0.020
- Variance of y* 4.023 4.203 -0.180
Variance of error 3.280 3.290 -0.000
Count R2 0.677 0.693 -0.016
Adj Count R2 0.252 0.289% -0.037
AIC 1.242 1.223 0.019
ATC*n 935,306 921.266 14.040
BIC -4£024.871 -4029.663 4.791
BIC’ -73.321 -78.112 4.791
BIC used by Stata 963.050 958,268 4.791
AIC used by Stata §35.306 921.266 14.040
Difference of 4.791 in BIC’ provides positive support for saved model.

Note: p-value for differemce in LR is only valid if models are nested.

These results illustrate the limitations inherent in scalar measures of fit. My deleted two
variables that were not significant and one that was from M. Tt added a new variable
that was not significant in the new model. Because the models are not nested, they
cannot be compared using a difference of chi-squares test.®> What do the fit statistics
show? First, the values of the psendo-R2s are slightly larger for M;. If you take the
pseudo-R%s as evidence for the best model, which we do not, there is some evidence
preferring My, Second, the BIC statistic is smaller for M, which provides support for
that model. Following Raftery’s (1996) gunidelines, one would say that there is positive
(neither weak nor strong) support for M.

4.5.2 Hosmer-Lemeshow statistic

Earlier we showed how to use predict to compute the predicted probabilities for each
observation in the sample. The idea of the Hosmer—Lemeshow (ML) test statistic is to
compare these predicted prébabilities with the observed data (Lemeshow and Hosmer
1982; Hosmer and Lemeshow 1980). To explain what this statistic is doing, we go
through the steps that are used to compute Hi.

3. fitstat, diff computes the difference between all measures, even if the models are not nested.
As with the Stata command Irtest, it is up to the user to determine if it makes sense to interpret the
computed difference.
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Fit the model.
Compute the predicted probabilities 7;.

Sort the data from the smallest value of 7; to the largest.

= W e =

Divide the observations into G groups, where 10 groups are often used. Each
group will have n, ~ % cases (if G does not divide equally into N, the group sizes
will differ slightly). The first group will have the n; smallest values of 7;, and so

on.
5. Within each group, compute the mean prediction 7, = >  7;/n, and the mean
Group g
number of observed ones, 5, = >0 /1,

Group g

6. HL is a Pearson y? statistic with G — 2 degrees of freedom:

%\ (ngl, ~ ng7g)”

HL = = S
ngy (1 —7y)

g=1

Hosmer and Lemeshow (2000) ran extensive simulations that showed that HL is approx-
imately distributed as %2 if the model is correct. But, since the value of HE depends on
the number of groups chosen, it is better to think of this statistic as a guide to assessing
the fit of a model rather than a formal test. When using this statistic, keep in mind
what Hosmer and Lemeshow (2000) wrote: “The advantage of a summary goodness-of-
fit statistics like [HL] is that it provides a single, easily interpretable value that can be
used to assess fit. The great disadvantage is that in the process of grouping we may
miss an important deviation from fit due to the small number of individual data points.

Hence, we advocate that, before finally accepting that a model fits, an analysis of the

iidividual Tosidumlsand relevant - dagnostic-statisticsbe-performed-*-—- - - -

For our exampile of labor force participation, we computed the HL statistic using the
command

. estat gof, group(10)
Logistic model for 1fp, goodness—of-fit test

(Table collapsed on guantiles of estimated probabilities)

number of cbservations = 753
number of groups = 10
Hosmer-Lemeshow chi2(8) = 23.79
Prob > chi2 = 0.0025

The HL statistic suggesis that the model does not fit well. However, if you experiment
with different values for group (3, you will see that the p-value is sensitive to the mmmber
of groups used. Still, the resulis suggests that we should explore the fit of the model.
One way to do this is to make a Jowess graph comparing predicted probabilities to a
moving average of the proportion of cases that are one. This can be done with the
following commands:
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. predict pi
_ (option p assumed; Pr(lfp))

- lowess 1fp pl, ylabel(0(.2)1, grid) xlabel(0(.2)1, grid) ///
> addplot(function y = x, legend(off))

Ut Lowess smoother e

Roughly speaking, the solid line shows the fraction of observed cases that equal 1 at

each level of the model’s predicted probability of observing a 1. The closer the solid line

" to the diagonal, dashed line, the better the fit of the model. The graph suggests that
the model fails in predicting the lower probabilities of being in the labor force -where
the fractions of observed cases exceeds the predicted probabhilities. ’

4.6 Interpretation using predicted values

Beca.use t_he BRM is nonfinear, no approach to interpretation can fully describe the
relationship between a variable and the outcome. We suggest that you try a variety of

methods, with the goal of finding an elegant way to present the results that does Jjustice
to the complexities of the nonlinear model. ' '

. In general, the estimated parameters from the BRM do not provide directly useful
information for understanding the relationship between the independent variables and
the outcome. With the exception of the rarely used method of interpreting the latent
variable (which we discuss in our treatment of ordinal models in chapter 5), substantively
meaningful interpretations are based on predicted probabilities and functions of those
probabilities (e.g., ratios, differences). As shown in figure 4.1, for a given set of values
of the independent variables, the predicted probability in BRMs is defined as
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Logit: Pr(y =1|x) = A (xB) Probit: Pr{y=1{x) =& (xﬁ)
where A is the cdf for the logistic distribution with variance 72/3, and ® is the cdf
for the normal distribution with variance 1. For any set of values of the independent
variables, the predicted probability can be computed. Several commands in Stata and
our pr* commands make it simple to work with these predicted probabilities.

4.6.1 Predicted probabilities with predict

After running logit or probit,

predict newvarname [if | [in ]

can be used to compute the predicted probability of a positive outcome for each observa-

tion, given the values on the independent variables for that observation. The predicted “

probabilities are stored in the new variable newvarname. The predictions are computed
for all cases in memory that do not have missing values for the variables in the model,
regardless of whether if and in had been used to restrict the estimation sample. For
example, if you estimate logit 1fp k5 age if wc==1, only 212 cases are used. Bui
predict newvarname computes predictions for the entire dataset, 753 cases. If you
want predictions only for the estimation sample, you can use the command predict
newvarnome if e(sample)==1.*

predict can be used to examine the range of predicted probabilities from your
model. For example,

. predict prlogit
(option p assumed; Pr(1fp))

. summarize prlogit

Variable Obs Mean  Std. Dev. Min Max

.5683931 .1944213 . 0139875 .9621188

prlogit 753

The message (option p assumed; Pr(1£p)) reflects that predict can compute many
different quantities. Because we did not specify an option indicating which quantity to
predict, option p for predicted probabilities was assumed, and the new variable prlogit

was given the variable label Pr(1fp). summarize computes summary statistics for the =71

new variable and shows that the predicted probabilities in the sample range from .014
to 962, with a mean predicted probahility of being in the labor force of .568.

