14 Chapter 1 Introduction

Powers, D. A. and Y. Xie. 2000. Statistical Methods for Categorical Data Analysis.
San Diego: Academic Press. This book considers all the models discussed in
our book, with the exception of count models, and includes loglinear models and
medels for event history analysis.

Train, ¥. 2003. Discrete Choice Methods with Simulation.. Cambridge: Cambridge
University Press. This is an outstanding review of models for a wide range of
models for discrete choice and includes details on new methods of estimation
using simulation.

Sk o B il it b i b B

2 Introduction to Stata

This book is about fitting and interpreting regression models using Stata, and to earn
our pay we must get to these tasks quickly. With that in mind, this chapter is a relatively
concise introduction to Stata 9 for those with kttle or no familiarity with the package.
Experienced Stata users can skip this chapter, although a quick reading might be useful.
We focus on teaching the reader what is necessary to work through the examples later in-
the book and to develop good working techniques for using Stata for data analysis. By
no means are the discussions exhaustive; often we show you either our favorite approach
or the approach that we think is simplest. One ofithe great things about Stata is that
there are usually several ways to accomplish the same thing. If you find a better way
than what we have shown you, use it! ' ' :

You cannot learn how to use Stata simply by reading. Accordingly, we strongly
encourage you to try the commands as we introduce thema. We have also included a
tutorial in section 2.17 that covers many of the basics of using Stata. Indeed, yon ight
want to try the tutorial first and then read our detailed discussions of the commiands.

Although people who are new. to Stata should find this chapter sufficient for un-
derstanding the rest of the book, if you want further instruction, look af the resources
listed in section 2.3. We also assume that you know how to load Stata on the computer
you are using and that you are familiar with your computer’s operating system. By

* this, we mean that you should be comfortable copying and renaming files, working with

subdirectories, closing and resizing windows, selecting options with menus and dialog
boxes, and so on.

(Continued on next page)

16

21

Chapter 2 Introduction to Stata

The Stata interface

%_/__f // fd ff /7 9.1 copyright 2084-200%

s statacor
statistics/pata Analysis 4005 Lakgway prive

- station, Texas 77845 USA
gggig%i‘m—n http://wew. stata, com
979-696-4500 stata@stata. com

970-596-4601 (Fax)

Special £dition

: cingle-user Stata for windows perpetual license:
: serial numbers 9
Licensed te: S<ott Long

1u-saciology

jpotes: r -s5ET memory-) 10.00 MB allocated to data

optien o . :
]2“ E,:/’r\r}i ogtinn or -set maxvar-) 5000 maximum variabies

Figure 2.1: Opening screen in Stata for Windows.

. . . d
When you launch Stata, you will see a screen with several smaller WW%OW\S;\};C;E:, !
wi.thin the larger Stata window, as shown in figure 2.1. This screen Sh}?t is C(l)ror ndows
using the default windowing preferences. 1f the defaults have been change AL
(=3

i i iochtly different.” Figure 2.2
running Stata under Unix or MacO$, your screen will look slightly

have
s what Stata looks like after several commands have been entered and data hav

e ur windows are shown.

been loaded into memory. In both figures, fo

Windows. Please refer to the books

and descriptions are based on Stata for o for axamaplen booke

1. Qur screen shots o Startad v

Getting Started with Stata for Macintosh or Ge
screens for those operating systems.

MASARYKOVA Unrvg; RZITA V BRNE
Fulyylta sociinieh stadi

2.1 The Stata interface ‘ oftova 10 17
60200 BRNG :

0N

: amne.
- use binifpd.dia

{(bata from 1976 PSID-T Mroz)

. S
sum

b lip variable Obs Mean std. pav. min Max
1fp 753 . 5683931 - 4856295 0 o1

k5 753 - 2377158 - 523959 0 32

ko1s 753 1.3532%4 1.319874 @ 8

age 753 42.5378B5 8.072574 30 a0

we 733 « 2815405 4500404 o 1

he 753 -3017663 .4BB4694 0 1

Twg 753 1.097115 . 5875564 -2.054124 3.2188676

ine 753 20.12897 11.6348 - 0280001 96

i %Wﬂ%@] tab 1fp

#aid Labor
5] Force:
k§18 1 1=yes O=no Freq. Par cent cum.
age :
- 1 worzme 325 43.16 43.16
ho 3nLF 428 56.84 100.00
g : Tetal 753 100. 00
Diistatastat
w23

Figure 2.2: Example of Stata windows after several commands have been entered and
data have been loaded.

The Command window is where you type commands that are executed when you
press Enter. As you type commands, you can edit them at any time before pressing
Enter. Pressing PageUp brings the most recently used command into the Com-
mand window; pressing PageUp again retrieves the command before that; and so
on. Once a command has been retrieved to the Command window, you can edit
it and press Enter to run the modified command.

The Results window contains output from the commands entered in the Command
window. The Results window also echoes the command that generated the output,
where the commands are preceded by a “.” as shown in figure 2.2. The scroll bar
on the right lets you scroll back through output that is no longer on the screen.
You can also use the scroll wheel on the mouse to scroll back and forth. Within
the window, you can highlight text and right-click the mouse to see options for
copying the highlighted text. In Stata for Windows and Stata for Macintosh, the
Copy Table option copies the selected lines to the clipboard, and Copy Table as
HTML allows you to copy the selected text as an HTML table (see page 94 for
more information). Right-clicking also gives you the option to print the contents
of the window. Only the most recent output is available this way; earlier lines are

18 Chapter 2 Introduction to Stata '

lost unless you have saved them to a log file (discussed below). Details on setting-
the size of the scrollback buffer are given below.

The Review window lists the commands that have been entered fl.."om the Command
window. If you click on a command in this window, it is pasted into the Command
window, where you can edit it before execution of the command. If you d9ub1e—
click on a command in the Review window, it is pasted into the Command window
and immediately executed.

The Variables window lists the names of variables that are in memory, including’

those loaded from disk files and those created with Stata commands. If you click

on a name, it is pasted into the Command window.

The Command and Results windows illustrate the important point that Stata has

its origins in a command-based system. This means that you tell Stata what to do by

typing commands that consist of one line of text and then pressing Em:'er.2 Beginning
with Stata 8, there is a complete graphical user interface (GUI) for accessing all nonpro-
gramming commands. At the rigk of seeming old-fashioned, however, we still prefer the

command-based interface. Although it can take longer to learn, once you learn it, y.o,u;—.
should find it much faster to use. If you currently prefer using pulldown menus, stick

with us, and you will likely change your mind.

Because Stata 8 and later have a complete GUI, you can do almost anything in

Stata by pointing and clicking. Some of the most important tasks can be performed .

by clicking on icons on the toolbar at the top of the screen. Although we on oceasion
mention the use of these icons, for the most part we stick w1tlh text commands. Indeed,_
even if you do click on an icon or issue a command from a d_la%og box, .Stata shows you
how this could be done with a text command. For example, if you click on the Data

I

Browser button, #, Stata opens a spreadsheet for examining your data. Mea%lwhile,
¢, browse” is written to the Results window. This means that instead. of clicking the
icon, you could have typed browse. Overall, not only is the range of things you can do
with menus limited, but almost everything you can do with the mouse can a.l:?O be done
with commands, often more efficiently. Therefore, and because it makes things much
easier to automate later, we describe things mainly in terms of commands. Even so, we
encourage you to explore the tasks available through menus and the toolbar and to use
them when preferred.