4. Stata estimation commands create the variable e(sample), indicating whether a case was used
when fitting a model. Accordingly, the condition if e(sample)==1 selects only cases used in the last
estimation.
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We can use dotplot to plot the predicted probabilities for our sample:

- iabel var prlegit "Logit: Pr(ilfp)*
- dotplot prlogit, ylabel(0(.2)1)
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The plot clear}_y shows that the predicted probabilities for individual observations span
dlmo-st the entire range from 0 to 1 but thai, roughly two-thirds of the observations have
predicted probabilities between .40 and .80,

predict can a_lso be‘e used to demonstrate that the predictions from logit and probit
@odels are essentially identical. Even though the two models make different assump-
tions about Var(s), these differences are absorbed in the relative magnitudes of the

estimated coefficients. To see this, we first fit the tw i
‘ ¢ models and -
dicted probabilities: ’ compute thetr pre

. use http://www.sta.ta—press.com/data/lfQ/binlpr, clear
(Data from 1976 PSID-T Mroz)

.« logit 1fp kb k618 age wc he lwg inc, nolog
{output omitted )

« predict prlogit
(option p assumed; Pr(1fp))
. label var prlogit "Logit: Pr(lfp)"

- Probit 1fp kb k618 age wc he lwg inc, nolog
(output omitted)

- Predict prprobit
{option p assumed; Pr(lp))

- label var prprobit "Probit: Pr(1ip)"
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Next we check the correlation between the two sets of predicted values:

. pwcorr prlogit prprobit
| prlogit prprobit

prlogit 1.0000
prprobit 0.9998  1.0000

The extremely high correlation is confirmed by plotting them against one another:

. graph ivoway scatter prlogit prprobit, ///
> xlabel(0{.25)1) ylabel(0(.25)1) - /i
> xline(.26(.25)1) yline(.25(.25)1) /Y
> plotregion(margin(zero)) msymbol(Gh)

For predictions, there is little reason to prefer either logit or probit. If your substantive
findings turn on whether you used logit or probit, we would not place much confidence
in either result. In our own research, we tend to use logit, primarily because of the
availability of interpretation in terms of odds and odds ratios (discussed below).

Overall, examining predicted probabilities for the cases in the sample provides an
initial check of the model. To better understand and present the substantive findings,
it is usually more effective to compute predictions at specific, substantively informative
values. Our commands prvalue, prtab, and prgen are designed to make this simple.

4.6.2 Individual predicted probabilities with prvalue

A table of probabilities for ideal types of people (or countries, cows, or whatever you are
studying) can quickly summarize the effects of key variables. In our example of labor
force participation, we could compute predicted probabilities of labor force participation
for women in these three types of families:
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o‘ young, low-income and low-education families with young children
e highly educated, middle-aged couples with no children at home

+ an “average family” defined as having the mean on all variables.

This can be done with a series of calls to prvalue (see chapter 3 for a discussion of
options for this command):®

- * young, low income, low education families with young children.
. prvalue, x(age=35 k5=2 wc=0 hc=0 inc=15) rest(mean)

logit: Predictions for 1lfp
Confidence intervals by delta method
95% Conf. Interval

Pr(y=inLF|x): 0.1318 [ ©.0556, 0.2081]
Pr(y=NotInLF{x): 0.8682 [ 0.7919, 0.9444]
k5 k618 age we he lwg
x= 2 1.3532537 35 0 0 1.0971148
inc
x= © 15

We have set the values of the independent variables to those that define our first type
of family, with other variables held at their mean. The output shows the predicted
probability of working, the confidence interval for that probability, and the specified
values for the independent variables. At these values, we are 95% confident that the
probability of being in the labor force is between .056 and .208. This process is repeated
for the other ideal types.

- * highly educated families with no children at home.
.- prvalue, x{age=50 k5=0 k618=0 wc=1 hc=1) rest (mean)

logit: Predictions for 1fp
Confidence intervals by delia method
95% Conf. Interval

Pr{(y=inLF|x}: 0.7166 [ 0.8333, 0.7999]
Pr(y=NotIaLF|x): ¢.283¢ [ 0.2001, 0.3667]
k5 k618 age e he 1wg
x= o 0 BG 1 1 1,0971148
inc
x= 20.128965

5. mean is the default setting for the rest{} option, so rest(mean) does not need to be specified. We
include it in many of our examples anyway, because its use emphasizes that the results are contingent
on specified values for all of the independent variables.
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. * an average person
. prvalue, rest{mean)

logit: Predictions for 1lfp
Confidence intervals by delta method
95% Conf. Interval

Pr(y=inLF|x): 0.5778 [ 0.6392, ¢.6164]
Pr(y=NotInLF|x): 0.4222- [ 0.3836, 0.4608]
k5 k518 age we j:1 lug
x= .2377158 1.3532637 42.537849 .2816405 .39176627 1.0971148

inc
x= 20.128965

With predictions in hand, we can summarize the results and get a better general feel
for the factors affecting a wife’s labor force participation. '

Probability
Ideal type . of LFP {95% CI)
Young, low-income, and low-education -~ .13 (.06,.21} -
families with young children
Highly educated, middle-aged couples .72 (.63, .80)
with no children at home
An “average” lamily ' .58 (.b4,.62)

4.6.3 Tables of predicted prbbabilities with prtab

Sometimes the focus might be on two or three categorical independent variables. Pre-

dictions for ali combinations of the categories of these variables could be presented in a
table. For example,

No. Predicted probability
of young Did not Attended
children attend college college Difference
0 61 78 A7
1 .26 44 18
2 08 16 08
3 .02 .04 .02

This table shows the strong effect on labor force participation of having young children
and how the effect differs according to the wife’s education. One way to construct such
a table is by a series of calls to prvalue {we use the brief opticn to limit output):
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. prvalue, x(k6=0 wc=0) rest{mean) brief-
logit: Predictions for 1fp
o~ 7 95) Conf. Interval
- Pr{y=inLF|x): {©.6069,/ [ 0.5567,  0.6570]
Pr(y=NotInLF|x): 03931 x[ 0.3430, 0.4433]
. prvalue, x(kb=1 wc=0) rest(mean) brief
logit: Predictions for 1fp
- 95% Conf. Interval
Pr{y=inLF|x}: 0.2633 { 0.1932, 0.3335]

Pr{y=NotInLlF|x): 0.7367 [ 0.6665, 0.80868]
(and so on)

Even for a simple table, this approach is tedious and error prone. prtab automates the
process by computing a table of predicted probabilities for all combinations of up to
four categorical variables. For examiple, ‘

. prtab kb we, rest{mean)
logit: Predicted probabilitiés of positive outcome for 1fp

Wife College:
# kids < 1=yes O=mo
6 NoCol College

A
\0.60697 0.7758
072633 0.4449
0.0764 0.1565
0.0188  0.0412

WKNR O

k5 k618 age we he lug

x=  .2377158 1.3532537 42.537849  ,2815405 .39176627 1.0971148
inc
20.128965

B
[}

The only disadvantage of using prtab is that it does not provide confidence intervals
for the predictions.

4.6.4 Graphing predicted probabilities with prgen

When a variable of interest is continuous, you can either select, values (e.g., quartiles)
and construct a table or create a graph. For example, to examine the effects of income
on labor force participation by age, we can use the estirated parameters to compute
predicted probabilities as income changes for fxed values of age. This is shown in
figure 4.4. 'The command prgen creates data that can be graphed in this way. The first
step is to generate the predicted probabilities for those aged 30:
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. prgen irc, from{0)} to(100) generate(p30) x(age=30) rest(mean) m(11)"

logit: Predicted values as inc varies from G to 100.

k5 k6818 age wc ho lug
x= .2377158 1.3532537 30 .2815405 ,39176627 1.0971148
inc
x= 20.128965

. label war p30pl "Age 30"

"-Pr_(_lr_.m Labor.Farce) E ‘

a0 T 60
L inglmes

L {—e— Agess —o— Agedo |-
| —=— Age50 —a— Age60

Figure 4.4: Graph of predicted probabilities created using prgen.

inc is the independent variable that we want to vary along the x-axis. The options that
we use are

from{0) and to(100) specify the minimum and maximum values over which inc is
to vary. The default is the variable’s observed minimum and maximum values.

generate (p30) indicates the root name used in constructing new variables. prgen
creates p30x that contains the values of inc that are used; p30p1 with the values
of the probability of a 1 and p30p0 with values of the probability of a 0.

x(age=30) indicates that we want to hold the value of age at 30. By defaulf, other
variables will be held at their mean unless rest () is used to specify some other

sumunary statistic.

n(11) indicates that 11 evenly spaced values of inc between 0 and 100 should be used.
You should choose the value that corresponds to the number of symbols you want

on your graph.
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More calls of prgen are made holding age at different values:

- prgen inc, from(Q) to(100) generate(p40) x(age=40) rest(mean) n(il)
{output omitted) .

. label var pd4Opl "Age 40"

- prgen inc, from(0) to(10Q) generate(pS0) x(age=50) rest(mean) n(11)
(output omitted )

. label var p50pl "Age 50" .
- prgen inc, from(0) to(100) generate(p60) x(age=60) rest(mean) n(11)
(output omitted )

. label var pBCpl "Age 60"

Listing the values for the first 11 observations in the dataset for some of the new
variables prgen has created may help you understand better what this command does:

- list p30pl p40Opl p50pl p60pl p6Ox in 1/11

p30pl p40pt pEOpl pé0pl  p60x
1. .8575829 .7625393 .6313345 4773258 0
2. .8101358 .6847005  .5482202 . 3828797 i0
3. .7514627  .6172101 .462326  .3143872 20
4. .6817801  .B3326B5  .3786113  .2452419 30
5. .6028849 4473941 .3015535 .187153 40
6. .5182608 -36455 .2342664 . 1402662 50
7. .4325564 -289023 1781635  .1036283 - 6C
8. -3507161 .2236366  .1331599  .0757174 70
9. .2768067 . 1695168  .0981662  .0548639 80
10. .2133647  .1263607 071608 0385082 20
11. .1612066  .0£29622  .0518235 0283215 100

The predicted probabilities of labor foree participation for those averages on all other
variables at ages 30, 40, 50, and 60 are in the first four columns. The clear negative
effect of age is shown by the increasingly small probabilities as we move across these
columns in any row. The last column indicates the value of income for a given row,
starting at 0 and ending at 100. We can see that the probabilities decrease as income
increases.

The following graph command generates the plot:

- graph twoway connected p30pl p40p!l p50pi p60pl p60x, Veié
> ytitle("Pr(In Labor Force)") ylabel{0(.25)1) xtitle("Income")

Because we have not used graph much yet, it is worth discussing some points that we
find useful (also see section 2.16).

L. Recall that /// is a way of entering long lines in do-files.

2. graph twoway is the command for plotting a dependent variable on the y-axis
against an independent variable along the z-axis. graph twoway connected spec-
ifies that the symbols used o mark the individual points be connected.
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3. The variables to plot are p30p1 p40p1 pSOpl p6Opl p60x, where p60x, the last
variable in the list, is the variable for the horizontal axis. All variables before the
last variable are plotted on the vertical axis.

4. The options ytitle() and xtitle() specify the axis titles.
5. The ylabel() specifies which points on the y-axis to label.