Changing the scrollback buffer size

How far back you can scroll in the Results window is controlled by the command

set scroilbufsize #

. . . to
2. For now, we consider entering only one command at a time, but in section 2.9 we show you how
3 2
run a series of commands at once using “do-files”.

2.2 Abbreviations ‘) 19

where 10,000 < # < 500,000. By default, the buffer size is 32,000 bytes. When you
change the size of the scroll buffer using set scrollbufsize, the change will take effect

the next time you launch Stata. Unless memory is a problem, we set the buffer to its
maximuin. _ | :

Changing the display of variable names in the Variables window

The Variables window displays both the names of variables in memory and their variable
labels. By default, 32 columns are reserved for the name of the variable. The rhaximum
number of characters to display for variable names is controlled by the command

set varlabelpos #

where 8 < # < 32. By default, the size is 32. In figure 2.2, none of the variable labels
are shown since the 32 columns take up the width of the window. If you use short

variable names, it is useful to set varlabelpos to a smaller number so that you can
see the variable labels.

Tip: Changing defaults We prefer a larger scroll buffer and less space for variable
names. We could enter the command set varlabelpos 14 at the start of each
Stata session, but it is easier to add the commands to profile.de, a file that

is automatically run each time Stata begins. We show you how to do this in
chapter 9. :

B 2.2 Abbreviations

Commands and variable names can often be abbreviated. For variable names, the rule
is easy: anmy variable name can be abbreviated to the shortest string that uniquely
identifies it. For example, if there are no other variables in memory that begin with a,
the variable age can be abbreviated as a or ag. If you have the variables income and
income2 in your data, neither of these variable names can be abbhreviated.

There is no general rule for abbreviating commands, but as one would expect, typ-
ically the most common and general command names can be abbreviated. For exam-
ple, four of the most often used commands are summarize, tabulate, generate, and
regress, and these can be abbreviated as 8u, ta, g, and reg, respectively. From now
on, when we introduce a Stata command that can be abbreviated, we underline the
shortest abbreviation (e.g., generate). But, although very short abbreviations are easy
to type, they can be confusing when you are getting started. Accordingly, when we use
abbreviations, we stick with at least three-letter abbreviations,

20 Chapter 2 Introduction to Stata .

2.3 How to get help

2.3.1 Online help

1f you find our description of a command incomplete, or if we use a command that is not
explained, you can use Stata to find more information. Use the help _commapd when
you know the name of the command and want to find out more about it. For example,
help regress tells you about the regress command. search is used when you do not
know the name of the command or where something is documented. help and search
are typed in the Command window, with results for help displayed in a Viewer wipdow
and results for search returned to the Resulis window. You can also open the Viewer
e .
by clicking on / . At the top of the Viewer, there is a line labeled Command, where

you can type commands, such as help. The Viewer is particularly useful for reading.

long help files.

help lists a shortened version of the documentation in the manual for any command.

You can even type help help for help on using belp. The output from help often makes.

reference to other cormmands, which are shown in blue. (Anything in the Results window
that is in blue type is a clickable link.) Here clicking on a command name in blue type
is the same as typing help for that command. :

search is so useful for tracking down information that we encourage you to type

help search and read more about this powerful command, because here we provide .

only a few details. By default, search word ... searches Stata’s index on your lqcal
machine and lists the entries that match your query. For example, search gen lists
information on generate but also links to many related commands. Og, if you want to
run a truncated regression model hut cannot remember the name of the command, you
could try search truncated Lo get information on commands related o truncation.

The resuiting commands are listed In biue, s0 you can click on the name; details appear
in the Viewer. If you want to extend your search to the Internet, add the option all; .for
example, search truncated, all. When you search the Internet, you get information
from the Stata web site, mcluding FAQs (frequently asked questions), articles that have
appeared in the Stata Journal (often abbreviated 8J), and information about user-
written commands that are not part of official Stata. For example, when you installed
the SPost commands, you might have used search spest, all to find the links for
installation. To get a better idea of how the all option works, try search truncated,
all and compare the results with those from search truncated. If you always want
t0 include a search of the Internet, you can set searchdefault all, permanently
and search will automatically search the Internet each time you use the command.
Or, you can leave the search default to search your local machine and use the findit
command, which is equivalent to search word ..., all. :

2.4 The working directory ‘ ' : 21

Tip: Help with error messages Error messages in Stata can be terse and sometimes

* confusing. Whereas the ervor message is printed in red, errors also have a return

code (e.g., r(199)) listed in blue. Clicking on the return code provides a more
detailed description of the error. ' o

2.3.2 Manuals

The Stata manuals are extensive, and it is worth taking an hour to browse them to get
an idea of the many features in Stata. In general, we find that learning how to read
the manuals (and use the help system) is rnore efficient than asking someone else, and
it allows you to save your questions for the really hard stuff. For those new to Stata,
we recommend the Getting Started manual {which is specific to your platform) and the
first part of the User’s Guide. As you become more acquainted with Stata, the reference
manuals will become increasingly valuable for detailed information about commands,

including a discussion of the statistical theory related to the commands and references
for further reading.

2.3.3 Other resources

The User’s Guide also discusses more sources of information about Stata. Most im-
portantly, the Stata web site (http://www.stata.com) contains many useful resources,
including links to tuterials and an extensive FAQ section that discusses both introdue-
tory and advanced topics. You can also get information on the NetCourses offered
by Stata, which are 4- to 7-week courses offered over the Internet. Amnother excel-
lent set of online resources is provided by UCLA’s Academic Technology Services at
http://www.ats.ucla.edu/stat /stata/. '

There is also a Statalist listserver that is not part of StataCorp, although many
programmers and statisticians from StataCorp participate. This list is a wonderful
resource for information on Stata and statistics. You can submit quéstions and usually
receive answers very quickly. Monitoring the listserver is also a, quick way to pick up
insights from Stata veterans. For details on joining the list, visit
http://www.stata.com/statalist /. '

2.4 The working directory

The working directory is the default directory for any file operations such as using
data, saving data, or logging output. If you type ¢d or pwd in the Command win-
dow, Stata displays the name of the current working directory. To load a data
file stored in the working directory, you just type use filename (e.g., use binlfp2).
If a file is not in the working directory, you must specify the fuil path (e.g., use
d:\spostdata\examples\binlfp2). : '

22 Chapter 2 Introduction to Stata

At the beginning of each Stata session, we like to change our working direcFory to-
the directory where we plan to work, since this is easier than repeatedly entering ’Fhe
path name for the directory. For example, typing cd d:\spostdata changes the working
directory to d:\spostdata. If the directory name includes spaces, you must put the
path in quotation marks (e.g., cd "d:\my work\").

You can list the files in your working directory by typing dir or 1s, Wbich are two
names for the same command. With this command, you can use the * wildcard. For
example, dir *.dta lists all files with the extension .dta.

2.5 Stata file types

Stata uses and creates many fypes of files, which are distinguished by extensions at the
end of the filename. Some of the extensions used by Stata are :

.ado Programs that add commands to Stata, such as the SPost commands.