4.6.5 Plotting confidence intervals

We can also use prgen to plot confidence intervals around our predictions by addingm

the ci option. Although you can use any of the options that control how confidence
intervals are constructed (see page 123 for details), here we use the default options to

keep things simple. We want to plot the probability of being in the labor force by age, .

adding the 95% confidence interval around the plot. The prgen command is

. prgen age, from(20) to(70) generate{prifp) rest(mean) gap(2) ci-
logit: Predicted vaiues as age varies from 20 to 70.

kb k518 age e he lwg
x= 2377158 1.35325637 42.537849 .28154056 .39176627 1.0971148

inc
x= 20.128965 .
. label var prlf;@ "Predicted probability®
. label var prlfppl@ "95% upper limit"
. label var prlfppl@ "95% lower limit"
. label wvar prlfpx "Age"

We made several changes from the last time we used prgen. First, we added the ci
option so that prgen would create variables with the estimates of the upper and lower
bounds for the confidence interval of the predictions. These new variables are prlfpplub

and prlfppilb. Second, rather than using the n() option to indicafe the number 6i

evenly spaced values of age to compute, we used the gap () option. With gap(), you

simply indicate the spacing or gap between values. Here we want to compute values of

age that increase by 2. Third, we have added variable labels for the variables created
by prgen. These labels will be clearer in the graph than the default labels created by
prgen. To plot the results, we use the following command: ‘

. graph twoway 1/
> (connected prlfppi prlfpzx, /7
> clcelor{black) clpat(solid) clwidth(medthick)} ///
> msymbol{i) mcoler (nonel} e
> (connected prlfppiub prlfpx, /7
> msymbol{i) mcolor(none} e
> clcelor{black) clpat(dash) clwidth(thin)) 17
> (connected prlfppilb prifpx, 1/
> msymbol{i) mcolor(none) 1
> clecolor (black) clpat(dash) clwidth(thin)), 1
> ytitle("Probability of Being in Labor Force") 174
> yscale(range(0 .35)) /7
> ylabel(, grid glwidth(medium) gipattern(solid)) ///
> xscale(range (20 70)) xlabel(20(10)70)
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This example: of graph. twoway shows how vou can combine multiple plots into one
graph. E'ach of th(? sections that begin with “(connected” and end with a “)” control
the plotting of a different line. The resulting graph leoks like this:

Predicted probabiiity
95% lower limit

- 85% upper limit

The gra:ph showsl that the confidence interval is smaller near the center of the data
where age is 40 and increases as we move to younger or older ages.

Another way of showing the confidence intervals is to uge shading. For this, we nse
the rarea type of plot. Specifying rarea(yvar? yvar? zvar, color(color)) wi,Il shade
t}%e area on the y-axis between the values of yvarl and yvarg, with the z-axis specified
with zvar., We define the rarea graph before the connected graph since Statef draws
overlau.i graphs in the order specified, and we want the line indicating the predicted
probabilities to appear on top of the shading. The improved command is b

- graph twoway 177
> (rarea prlfpplib prifppiub prifpx, color(gsl4)) ///
> {connected prifppl prifpx, e
> clcolor(black) clpat(solid} clwidth (medthick) ///
> _ msymbol{i) mcolor(none)}, s
> ytitle("Probability of Béing in Labor Force®) /17
> yacale{range(0 .35)) 144
i ylabel(, grid glwidth(medium) glpattern(solid)) ///
> xscale(range (20 70)) xlabel (20(10}70) 11/

legend(label (1 "95% confidence interval™))

(Continued on next page)
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4.6.6 Changes in predicted probabilities

Although graphs are useful for showing how predicted prob&bilit_ies are related to an
independent variable, for even our simple example it is not practical to plot all possi-
ble combinations of the independent variables. And sometimes the plots show that a
relationship is linear, making a graph is superfluous. In such circumstances, a‘useful
gsummary measure is the change in the outcome as one variable changes, holding all
other variables constant. '

Marginal change

In economics, the marginal effect or change is commonly used:

. . _OPrly=1]x)
marginal change = — bmr
The marginal change is shown by the tangent to the probability curve in figure 4.. 5. The
value of the marginal effect depends on the level of all variables in the model: It is often
computed with all variables held at their mean or by computing the marginal change
for each observation in the sample and then averaging across all values.
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Figure 4.5: Marginal change compared with discrete change in the BRM.

Marginal change with prchange command

The command prchange computes the marginal at the values of the independent
variables specified with x() or rest(). Running prchange with no options compltes
the marginal change (along with many other things discussed below) with all variables
at their mean. Or, we can compute the marginal at specific values of the independent
varizbles, such as when wc = 1 and age = 40. Here we request only the results for age:

. prchange age, x(wc=1 age=40) help
logit: Changes in Probabilities for 1fp

min->max 0->1 -+1/2 -+5d/2 MargEfct
age -0.3940 -0.0017 -0.0121 -0.0971 ~0.0121
NotIaLF inlF
Priylx) 0.2586 0.7414
kb k618 age we he lwg inc
x= 237716 1,35325 40 1 .391766 1.08711 20,129

sd(x)= 523959 1.31987 B8.07257 .450049 .488460 ,587556 11.6348

Pr(ylx): probability of observing each y for specified x values
AvglChgl: average of absolute value of the change across categories
Min->Max: change in predicted probability as x changes from its minimum to
its maximum
0->1: change ir predicted probability as x changes from O to 1
-+1/2: change ia predicted probability as x changes from 1/2 unit below
base value to 1/2 unit above
—-+2d/2: change in predicted probability as x changes from 1/2 standard
dev below base to 1/2 standard dev above
MargEfct: the partial derivative of the predicted probability/rate with
respect to a given independent variable
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In plots that we do not show (but that we encourage you to create using prgen and
graph), we found that the relationship between age and the probability of being in the
labor force was essentially linear for those who attend college. Accordingly, we can take
the marginal computed by prchange, multiply it by 10 to get the amount of change
over 10 years, and report that for women who attend college, a 10-year increase in
age decreases the probability of labor force participation by approximately .12, holding
other variables at their mean.

When using the marginal, remember two points. First, the amount of change de-
pends on the level of all variables. Second, as shown in figure 4.5, the marginal is the
instantaneous rate of change. In general, it does not equal the actual change for a given
finite change in the independent variable unless you are in a region of the probabil-
ity curve that is approximately linear. Such linearity justifies the interpretation given
above.

Marginal change with mfx command

The marginal change can also be computed using mfx, where the at (O option is used
to set values of the independent variables. Below we use mfx to estimate the marginal
change for the same values that we used when caleulating the marginal effect for age
with prchange above:

. mfx, at(wc=l age=40)

warning: no value assigned in at{) for variables kb k618 hc lwg inc;
means used for k& k618 hc lwg inc

Marginal effects after logit

y = Pr(lfp} (predict)
= .74140317
variahle dy/dx Std. Err. z Prlzl T 954 ¢.I. 1 X
kb —.2804763 04221 -6.64 0.000 ~.383212 -,197741 .2377186
618 -.0123798 .01305 -0.95 0.343 ~.03795¢ .013199 1.36325
age -.0120538 .00245 -4.92 0.000 -.016855 -.0Q7262 40
Wk .1802113 .04742 3.80 0,000 .087269 .273154 1
hc* .0212952 .03988 0.53 0.593 -.056866 .099456 .391766
1lug .1159345 . 03229 3.59 0.000 .052643 .179226 1.09711
inc -.0066042 .00163  -4.05 0.00C -.009802 -.003406 20.129

(#) dy/dx is for discrete change of dummy variable from O to 1

nfx is particularly useful if you need estimates of the standard errors of the marginal
effects; however, mfx computes the estimates using numerical methods, and for some
models the command can take a long time.