.clasg Files that define classes in the Stata class system.

.dlg Programs that define the appearance and functionality of
dialog boxes.

.do Batch files that execute a set of Stata commands.

.dta Data files in Stata’s format.

.emf Graphs saved as Windows Enhanced Metafiles.

.gph Graphs saved in Stata’s proprietary format.

.hlp The text displayed when you use the help command. For example,
fitstat.hlp has help for fitstat.

.log Output saved as plain text by the log using command.

-mata Original source code for programs written in Mata.

.mlib Libraries of programs written it Mata.
-smcl . Output saved in the SMCL format by the log using command.

The most important of these for a new user are the -smcl, .log, .dta, and .do files,
which we will now discuss.

2.6 Saving output to log files

Stata does not automatically save the output from your commands. To save your outpirt
to print or examine later, you must open a log file. Once a log file is opened, both the
commands and the output they generate are saved. Because the commands are recorded,
you can tell exactly how the results were obtained. The syntax for the log command is

log using filename {, append replace [gmcl}jgext] name(logname)}

By default, the log file is saved to your working directory. You can save it to a different
directory by typing the full path (e.g., log using d:\pro ject\mylog, replace).

2.6.1 Closing a log file | & 23

Options

append means that if the file exists, new output should be added to the end of the
existing file. . '

replace indicates that you want to replace the log file if it- already exists. For exam-
ple, log using mylog creates the file mylog.smcl. If this file already exists, Stata

generates an error message. So, you could use log using mylog, replace, and the
existing file would be overwritten by the new output.

smcl and text specify the format in which the log is to be recorded.

smcl is the default option that requests that the log be written using the Stata
Markup and Control Language (SMCL) with the file suffix .smel. SMOL files
contain special codes that add solid horizontal and vertical lines, bold and italic
typefaces, and hyperlinks to the Results window. The disadvantage of SMCL is
that the special features can be viewed only within Stata. If you open a SMCL
file in a text editor, your results will appear amidst a jumble of special codes.

text specifies that the log should be saved as plain text (ASCIT), which is the pre-
ferred format for loading the log into a text editor for printing. Instead of adding
the text option, such as log using mywork, text, you can specify plain text by
including the .1log extension (for example, log using mywork.log).

If you open multiple log files, you may choose a different format for each file.

name (logname) specifies an optional name for the log file to be used while it is open.
This lets you have multiple log files open, each with a different name. You can then
close, temporarily suspend, or resume them individually.

Tip: Plain text logs by default We prefer plain text for output rather than SMCL.
Typing set logtype text at the beginning of a Stata session makes plain text
the default for log files for the current session. Typing set logtype text,
permanently makes plain text the default for future sessions.

If you have a question and would like to send us a log file, make sure that it
is in text format rather than in SMCL. Before you send anything, please check
http://www.indiana.edu/ ~jslsoc/spost_help.htm for information on what you can
do to increase your odds of getting an answer!

2.6.1 Closing a log file

To close a log file, type
. log close

Also when you exit Stata, the log file closes automatically.

24 Chapter 2 Introduction to Stata

2.6.2 Viewing a log file

Regardless of whether a log file is open or closed, a log file can be viewed by selecting

File—Log—View from the menu, and the log file will be displla,yedr in the Viewer. When -
in the Viewer, you can print the log by selecting File—Print Viewer.... Yo_u can also{_“.)

!l/ - -
view the log file by clicking on %, which opens the log in _the Viewer. If the Viewer

. bt ot
window gets lost behind other windows, you can click on il
the front.

to bring the Viewer to

2.6.3 Converting from SMCL to plain text or PostScript

If ybu want to convert a log file in SMCL format to plain text, you can use the translate
command. For example, :

. translate mylog.smcl mylog.log, replace T
(file mylog.log written in .log format)

tells Stata to convert the SMCL file mylog.smcl to a plai'n-te.xt file ca,llled mylog. l-og.
Or, you can convert a SMCL file to a PostScript file, which is useful if you arfz using
’IE;X or INTEX or if you want to convert your output into Adobe’s Portable Documment

Format. For example,

. tramslate mylog.smcl mylog.ps, replace
(file mylog.ps written in .ps format)

Converting can also be done through the menus by selecting File—Log— Translate.

2.7 Using and saving datasets

2.7.1 Data in Stata format

Stata uses its own data format with the extension .dta. The use command_ loa‘ds such
data into mermoty. Pretend that we are working with the file nomocc2.dta in directory

d:\spostdata. We can load the data by typing

. use d:\spostdata\nomocc2, clear

where the .dta extension is assumed by Stata. The clear option erases'a'll data cur-
rently in memory and proceeds with loading the' new data. Stata does not give an erorlc;li
if you include clear when there are no data in memory. If d:\spostdata was
working directory, we could use the simpler command

. use nomecc?2, clear

If you have changed the data by deleting cases, merging in ¬hel_“_ file, or creating
new variables, you can save the file with the save command. For example,

272 Data in other formats) 25

. Bave d:\spostdata\nomoccs, replace

where again we did not need to include the .dta extension. Also we saved the file with a
different name so that we can use the original data later. The replace option indicates
that if the file nomocc3.dta already exists, Stata should overwrite it. If the file does
not already exist, replace is ignored. If d: \spastdata was our working directory, we
could save the file with :

. Bave nomoccd, replace

save stores the data in a format that can be read only by Stata 8 or later. (Stata 8
and Stata 9 share the same dataset format.) If you use the command saveold instead
of save, the dataset is written so that it can be read by Stata 7, but if your data
contain multiple missing-value codes, a feature that became available in Stata &, all the
missing-value codes will be mapped to the smallest missing value (.).

Tip: compress before saving Before saving a file, run compresa, which checks each
variable to determine if it can be saved in a more compact form. For instance,
binary variables fit into the byte type, which takes up only one-fourth of the space
of the float type. If you run compress, it might make your data file much more
compact, and at worst it will do no harm. '

2.7.2 Data in other formats

'To load data from another statistical package, such as SAS or SPSS, you need to convert
it into Stata’s format. The easiest way to do this is with a conversion program such as
Stat/Transfer (http://www.statiransfer.com). We recommend obtaining one of these
programs if you are using more than one statistical package or if you often share data
with others who use different packages.

If you are moving data between Stata and SAS, you can use fdasave, fdause, and
fdadescribe to convert datasets to and from the SAS XPORT Transport format. The
commands begin with fda since the U.8. Food and Drug Administration has adopted
the SAS XPORT format for new drug and other applications. Although a progrm like
Stat/Transfer might be easier to use than these commands, if you move back and forth
between SAS and Stata frequently, it is worth spending some time learning the fda
commands. Type help fdasave or search fda for details.

Alternatively, but less conveniently, most statistical packages allow you to save and
load data in ASCII format. You can load an ASCII file with the infile or infix com-
mands and export it with the outfile command. The reference manual entry for
infile contains an extensive discussion that is particularly helpful for reading in ASCII
data, or you can type help infile. :

26 Chapter 2 Introduction to Stata

2.7.3 Entering data by hand

Data can also be entered by hand using a spreadsheet-style editor. Although we do not
recornmend using the editor to change existing data (because it is too easy to make a

mistake), we find that it is useful for entering small datasets. To enter the editor, click
e

on ¥4 or type edit on the command line. The Geiting Started manual has a tutorial

for the editor, but most people who have used a spreadsheet before will be immediately
comfortable with the editor.)

As vou use the editor, every change that you make to the data is reported in the
Results window and is captured by the log file, if it is open. For example, if you change
age for the fifth observation to 32, Stata reports replace age = 32 in 5. This tells
you that instead of using the editor, you could have changed the data with a replace
command. When you close the editor, Stata asks if you really want to keep the changes
or revert to the unaltered data. -

2.8 Size limitations on datasets”

If you get the error message r{900) : no room to add more observations when trying
to load a dataset or the message r(901) : no room to add more variables when frying
to add a new variable, you may need to allocate more memory. Typing memory shows
how meuch memory is allocated to Stata and how much it is using. You can increase the
amount of memory by typing set memory #X (for KB) or #m (for MB}. For example, set
memory 32000k or set memory 32m sets the memory to 32 MB.3 If you have variables
in mermory, you must type clear before you can set the memory. :

If you get the exror r(1000) : system limit exceeded--see manual when you try

to load a dataset or add a variable, your datasef might have too many variables or
the dataset might be too wide. Intercooled Stata is limited to a maximum of 2,047
variables, and the dataset can be up to 24,564 units wide {a binary variable has width
1, a double-precision variable has width 8, and a string variable has width equal fo
its length). Stata/SE allows 32,767 variables, and the dataset can be up to 393,192
units wide. String variables can be up to 244 characters. File transfer programs such
as Stat/Transfer can drop specified variables and optimize variable storage. You can
use these programs to create multiple datasets that each contain only the variables
necessary for specific analyses.

2.9 Deo-files

You can execute commands in Stata by typing one command at a titne into the Com-
mand window and pressing Enter, as we have been doing. This interactive mode is

3. Stata can use virtual memory if yod need to allocate memory beyond that which is physically
availabie on a system, but we find that virtual memory makes Stata unbearably slow.

2.9 Do-files o7

u.seful wl}en you are learning Stata, exploring your data, or experimenting with alterna-
tive s.,pe01ﬁcati0ns of your regression model. You can also create a text file that contains
a series of commands and then tell Stata to execute all the commands in that file one
after the other. These files, which are known as do-files because they use the exter,lsion
-do, have the same function as “syntax files” in SPSS or “batch files” in other statistics
packages. For more serious or complex work, we always use do-files because they make

it easier to redo the analysis with small modificati '
ons later and because th i
an exact record of what has been done. provide

To get an idea of how do-files work i i i
directes work, consider the file example.do saved in the working

log using example, replace text
use binlfp2, clear

tabulate he wc, row molabel

log close

To execute a do-file, you type the command

de dofilename

from the CQmmand window. For example, do example tells Stata to run each of the
commaflds n example.do. (If the do-file is not in the working directory, you need
to specn“y the directory, such as do d:\spostdata\example.) Executing e’xample do
begins by opening the log example.log, and then loads binlfp2.dta, and finall c;)n—
structs a table with he and we. Here is what the output looks lke: ’ ¢

(Continued on next page)

28 Chapter 2 Introduction to Stata

log: f:\spostdata\example.log
log type: text
opened on: 26 September 2005, 15:44:45
. use htip://wuu.stata-press.com/data/1f2/binlfp2, clear
(Data from 1976 PSID-T Mroz)

. tabulate hc¢ we, row nolabel

| Key
| ~===mmm I
| frequency |
| row percentage |
e +
Husband | Wife College: l=yes
College: | 0=no
1=yes O=no | 0 1| Total ‘
o | 417 41 | 458
I 91.05 8.95 | 100.00
i 1] 124 171 | 285
I 42.03 57.97 | 100.00
Total | 541 o212 | 753
| "71.85 28.15 | 100.00
. log close)
log: f:\spostdata\example.log

log type: text
closed on: 26 September 2005, 15:44:45

2.9.1 Adding comments

Stata has several different methods for denoting comments. We will make ex—te.nswe use
of two methods. First, on any given line, Stata treats everything that comes af.ter / / or
after * as comments that are simply echoed to the output. -Second, on any given hnlf,
Stata ignores whatever comes after /// and treats the next line as a continuation of the
current line. For example, the following do-file executes the same commands .as. the one
above but includes comments:

/!

// ==> short simple do-file

// ==> for didactic purposes

// : Py

log using example, replace // this comment is ignored

// next we load the data

use binifp2, clear) ,

// tabulate husband’s and wife s education . .)

tabulate hc wc, /// the next line is treated as a continuation of this one
row nolabel

// close up

log close

// make sure there is a cr at the end!

2.94 Creating do-files 29

If ydu look at the do-files on our web site that reproduce the examples in this book, you
will see that we use many comments. "They are extremely helpful if others will be using
your do-files or log files, or if there is a chance that you will use them again later.

2.9.2 Long lines

Sometimes you need to execute a command that is longer than the text that can fit onto
a screen. If you are entering the command interactively, the Command window simply
pushes the left part of the command off the screen as space is needed. Before entering
a long command line in a do-file, however, you can use #delimit ; to tell Stata to
interpret “;” as the end of a command. After the long command is entered, you can

enter #delimit c¢r to return to using the carriage return as the end-

of-line delimiter.
For example,

#delimit ; .
recode income®l 1=500 21500 3=3500 4=2500 5=5500 6=6500 7=T500 8=9000
9=11250 10=13750 11=16250 12=18750 13=21260 14=23750 15=37500 16=32500

17=37500 18=45000 19=55000 20=67500 21=76000 *=.
#delimit cr

’

Instead of the #delimit command, we could have used ///. For example,

recode incomed1 1=500 2=1500 3=3500 4=4500 B=5500 6=6500 7=7500 8=8000 [/
9=11250 10=13750 1i=16250 12=18750 13=21250 14=23750 15=27500 16=32500 /1
17=37500 18=45000 19=55000 20=67500 21=T5000 *=

N 2.9.3 Stopping a do-file while it is running

If you are running a command or a do-file that you want to stop before it completes
i

execution, click on J28%]

or press Ctrl-Break.

2.9.4 Creating do-files

Using Stata’s Do-file Editor

Do-files can be created with Stata’s built-in Do-file Editor. Tt use the editor, enter the
command doedit to create a file to be named later or doedit filename to create or edit
/
a file named filename.do. You can also click on 1 4. The Do-file Editor is easy to
use and works like most text editors (see Getting Started for further details). After you
i

finish your do-file, select Tools—Do to execute the file or click on 4z,

30 Chapter 2 Introduction to Stata

Using other editors to create do-files

Becanse do-files are plain text files, you can create do-files with any program tIflca,}t1
creates text files. Specialized text editors work much bette'r than word Processors su
as WordPerfect or Microsoft Word. Among other things, with wor.d processors it is ;asg
to forget to save the file as plain text. Our own preference for ereating do-files 1s-3ex: a
(http://www.textpad.com), which runs in Windows. This program 12&8 mail)ly ea 11}1}11"6?3
that, make it faster to create do-files. For example, you can create a “clip library . izze
contains frequently entered material, and you can obtain a syntax file from our web s
$hat provides color coding of reserved words for Stata.