Discrete change

Given the nonlinearity of the model, we prefer the discrete change in the predicted
probabilities for a given change in an independent variable. To define discrete change,
we need two quantities:
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Pr(y =1|x,zx) is the probablhty of an event given x, notmg in particular the value
of i

Pr{y=1|x,21 +4) is the probabihty of the event-with only z; increased by some
quantity §.

Then the discrete change for a change of & in z;, equals

AP =11%) by =1 x4 - Priy=
A - Y= T +0) —Pri{y=1|x,1¢)

which can be interpreted that for a change in variable zy, from zj to z; 16 , the predicted

probability of an event changes by {APr(y = 1|x)} /Axzy, holding all other variables
constant.

' As shown in figure 4.5, in general, the two measures of change are not equal. That
is,
OPr(y =1|x%) p APr{y=1|x)

amk /_\xk

The measures differ because the marginal change is the instantaneous rate of change,
whereas the discrete change is the amount of change in the probability for a given finite
change in one independent variable. The two measures are similar, however, when the
change occurs over a region of the probability curve that is roughly linear.

The value of the discrete change depends on

1. The start level of the variable that is being changed. For example, do you want
to examine the effect of age beginning at 307 At 407 At 507

2. The amount of change in that variable. Are you 1nterested in the effect of a change
of 1 year in age? Of 5 years? Of 10 years?

3. Th(:% level of all other variables in the model. Do you want to hold all variables at
their mean? Or, do you want to examine the effect for women? Or, do you want
$o compute changes separately for men and women?

Accordingly, a decision must be made regarding each of these factors. See chapter 3 for
more discussion.

For our example, let’s look at the discrete change with all variables held at their

mean, which is computed by default by prchange, where the help option is used to get
detailed descriptions of what the measures mean:
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. .prchange, help
logit: Changes in Probabilities for lip

min->max 0->1 -+1/2 -+sd/2 MargEfct

k5 -0.6361 -0.3499 ~-0.3428 -0.1849 -0.3569
k618 -0.1278 -0.0156 ~0.0168 -0.0208 -0.0168
age -0.4372 -0.0030 -0.,0163 -0.1232 -0.0163
we 0.1881 0.1881 0.1945 0.0884 0.1969
he 0.0272 0.0272 0.0273 0.0133 0.0273
iwg 0.6624 $.1499 0.1465 0.0865 0.1475
inc -0.6415 -0.0088 -0.0084 —0.0975 ~0.0084

NotInLF inlF
Pr(ylx) 0.4222 0.5778 \
T kb k618 age we he lwg ine

x= .237716 1.35325 42,5378 .281541 .391766 1.09711  20.129
sd(x)= .523950 1.31987 8.07257 .450049 .488469 587556 11.6348

Br(ylx): probability of observing each y for specified x values
AvglChgl: average of absolute value of the change across categories
Min->Max: change in predicted probability as x changes frem its minimum to
its maximum -
0->1: change in predicted probability as x changes from O to 1
-+1/2: change in predicted probability as x changes from 1/2 unit below
base value to 1/2 unit above
-+sd/2: change in predicted probability as X changes from 1/2 standard
dev below base to 1/2 standard dev above
MargEfct: the partial derivative of the predicted probability/rate with
respect to a given independent variable

First, consider the results of changes from the minimum to the maximum. There is
little to be learned by analyzing variables whose range of probabilities is small, such
as hc, whereas age, k5, we, lwg, and inc have potentially important effects. Tor these
we can examine the value of the probabilities before and after the change by using the
fromto option: :

. prchange kb age wc lwg inc, fromto

logit: Changes in Probabilities for 1lfp

from: to: dif: from: to: dif: from:
x=min x=max min->max x=0 x=1" o->1 x-1/2
k5 0.6596 0.0235 -0.6361 0.6596 0.3097 -0.3499 0.7398
age 0.7508 0.3134 -0.4372 0.9520 0.9491  -0.0030 0.5854
we 0.5216. 0.7097 0.1881 0.5216 0.7097 0.1881 0.4775
lwg 0.1691 0.8318 0.6624 0.4135 0.5634 0.1499 0.5028
inc 0.7326 0.0911 -0.6415 0.7325 0.7256 -0.0068 0.5820
to: dif: from: to: dif:
x+1/2 -+1/2  x-i/2sd  =+1/2sd —+2d4/2 MargEfct
k5 0.3971 -0.3428 0.B4875 0.4826 -0.1849 -0.3569
age 0.5701 -0.0163 0.6382 0.5150 -0.1232 -0.0153
Wwe 0.6720 0.1946 0.5330 0.6214 0.0884 0.1969
1lwg 0.6493 0.1465 {.5340 0.6204 0.0865 0.1475
inc 0.5736 -0.0084 0.6258 0.5283 -0.0975 -0.0084
HotInLF inLF
Pr(ylz) 0.4222 0.5778
x5 k618 age we he lvg inc

- .237716 1.35325 42.5378 .281541 .3917C6 1.09711  20.129
sd{x)= .52395¢ 1.31987 8.07257 JAB00AQ  .48R469 .BBT556 11.6348
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;ﬁéedleecizr;; (;f;)i hexam;él‘e,t t(lilat vg,ryi_ng age from its minimum of 30 to its maximum of
e predicted probability by .44, from .75 to .31. Chanei ily i

: : the pre : : . . .31. Changing family inc

(inc) from its minimum to its maximum decreases the probability of ga womi“:n bgirillg

in abOI‘ f()rCe fI‘OIn . ; 3 O .09. Int T [) ar measure (] W
t jhe }. erpretin Uth.
. g 11res Of Chang 3 the fOHO lng

Using the unit change labeled ~+1/2: for a woman who is average on all

Cllal aCl el 1St 1C! i Y p y g
=) ‘a.Il addl thIlal (8] llllg }111 Creases th.e o I: )a blll[ Of e1m:

Using the standard deviation change labeled —+sd/2: a standard deviatibn

change in age centered on the mean wi
. will decrease the probability of i
by .12, holding other variables to their means. ’ Y ol werking

Using e-a_change {“ron_: 0 to I labeled 0->1: if a woman attends college, her
probability of being in the labor force is .19 greater than a woman who ,does
not attend college, holding other variables at their mean.