If you use an editor other than Stata’s built-in editor, you ca,ngot run the do—ﬁiﬁtbj);
clicking on an icon or selecting from a menu. Instead, you must switch from your edito
and then enter the command do filename.)

Two nice features of the Do-file Editor are that you can highlight a section of a file

and Staba will execute only the commands that you have highl.ighted, and you can selet?t
Tools—Do to Bottom and Stata will execute commands starting wherever the cursor is

located to the end of the file.

Warning Stata executes commands when it encounters a carriage rle.:tur'n (1.3.(,)_ g;e
Enter key). If you do not include a carriage return after the last line 111 ha do aj,
that last line will not be executed. TextPad h_as a f.eatL%re to entec;" alt X r;;hé
pesky carriage return automatically. To set this Optl,?l’-l in TextPad, se efc e
"option “Automatically terminate the last line of the file” in the preferences for

editor.

2.9.5

Recommended structure for do-files

This is the basic structure that we recommend for do-files:

// including version number ensures compatibility with later Stata releases
version 9)
// if a log file is open, close it

capture log close
// don’t pause when output scrolls off the page

set more off .

// log results to file myfile.log

log using myfile, replace text) .
//g* myffle.do - written 19 oct 2005 to illustrate do-files
/!

// * your commands go here

//
// close the log file.

log close

Although the comments (which you can remove) should explain most of the file, there
are a few points that we need to explain.

2.10

2.10 Using Stata for serious data analysis ' 31

® The version 9 command indicates that the program was written for use in
Stata 9. This command tells any future version of Stata, that you want the com-
mands that follow to work just as they did when you ran them in Stata. 9. This
prevents the problem of old do-files not running correctly in newer releases of the
program.

® The command capture log close is very useful. Suppose that you have a do-file
that starts with log using mylog, replace. You run the file and it “crashes”
before reaching log close, which means that the log file remains open. If you
revise the do-file and run it again, an error is generated when it tries t0 open the
log file because the file is already open. The prefix capture tells Stata not to stop
the do-file if the command that follows produces an error. Accordingly, capture
log close closes the log file if it is open. If it is not open, the error generated by
trying to close an already-closed file is ignored.

The command c¢mdlog is much like the log command, except that it creates a
text file with extension .txt that saves all subsequent commands that are entered
in the Command window (it does not save commands that are executed within a
do-file). This is handy because it allows you to use Stata interactively and then
make a do-file based on what you have done. You simply load the emdlog that
you saved, rename it t0 newname. do, delete commands you no longer want, and
execute the new do-file. Your interactive session is now documented as a do-file.
The syntax for opening and closing cmdlog files is the same as that for log (ie.,
cmdlog using to open and cmdlog close to close), and you can have log and
cmdlog files open simultaneously.

Tip:

Using Stata for serious data analysis

Voltaire is said to have written Candide in three days. Creative work often rewards
such inspired, seat-of-the-pants, get-the-details-later activity. Data management does
not. Instead, effective data, management rewards forethought, carefulness, double- and
triple-checking of details, and meticulous, albeit tedious, docurmentation. Errors in data
management are astonishingly (and painfully) easy to make. Moreover, tiny errors can
have disastrous implications that can cost hours and even weeks of work. The extra
time it takes to conduct data management carefully is rewarded many tirzes over by the
reduced risk of errors. That is, it helps prevent you from getting incorrect results that
you do not know are incorrect. With this in mind, we begin with some broad, perhaps
rritatingly practical, suggestions for doing data analysis efficiently and effectively.

Chapter 2 Introduction to Stata

. Emnsure replicability by using do-files and log files for everything. For data analysis

to be credible, you must be able o reproduce entirely and exactly the trail from
the original data to the tables in your paper. Thus any permanent changes you
make to the data should be made by running do-files rather than by using the
interactive mode. If you work interactively, be sure that the first thing you do is
to open a log or cmdlog file. Then when you are done, you can use these files to
create a do-file to reproduce your interactive results.

. Document your do-files. Reasoning that is obvious today can be baffling in

6 months. We use comments extensively in our do-files, which are invaluable

_ for remembering what we did and why we did it.

. Keep a research log. For serious work, you should keep a diary that includes a

description of every program you run, the research decisions that are being made
(e.g., the reasons for recoding a variable in a particular way), and the files that are
created. A good research log allows you to reproduce everything you have.done
starting with the original data. We cannot overemphasize how helpful such notes
are when you return to a project that was put on hold, when you are responding
to reviewers, or when you are moving on to the next stage of your research.

. Develop a system for naming files. Usually it makes the most sense to have

each do-file generate one log file with the same prefix (e.g., clean_data.do,
clean data.log). Names are easiest to organize when brief, but they should
be iong enough and logically related enough to make sense of the task the file
does. Scott prefers to keep the names short and organized by major task {e.g.,
recode01.do), whereas Jeremy likes longer names (e.g., nake_income_vars.do).
Either is fine ag long as it works for you.

. Use new names for new variables and files. Never change a dataset and save it

with the original name. If you drop three variables from pcomsl.dta and create

two new variables, call the new file pcoms2.dta. When you transform a variable,
give it a new name rather than simply replacing or recoding the old variable. For
example, if you have a variable workmom with a five-point attitude scale, and you

want 1o create a binary variable indicating positive and negative attitudes, create

a new variable called workmom2.

. Use labels and notes. When you create a new variable, give it a variable label. If

it is a categorical variable, assign value labels. You can add a note about the new
variable using the notes command (described below). When you create a new
dataset, you can also use notes to document what it is.

. Double-check every new variable. Cross-tabulating or graphing the old variable

and the new variable are often effective for verifying new variables. As we describe
below, using list with a subset of cases is similarly effective for checking trans-
formations. Be sure to at least look carefully at the frequency distributions and
summary statistics of variables in your analysis. You would not believe how many
times pugzzling regression results turn out to involve miscodings of variables that
wotld have been immediately apparent by looking at the descriptive statistics.

2.11 Syntax of Stata commands - | 33

8. Practice good archiving. 1f you want to retain hard copies of all your analyses

develop a system of binders for.doing so rather than a set of intermingling piles 01;

- your desk. Back up everything. Make off-site backups or keep any on-site backups
in a fireproof box. Should cataclysm strike, you will have enough other things to

worry about without also having lost, months or years of work. : |

2.11 Syntax of Stata commands

T‘hink about the syntax of commands in everyday, spoken English. They usually begin
fmth a verb telling the other person what they are supposed to do. Sometimes the vegrb
is the ent‘ire command: “Help!” or “Stop!” Sometimes the verb needs to be followed
by an object that indicates who or what the verb is to be performed on: “Help Davel”
or “S.t‘op the carl” Sometimes the verb is followed by a qualifier that gives speciﬁc
C(?ndlthI_lS under which the corsmand should or should not be performed: “Give me a
piece of pizza if it doesn’t have mushrooms” or “Call me if you get home before nine”
Yerbs can also be followed by adverbs that specify that the action should be performed
In some way that is different from how it might normally be, such as when a teacher
commands her students to “Talk clearly” or “Walk single file”.

Stata follows an analogous logic, albeit with some other wrinkles that we will intro-
duce later. The basic syntax of a command has four parts:

1. Command: What action do you want performed?

2. Names of variables, files, or other ob jects: On what things is the command to be
performed? o

3. Qualifier on observations: On which observations should. the command be per-
formed?

4. Options: What special things should be done in executing the command?

AH commands in Stata require the first of these parts, just as it is hard in English to
1ssu.e spoken commands without a verb. Each of the other three parts can be required

. ¥
optional, or not allowed, depending on the particular command and circumstances. Here

is an example of a command that features all four parts and uses binlfp2.dta, which -
we loaded earlier: ’

(Continued on next page)

Chapter 2 Introduction to Stata 2.11.2 Va.riab{e lists : : ‘ g

34 .
2.11.2 Variable lists

. tabulate hc wec if age>40, row

Key

freguency
row percentage

Husband Wife College: i=yes
College: O=noc
i=yes O=no NoCol College Total
NoCol 263 23 286
91.96 8.04 100.00
149
College 58 21 _

¢ © 38.93 61.07 100.00
Total 321 114 435
73.79 26.21 100.00

If you want to suppress the key, you can add the option nokey. For example, tabulate
hc we, row nokey.

tabulate is a command for making one- or two-way tables of frequejnmes. Elel;]e g:
want a two-way table of the frequencies of variable‘s he by we. B)'(p'uttn}g he >1:0_, e
make this the row variable and we the column va,rla.ble. By specifying 1zlfdagihan, -
specify that the frequencies should include observations on'_ly for thos](i 0 fere uenCieS.
The option row indicates that row percentages sho.uld be printed as we as clir gcoﬂe e.
These allow us to see that in 61% of the cases in which the husband h&d‘ att?; ef esgl 1{
the wife had also done so, whereas wives had attended.college only in 8% o tca,s y
which the husbands had not. Notice the comma preceding row: whenever options a

i they are at the end of the command with_a single comma to-indicate where
_ specified - :

the list of options begins. The precise ordering of multiple options after the comma is

never important.

Next, we provide more information on each of the four components.

2.11.1 Commands

Commands define the tasks that Stata is to perform. A great t.hing a,.bout Statia is t:itf
the set of commands is deliciously open ended. It expands not just with new red efas}g b
Stata but also when users add their own commands, such as 0}1r SPost commands. Stata
new command is stored in its own file, ending with the ext‘ensmn .ado. When;ver : a:es
encounters a command that is not in its built-in liblzary‘, it searches V&I‘lO;llS 11;1@c ?—Eat
for the appropriate ado-file. The list of the directories it searches {and the order

it searches them) can be obtained by typing adopath.

Variable names are case sensitive. For example, you could have three different variables
named income, Income, and inCome, Of course, this is not & good idea because it leads
to confusion. To keep life simple, we stick exclusively to lowercase names. Starting
with Stata 7, Stata allows variable names up to 32 characters long, compared with
the eight-character maximum imposed by earlier versions of Stata and many other
statistics packages. Tn practice, we try not to give variables names more than eight
characters, as this makes it easier to share data, with people who use other packages. Also
we recominend using short names because longer variahle names become unwieldy to
type. (Although variable hamies can be abbrevidted to whatever initial set of characters
identifies the variable uniquely, we worry that too much reliance on this feature might
cause one to make mistakes.)

If you list no variables, many commands assume that yor want to perform the
operation on every variable in the dataset. For example, the summarize command
provides summary statistics on the listed variables:

- Summarize age inc k5

Variable l Obs Mean Std. Dev. Min Max
age 763 42 ,.53785 8.072574 30 60

ine 763 20.12897 11.6348 -, 0290001 96

kB 7683 .2377158 . 523959 4] 3

We could also get Summary statistics on every variable in our dataset by just typing

. Summarize
Variable Obs Mean Std. Dev. Min Max
1fp 753 -5683931 . 4956295 ¢} 1
43) 753 .2377158 .523959 0 3
k618 753 1.363254 1.319874 0 8
age 753 42.537856 8.072574 30 [=]0]
we 753 . 2815405 4500494 0 1
he 763 . 3917663 -4884694 0 i
lwg 753 1.097115 .b875664 -2.054124 - 3 . 218876
inc 753 20.12897 11.6348 -.0290001 26

You can also select all variables that begin or end with the same letters by using the

wildeard operator =, For example,

« Summarize k*

Variable f Obs Mean Std. Dev. Min Max
k5 753 .2377158 . 523959 4] 3
k618] 753 1.353254 1.319874 0 8

36 Chapter 2 Introduction to Stata

2.11.3 if and in qualifiers

Stata has two qualifiers that restrict the sample that is analyzed: if and in. in performs
operations on a range of consecutive observations. Typing summarize in 20/100 gives
summary statistics based only on the 20th through 100th observations. in restrictions

depend on the current sort order of the data, meaning that if you re-sort your data, the -

81 observations selected by the restriction summarize in 20/100 might be different.*

In practice, if conditions are used much more often than in conditions. if restricts
the observations to those that fulfilt a specified condition. For example, summarize if
age<50 provides summary statistics for only those observations where age is less than
50. Here is a list of the elements that can be used to construct logical statements for
selecting observations with if: '

Operator Definition Example

== Equal to if female==1

t= Not equal to if female!=1

> Greater than if age>20

>= Creater than or equal to if age>=21

< Less than if age<66

<= Less than or equal to if age<=65

& And if age==21 & female==1
\ Or if age==21|educ>16

There are two important things about the if qualifier:

1 Use a double.cqual sign (c.g, surmarize if female==1) {o specify a condition to

test. When assigning a value to something, such as when creating a new variable,
use a single equal sign (e.g., gen newvar=1). Putting these examples together
results in gen newvar=1i if female==1.

9. The missing value codes are the largest positive numbers. This implies that Stata
treats missing cases as positive infinity when evaluating if expressions. In other
words, if you type summarize ed if age>50, the summary statistics for ed are
calculated on all observations where age is greater than 50, including cases where
the value of age is missing. You must be careful of this when using i with > or >=
expressions. If you type summarize ed if age<., Stata gives summary statistics
for cases where age is not missing. (Note that . is the smallest of the 27 missing-
value codes. See section 2.12.3 for more details on missing values.) Entering
summarize ed if age>560 & age<. provides summary statistics for those cases
where age is greater than 50 and is not missing. '

4. In Stata 6 and earlier, some official Stata commands changed the sort order of the data, but
fortunately this quirk was removed in Stata 7. As of Stata 7, no properly written Stata command
should change the sort order of the data, slthough readers should beware that user-written programs
may not always follow proper Stata programming practice.

2.12.1 Looking at your data 37

Examples of if qualifier

3

If we wanted summary statistics on. i { :
income for only those respond
the ages of 25 and 65, we would type g pondents who were between

- summarize income if age»=25 & age<=65

If we wanted summary statistics on i |
; income for only female res
tween the ages of 25 and 65, we would type pordents who were be-

- summarize income if age>=25 & age<=65 & female==

.If W}(i V\ianted summary statistics on income for the remaining female respondents—that
is, those who are younger than 25 or older than 65— we would type

. summarize income if (age<25 | age>65) & age<. & female==

We need to include & age<. because Stata treats miss;

-The condition (age<25 | age>65) would otherwis
is missing. '

missing codes as positive infinity.
e include those cases for which age

Tip: Removing the separator If you do not like the horizontal separator that ap-

pears after every five variables in the output f; i
or summ
lines with the option sep(0). g TS you can remove the

2.11.4 Options

".. Options are set off from the rest of the command by a comrna. Options can often be ah-

breviated, although whether and how they can be abbreviated varies across commands.