What if you need to calculate discrete change for changes in the independent values

that are not the default for
‘ prchange {e.g., a cha f1 3
year)? This can be done in two ways: (e Ve 0710 yesrs in age vather than 1

N

Confidence intervals for discrete change using the prvalue command

addzzc.ha?l;ge fdoes not provide confidence intervals. Although this feature might be

g gue e_Lu?Jlre,t tOJtr norl; you need to compute these intervals using a series of calls
- Let’s start with a simple example and then show h

; ow the process can be

autorrated. We can use prchange to compute the discrete change when wc changes

. from 0 to 1, holding other variables at their mean:

. prchange wc, brief

min->max 0->1 -+1/2 —+sd/2
MargEfct
we 0.1881 C¢.1881 0.1945 0.0884 051969

Using i
sing prvalue, we quietly compute the predictions when we is 0, save the results
H

and then compute predictions i i i 1
e p when wc is 1 using the diff option to compute discrete

(Continued on next page)
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. qui prvalue, x(wc=0) rest(mean) save

. prvalue, x(wc=1) diff R
logit: Change in Predictions for 1fp

Confidence intervals by.delta method

Current Saved Change 954 CI for Change

Pr{y=inLF|x}: 0.7097 ¢.5216 0.1881 [ 0.0900,  0.2861]

Pr(y=NotInlFl|x): 0.2903 0.4784 -0.1881 [-0.2861, —0.0900]
k5 k618 age we “he lug
Current= .2377158 1.3532537 42.537849 1 .39176627 1.0971148
Saved= .2377158 1.3532537 42.537842 0 .39176627 1.0971148
Diff= 0 0 o] 1 0 o

inc

Current= 20.128966
Saved= 20.128965
Diff= 0

The formal interpretation of these results requires that we imagine drawing repeated
samples from the population and repeating all calculations for estimating the bounds
of the confidence intervals for each sample {see page 88). About 95% of the computed
confidence intervals would contain the true change in the predicted probability. In this
sense, we are 95% confident that the true increase in the probability of a woman being in
the labor force associated with her having been to college is between .09 and .29. More
informally, we might say that we are 95% confident that the increase in the predicted
probability of a woman being in the labor force associated with her having been to
college is between .09 and .29. This confidence interval is the same as that computed
by mfx, which uses mimerical methods:

. mfx
Marginal effects after logit
=Dl IEmy A3t
Y P IR (Preazct -
= .B7779421
variable dy/dx Std. Err. z P>lz! [ 95% C.I. ] b4
xE -, 3568748 .04821  -7.40 0.000 -.451366 -.262383  .237716
k618 ~-. 0157519 .01659 -0.95 0.342 -.048266 .016763 1.3532%
age ~.01563371 .00311  -4,93 0.000 -.021434 -.00924 42.5378
wok .1880592 .05003 3.76  0.000 .09001 .286109  .281541
he* .0271985 . 05004 0.54 0.587 -.070882 .12B279  .391766
lug .1475137 .03674 4,01 ©0.000 .07b496 .219532 1.09711
inc -.0084031 .002  ~4.19  0.000 -.012332 -,004474 20.129

(*) dy/dx is for discrete change of dummy variable from O to i

Although mfx can compute confidence intervals for discrete changes for binary variables,
it will not compute them for continuous variables and is slower than prvalue since mfx
uses numerical methods to compute the confidence interval.

We can use a foreach loop (see [P] foreach) to automate the process of computing
a series of discrete changes with confidence intervals. In the following example, we are
computing a change from 0 to 1 for each of the variables k5, k618, and wc:
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foreach v in kx5 k618 we {
di _n " Change from O to 1 in ‘¢’"
qui prvalue, x{‘v’=0) rest{mean) save

' prvalue, z(‘v’=1) diff brief

Linej 1 causes the block of code between the braces { and } to be repeated three times
During the first pass, the local macro v is equal to k5, during the second pass it is e u&i
!to k618, and during the third pass it equals wc. (The ¢ and * around v ells Statg %
insert the value of the local macro v.) For each pass, line 2 labels the output; ‘v’ insertz
the name of the variable assigned in lize 1, and line 3 quietly runs prvalu’e assignin,
the variable represented by ‘v’ to equal 0 and saving the result. Simﬂaﬂ;f, forgeac}%

pass line 4 assigns the variable ‘v’ to equal 1 and com iff
putes the diffe
new and saved results. Here is the output; renee betwoen the

#% Change from 0 to 1 in k5
logit: Change in Predictioms for 1fp

: Current Saved Chan, ¥
N ge 954 CI for Change
Pr(yzlnLle): 0.3097 0.6596 ~0.3499 {-0.4334, —0.2553]
Pr(y—Not;nLFIx): 0.6903 0.3404 0.3498 [ 0.2683, 0.4334]

#% Change from 0 to 1 in k618
logit: Change in Predictions for 1fp

Current Saved Chan, Y
» ge 95}, CI for Change
gr(yzlnLle): 0.6833 0.5990 ~0.0156 [-0.0475, 0.01233
r(y=NotInLF|x): C.4167 0.4010 0.0156 [-0.0183, 0.0475]

** Change from 0 to 1 in wc

logit: Change in Predictions for 1fp

Current Saved Change 85 CI for C
N . ) hange
grgy:lnLFfX). 0.7097 0.5216 6.1881 [ 0.0%00, 0.2851]
r{y=NetInLF|x): 0.2803 0.4784 -0.1881 [-0.2861, -0.0900]

The process is a bit more complicated when we want to compute the discrete, one-
standard-deviation change centered around the mean. Again we use a foreach 1030 t
repeat a block of code three times, once for age, again for lug, and finally for incp Iz
Ehe progr.am below, line 2 runs the command sumnmarize for the variable indicateci b