In this book, we rarely cover all the available options available for any given command
?

but you can check the manual i i
o o € or use help for more options that might he useful for

2.12 Managing data
2.12.1 Looking at your data

There are two easy ways to look at your data.

browse opens a spreadsheet in which you can scroll to look at the data, but
C&.Ill'l-()t fzhange the data. You can look and change data with the edit comn;and 3120111
this is rls}«.:y. We much prefer making changes to our data, using do-files, even wh .
are changing the value f).f.,?,nly one variable for one observation. The ,browser isna.lzs

oy
=1

, whereas the data editor is available by clicking on ,%ﬁ

available by clicking on =)

38 ' Chapter 2 Introduction to Stata

1ist creates a list of values of specified variables and observations. if and in -

qualifiers can be used to look at just a portion of the data, which is sometimes useful
for checking that transformations of variables arve correct. For example, if you want 4o
confirm that the variable Ininc has been correctly constructed as the natural log of
ine, typing list inc lninc in 1/20 lets vou see the values of inc and 1ninc for the
first 20 observations. ' '

2.12.2 Getting information about variables

There are several methods for obtaining basic information about your variables. Here
are five commands that we find useful. Which one you use depends mostly on the kin
and level of detail you need. :

describe provides information on the size of the dataset and the names, labels, and
types of variables. For example, ‘

. use http://www.stata-press.com/data/1f2/binlfp2, clear
(Data from 1876 P3SID-T Mroz)
. describe

Contains data from binlfp2.dta
obs: 753 Data from 1976 PSID-T Mroz

vars: 8 30 Apr 2001 16:17
size: 13,554 (98.7% of memory free} (_dta has notes)
storage display value
variable name type format label variable label
1fp byte %9.0g 1fplbl Paid Labor Force: l=yes O=no
k5 byte #9.0g # kids < 6
k618 byte %9.0g # kids 6-18
age byte %9.0g Wife’s age in years
W byte 49-0g COIIHL ——Wife Colleger i=yes O=no
he byte %9.0g collbl Husband College: l=yes O=n¢
lug float %9.0g Log of wife’s estimated wages
inc float ¥%9.0g Family income excluding wife’s

Borted by: 1fp

summarize provides summary statistics. By default, summarize presents the number
of nonmissing observations, the mean, the standard deviation, the minimum values, and
the maximum. Adding the detail option includes more information. For example,

2.12.2 Getting information about variables | 39

- summarize age, detail

Wife’s age in years

Percentiles Smallest

1% 30 30

5% 30 30
10"/; 32 - 30 Dbz 763
25% 36 30 Sum of Wgt. 753
60% 43 . Mean 42.53785
. argest Std. Dev. 8.072674

74 49 60
go!, 54 60 Variance 65,16645
gg‘? 56 60 Skewness . 150879
- B9 60 " Kurtosis 1.981077

tabulate create.s_ the frequency distribution for a variable. For example,

- tabulate hc

Husband
College: :
l=yes O=no Freg. Percent Cum,
NoCol 458 60.82 60.82
College 205 39.18 100.00
Total 753 100.00

If you do not want the value labels included, type

. tabulate hc, nolabel

Hasband
College:
1=yes O=no Freq. Percent Cum.
0 458 60.82 60.82
1 295 39.18 100.00
Total 753 100.00

If you want a two-way table, type

- tabulate hc wc

Husband Wife College: 1=yes
Cellege: 0=no
l=yes O=no NoCol College Total
NoCol 417 41 458
College 124 171 295
Total 541 212 753

By d.efa:ult, tabulate does not tell you the number of missing values for either variable.
Specifying the missing option includes missing values. We recommend this option
whenever you are generating a frequency distribution to check that some transformation

40 Chapter 2 Intreduction to Stata

was done correctly. The options row, col, and cell request row, column, and cell =

: ; 2
percentages along with the frequency counts. The option chi2 reports the x* for a test
that the rows and columns are independent.

tabl presents univariate frequency distributions for each variable listed. For exam-

ple,
. tabl hc we
-> tabulation of hc
Husband
College:
1=yes O=no Freq. Percent Cun.
NoCol 458 60.82 60.82
Cellege 286 32.18 100.00
Total 753 100.00
-> tabulation of wc
Wife
College:
1=yes O=no Freq. Percent Cum.
NoCol 541 71.88 71.85
College 212 28.15 100.00
Total 763 100.00

dotplot generates a quick graphical summary of a variable, which is useful for
quickly checking your data. For example, the command dotplot age leads to the
following graph:

Y
LLL]
[N R]
aee
L 2R LE 2
[¥]
::: 220600000 00COBES
H4 -3+ PP
[]
::: [A2 XL RREELREEN NN N3 XNJJ
[3.X.] e8P0 NRBOD ®
- 0ev0secos0000080000
-]
::: ::....o...........ﬂo.o.o.....
LR)0...‘.....‘0',,00
*9 e '0‘.:..::::::::..0.'0'
[X X ¥ N 2.X 1
::: 0062603003000 800C00GDOLTODRO
[L X) (Z X2 22 XL KX K K]
LEX 9930000009 DDDOBRO
L LX) PO2BGROOIDDD
L2 X] P20300C38BODD
- 200086000000060000
[X X X
:::::::::.0..00.'."...
58600028
::: P00 RSB OIRBOGSOCRAODIONRD
ase (X EEREIYTEERE RN NI " P
[XX) 2002050006000 00B00CS :.
[X X ﬁ..0........‘0.'...°‘Q.°..°°°
.2 X)0.0.........@.0?. S
A0 T ey e e T T g

 Fre

[=3

ency -

This graph will appear in a new window called the Graph window. Details on saving,
printing, and enhancing graphs are given in section 2.16.

2.12.4 Selecting observations ' : 41

codebook summarizes a variable in a format designed for printing a codebook. For
example, codebook age produces

- codebook age

age Wife’s age in years

type: numeric {(byte)

range: [30,60] units: 1
unique values: 31 missing .: 0/753
mean: 42.5378
.8td. dev: 8.07257
percentiles: 10% 25% 50% 75% 90%,
32 36 43 49 B4

2.12.3 Missihg values

Although numeric missing values are automatically excluded when Stata fits models,

they are stored as the largest positive values. ‘T'wenty-seven missing values are available
with the ordering

3

allnumbers < . < a <« b <« ... < .z

This way of handling missing values can have unexpected consequences when deter-
mining samples. For instance, the expression if age>65 is true when -age has a value
greater than 65 and when age is missing. Similarly, the expression occupation!=1 is
true if occupation is not equal to 1 or occupation is missing. When expressions such
as these are required, be sure to explicitly exclude any unwanted missing values. For
mstance, age>65 & age<. would be true only for those people whose age is not missing
and who are over 65. Similarly, eccupation!=1 & occupation <. would be true only
when the occupation is not missing and not equal to 1.