VJ.' Ip line .3’ we create a start value equal to the mean minus one-half of g Sta,ndar?iZ
de\qat}on. Line 4 computes the end value equal to the mean plus one-half of a standard
deviation. The starting and ending values are then passed to prvalue in lines 6 and 7

- foreach v in age lwg inc {

qui summarize ‘v’

local start = r{mean) - {.5=r({sd))

local end = r(mean) + (.5*r(sd))

dil_n "#* Change from ‘start’ to ‘end’ in ‘v’®

qui prvalue, x(‘v’=‘start’) rest(mean) save
prvalue, x(‘v’=‘end’) dif brief

0~ D0y W
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** Change from 38.50156159842585 to 46.57413561272952 in age

leogit: Change in Predictions for 1fp B
Current Saved Change  95% CI.for Change

Pr (y=inLF|x): 0.5150 0.6382 ~0.1232 [-0.1717, -0.0747]
Pr(y=NotInLFlx}: 0.4850 0.3618 0.1232 [ 0.0747, 0.1717]

#* Change from .8033366225286708 to 1.390893047643295 in lwg
logit: Change ir Predictions for 1lfp

Current Saved Change  95% Ci’fqr Change
Pr(y=inLF|x): 0.8204 0.5340 0.0865 [ 0,0445, 0.1285]
Pr(y=NotInLF|x): 0.3796 0.4660 -0.0865 [-0.1285, -0.0445]

** Change from 14.31156614524011 tc¢ 25.94636467863254 in inc
legit: Change in Predictions for lip

Current Saved Change  95% CI for Change
Pr(y=inLFlx): 0.5283 0.6258 -0.0975 [-0.1428, -0.0522]
Pr(y=NotInLF|x): 0.4717 0.3742 0.0975 [ 0.0522, 0.1428]

Tip: Using estat summarize to get summary statistics for the estimation

sample. Above we used summarize to compute values of the mean and standard de-
viation. If you want to view summary statistics restricted to the sample used
to fit a model (that is, reflecting any if and in conditions you specified, as well
ag listwise deletion for observations with missing data), you can use summarize
varlist if e(sample)==1. Or, more simply, estat summarize produces summary
statistics restricted to the estimation sample for all variables in the model.

Nonstandard discrete changes with prvalue cominand

The comumand prvalue can be used to calculate the change in the probability for

a discrete change of any magnitude in an independent variablé,  S&y that we want to

calculate the effect of a 10-year increase in age for a 30-year-old woman who is average
on all other characteristics:

. prvalue, x(age=30) save brief
logit: Predictions for lip
95% Conf. Interval

Pr(y=iaLFix): 0.7506 [ 0.6830, 0.8183]
Pr(y=NotInLF|x): 0.2494 [ 0.1817, ¢.3170]

. prvalue, x(age=40) diff brief
logit: Change in Predictions for lfp

Current Saved Change  95% CI for Change
Pr(y=ialF{x): 0.6162 0.75086 -0.1345 [-0.1784, -0.09086]
Pr(y=NotInLF|x): 0.3838 0.2494  0.1345 [ 0.0906, 0.1784]

The save option preserves the results from the first call of prvalue. The second call
adds the diff option to compute the differences between the two sets of predictions.
We find that an increase in age from 30 to 40 years decreases a woman'’s probability of
being in the labor force by .13.
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Nonstandard discrete changes with prchange

‘We can also use prchange with the delta() and uncentered options. delta(#)
specifies that the discrete change is to be computed for a change of # units instead of
a one-unit change. uncentered specifies that the change should be computed starting
at the base value (i.e., values set by the x() and rest{) options), rather than being
centered on the base. Here we want an uncentered change of 10 units, starting at
age=30:

. prchange age, x{age=30) uncentered delta(10) rest(mean) brief

min->max 0->1 +delta +sd MargEfct
age -0.4372 -0.0030 ~0.1345 -0.1062 -0.0118

The result under the heading +delta is the same as what we Jjust calculated using
prvalue.

AT Interpretation using odds ratios with listcoef

Effects for the logit model, but not probit, can be interpreted in terms of changes in
the odds. Recall that for binary outcomes, we typically consider the odds of observing
a positive outcome versus a negative one:

a— Pr(y =1) __Prly=1)
Priy=0) 1-Pr{y=1)

Recall also that the log of the odds is called the logit and that the logit model is linear
in the logit, meaning that the log odds are a linear combination of the z's and Bs. For
example, consider a logit model with three independent variables:

Pr(y=1]|x)
m{l—Pr(yzux

] } =InUx) = Gy + S121 + Boza + Bz

We can interpret the coefficients as indicating that for a unit change in zj, we expect
the logit to change by Gk, holding all other variables constant.

This interpretation does not depend on the level of the other variables in the model.
The problem is that a change of 35 in the log odds has little substantive meaning for
most people (including us). By taking the exponential of both sides of this equation, we
can also create a model that is multiplicative instead of linear but in which the outcome
is the more intuitive measure, the odds:

gz(x’xQ) = pPopfrmi oBaza fsxg

where we take particular note of the value of zy. If we let 24 change by 1,

Q (x: To + ]_) = ebo Pra1 gha(zatl) Baza
= o oflo pF1@1 oPaze oz Bams
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which leads to the odds ratio:
2 (X, 2o+ l) . B0 gP1%1 B2z B2 pBaTa _
Q (X, 552) T eBophrEipferapBama

Accordingly, we can interpret the exponential of the coefficient as follows:

For a unit change in zy, the odds are expected to change by a factor of
exp(Be), holding all other variables constant. :

For exp(x) > 1, you could say that the odds are “exp(f) times larger”; for exp(fr) < l%
yoﬁ cowld say that the odds are “exp(fi) times smaller”. We can evaluate the effect o
a standard deviation change in z instead of a unit change:

For a standard deviation change in zp, the odds are expected to change by
a factor of exp(By x s, ), holding all other variables constant.

The odds ratios for both a unit and a standard deviation change of the independent
variables can be obtained with listcoef:

. listcoef, help

TN
logit (N=753): Factor Change in Odds ] X
0dds of: inLF vs NotInLF r ﬁ‘
1fp b z P>lz| e’b  e"bStdX ! SDof%
k& -1.46291 -7.426 0.000 0.2316 -0.4646 E 0,6240
k618 -0.06457 -0.950  0.342 G.9375 \0.9183 : 1.3199
age -0.06287 -4.918 G.000 0.9391 :0.6020 8.0726
we 0.80727 3.510 G000 2.2418 :$1.4381° 0.4500
i 011173 0.542 0.5388......1.1182 i1 0561 0.4886. .
1lwg 0.60469 4.009 0.000 1.8307 }.4266 ; 0.5876
ing¢ -0.03445 - -4.198 0.000 0.9661 Q:5698‘f 11.6348
b = raw coefficient S

z z-score for test of b=0

P>|z| = p-value for z-test o wx
e”b = exp(b) = factor change in odds for unit increase in
e~ bStdX = f__:_c]g(,b}SDv,of“ x) = change in odde for SD increase in X
SDofX = standard deviation of X

Some examples of interpretations are as follows:

For each additional young child, the odds of being employed decrease by a
factor of .23, holding all other variables constant.

For a standard deviation increase in the log of the wife’s expected wages, the
odds of being employed are 1.43 times greater, holding all other variables
constant.

Being 10 years older decreases the odds by a factor of .53 (= el=
holding all other variables constant.

063}<10)
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Other ways of computing odds ratios Odds ratios can also be computed with the

‘or option for logit. This approach does not, hawever, report the odds ratios for
a standard deviation change in the independent variables.

Multiplicative coefficients

When interpreting the odds ratios, remember that they are multiplicative. This means
that positive effects are greater than one and negative effects are between zero and
one. Magnitudes of positive and negative effects should be compared by taking the
inverse of the negative effect (or vice versa). For example, a positive factor change of
2 has the same magnitude as a negative factor change of .5 =1/2. Thus a coeficient
of .1 =1/10 indicates a stronger effect than a coefficient of 2. Ancther consequence
of the multiplicative scale is that to determine the effect on the odds of the event not
occurring, you simply take the inverse of the effect on the odds of the event occurring.
listcoef will automatically calculate this for you if you specify the reverse option:

. listcoef, reverse
logit (N=753): Factor Change in Odds
0dds of: NotInLF vs -inLF

lfp b z P>z e"b e bStdX SDofX
k5 -1.46201  -7.426 0.000 4.3185 2.1522 {.5240
k618 —-0.06457 -0.950 0.342 1.0667  1.0890 1.3199
age -0.06287 -4.918 0.000 1.0649 1.6612 8.0726
wC 0.80727 3.610  0.000 0.4461 0.6954 0.4500
hc 0.11173 0.542  0.588 0.8943 0.9469 0.4885
lwg 0.60469 4.008 0.000 0.5462 0.7010 0.5876
inc -0.03445 -4.196 0.000 1.0350 1.4930 11.6348

The header indicates that these are now the factor changes in the odds of NotInLF
versus inLF, whereas before we computed the factor change in the odds of inLF versus
NotInLF. We can interpret the result for k5 as follows:

For each additional child, the odds of not being em:ployed are increased by
a factor of 4.3 (=1/.23), holding other variables constant.

Effect of the base probability

The interpretation of the odds ratio assumes that the other variables have been held
constant, but it does not require that they be held at any specific values. Although the.
odds ratio seerns to resolve the problem of nonlinearity, remember: a constant factor
change in the odds does not correspond to a constant change or constant factor change
in the probability. For example, if the odds are 1 /100, the corresponding probability
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is .01.5 If the odds double to 2/100, the probability increases only by approximately
.01. Depending on your substantive purposes, this small change may he trivial or quite
important (such as when you identify a risk factor that makes it twice as likely that a
subject will contract a fatal diséase). Meanwhile, if the odds are 1/1 and double to 2/1,
the probahility increases by .167. Accordingly, the meaning of a given factor change in

the odds depends on the predicted probability, which in turn depends on the levels of -

all variables in the model.

Percent change in the odds

Instead of a multiplicative or factor change in the outcome, some people prefer the
percent change,

100 { exp (By, x §) — 1}
which is listed by listcoef with the percent option.

. listcoef, percent
logit {¥=753): Percentage Change in Odds
0dds of: inLF vs NotInlF

1fp b z P>zl % %Stdx SDofX
kb -1.46291 -7.426  0.000 -76.8 -53.5 0.5240
k818 -0.06457 -0.950 0.342 -6.3 -8.2 1.3199
. age -0.06287 -4.918 0.000 -6.1 -39.8 8.0726
we 0.80727 3.510  0.000 124.2 43.8 0.4500
he 0.11173 0.542  0.588 11.8 5.8 0.4885
lug 0.60469 4,009 0.000 83.1 42.7 0.5876
ine -0.03445 -4.196 0.000 -3.4 -33.0 11.6348

For each additional young child, the odds of being employed decrease by
77%, holding all other variables constant. '

A standard deviation increage in the log of the wile’s expected wages in-
creases the odds of being employed by 43%, holding all other variables con-
stant.

Percentage and factor change provide the same information; which you use for the binary
model is a matter of preference. Although we both tend to prefer percentage change,
methods for the graphical interpretation of the multinomial logii model (chapter 8)
work only with factor change coefficients. -

6. The formula for computing probabilities from odds is p = /1 + €.
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Addit?onal note If you report the odds ratios instead of the untransformed coeff
cients, the 95% confidence interval of the odds ratio is typically reported instea,c;
‘of the standard error. The reason is that the odds ratio is a nonlinear trans-
formation of the logit coefficient, so the confidence interval is asymmetric. For
example, if the logit coefficient. is .75 with a standard error of .25, the 95% in-
}terval around the logit coefficient is approximately [.26, 1.24], but tile confidence
Interval around the odds ratio exp(.75)=2.12 is [exp(.26)=1.30, exp(1.24)=3.46].

Using the or option with the logi i i
git command reports odds rat
confidence intervals. ’ 1on st ncludes

4.8 Other commands for binary outcomes

Logit and probit models are the most commonly used models for binary outcomes and
are th('E only ones that we consider in this book, but other models exist that can be
fitted in Stata. Among them, cloglog assumes a complementary log-log distribution
for the errors instead of a logistic or normal distribution. scobit fits a logit model that
relaxes the assumption that the marginal change in the probability is greatest when
Pr(y = 1) = .5. hetprob allows the assumeid variance of the errors in the probit model
to vary as a function of the independent variables. ivprobit fits a probit model where |
one or more of the regressors are endogenously determined. biprebit simultaneous]
fits two. binary probits and can be used when errors are correlated with each other ai
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