"T'he different missing values can be used to record the distinct reasons why a variable
is missing. For instance, consider a survey that asked people about their driving records.
The variable that records whether someone received a ticket after being involved in an

accident could be missing because the respondent had not been involved in any accidents
or because the person refused to answer the question.

2.12.4 Selecting observations

As previously mentioned, you can select cases with the if and in qualifiers. For example,
Summarize age if we==1 provides surnmary statistics on age for only those observations
where we equals 1. Sometimes it ig simpler to remove the cases with either the drop
or keep commands. drop removes observations from memoty (not from the .dta file)
based on an if or in specification. The syntax is

drop [m] [z'f]

42 Chapter 2 Introduction to Stata

Only observations that do not meet those conditions are left in memory. For example,
drop if wc==1 keeps only those cases where wc is not equal to 1, including observations
with missing values on wc.

keep bas the same syntax as drop and deletes all cases except those that meet the
condition. For example, keep if wc==1 keeps only those cases where wc is 1; all other
observations, including those with missing values for we, are dropped from memory.
After selecting the observations that you want, you can save the remaining variables to
a new dataset with the save command.

2.12.5 Selecting variables

You can also select which variables you want to keep. The syntax is
drop wariable_list

keep wariable_list

With drop, all variables are kept except those that are explicitly listed. With keep, only
those variables that are explicitly listed are kept. After selecting the variables that you
want, you can save the remaining variables to a new dataset with the save comiand.

2.13 Creating new variables

The variables that you analyze are often constructed differently from the variables in
the original dataset. Here we consider basic methods for creating new variables. Our
examples always create a new variable from an old variable rather than transforming an
existing variable. Even though you can simply transform an existing variable, we find

that this leads to mistakes.

2.13.1 generate command ‘ o 43

- Ben age3 = age if age>4d
. (318 nissing values generated)

- Summarize age3 age

Variable I Obs Mean Std. Dev. Min Max
aged 435 48,3977 4.936509 41 60
age 753 42.53785 B.072574 30 60

Whenever generate {(or gen, as it can be abbreviated) produces missing values, it tells
you how many cases are missing,

generate can also create variables that are mathematical functions of existing vari-
ables. For example, we can create agesq that is the square of age and 1lnage that is
the natural log of age:

. gen agesq = age"2
- gen Inage = In(age)

For quick reference, here is a list of the standard mathematical operators

Operator Definition Example

+ Addition gen y = a+b

- Subtraction gen v = a-b

/ Division gen density = pop/area
* Multiplication gen y = a*b

Take to a power gen y = a-3

and some particularly useful functions:

5131 generate command Function Definition Example
generate creates new variables. For example, to create age2 as an exact copy of age, Lo Natural lr?g gen inwage - ln(vage)
gen . exp Exponential gen y = exp(a)
sqrt Square root gen agesqrt = sgrt (age)

- generate ageZ = age

. summarize age2 age

Variable [Obs Mean Std. Dev. Min Max For a complete list of functions in Stata, type help functions.
aga2 753 42.53785 8.072574 30 80 sl |
age 753 42.53785 &.072574 20 60

Tip: Although gen newwvar=oldvar is the most intuitive way of creating a copy of the
values of oldvar as newvar, sometimes clonevar newvar=ocldvor is a better alter-
native. clonevar copies not only the values of oldvar but also the variable label,
value label, and other attribufes.

The results of summarize show that the two variables are identical. We used a single
equal sign because we are making a variable equal to some value.

Observations excluded by if or in qualifiers in the generate command are coded
as missing. For example, to generate age3 that equals age for those over 40 but is
otherwise missing, type

44 Chapter 2 Introduction fo Stata

2.13.2 replace command

replace has the same syntax as generate but is used fo change values of a variable
that already exists. For example, say we want to make a new variable, aged4, that equals
age if age is over 40 but equals 40 for all persons aged 40 and under. First, we create
ages equal to age. Then we replace those values we want to change:

. gen aged = age
. replace aged = 40 if age<40
(298 real changes made)

. summarize aged age

Variable | Obs Mean std. Dev. Min Max
aged 753 44.85128 5.593896 40 60
age 753 42.53785 8.072574 30 60

replace reports how many values were changed. This is useful in verifying that the
command did what you intended. Also summarize confirms that the minimum value of
age is 30 and that aged now has a minimum of 40 as intended.

Warning Of course, we could have simply changed the original variable:
replace age = 40 if age<40. But, if we did this and saved the data, there would
be no way to return to the original values for age if we later needed them.

2.13.3 recode command

The values of existing variables can also be changed using the recode command. With
recode you specify a set of correspondences between old values and new ones. For
example, you might want old values of 1 and 2 to correspond to new values of 1, old
values of 3 and 4 to correspond to nmew values of 2, and so on. This is particularly
useful for combining categories. To use this command, we recommend that you start by
making a copy of an existing variable. Then recode the copy. Or, to be more efficient,
you can use the generate(newvariablename) option with recede. With this option,
Stata creates a new variable instead of overwriting the old one. recode is best explained
by example, several of which we include below (for more, type help recode).

To change 1 to 2 and 3 to 4 but leave all other values unchanged, type

. recode origvar (1=2) (3=4), generate(myvarl)
(23 differences between origvar and mvari)

To change 2 to 1 and change all other values (including missing) to 0:

. recode origvar (2=1) (*=0), pen(myvarZ)
(100 differences between origvar and myvar2)

2.13.4 Common transformations for RHS variables 45

where the asterisk indicates all values, including missing values, that have not been
explicitly recoded. :)

To crange 2 to T and change all other values except' missing to 0:

- recode origvar (2=1) (nommissing=0), gen{myvar3}
(89 differences between origvar and myvar3)

To change values from 1 to 4 inclusive to 2 and keep other values unchanged:

. recode origvar (1/4=2), pen{myvar4}
(40 differences between origvar and myvar4)

To change values 1, 3, 4, and 5 to 7 and keep other values unchanged:

. recode origvar (1 3 4 5=7), gen(myvar5)
(65 differences between origvar and myvar5)

To change all values from the minimum through 5 to the minimum:

- recode origvar (min/5=min), gern(myvar6)
(56 differences between origvar and myvar6)

To change missing values to 9

- recode origvar (missing=9), gen(myvar7)
(11 differences between origvar and myvar?)

To change values of —999 to missing:

. recode origvar (-999=.), gen(myvarg)
(56 differences between origvar and myvar8)

recode can be used to recode several variables at once if they are all to be recoded
the same way. Just include all the variable names before the instructions on how they
are to be recoded, and include all the names for new variables {if you do not want the
old variables to be overwritten) within the parentheses of the generate() option.

2.13.4 Common transformations for RHS variables

For the models we discuss in later chapters, you can use many of the tricks you learned
for coding right-hand-side (i.e., independent) variables in the linear regression model.
Here are some useful examples. Details on how to interpret such variables in regression
models are given in chapter 9.

Breaking a categorical variable into a set of binary variables

To use a j-category nominal variable as an independent variable in & regression model,
you need to create a set of j — 1 binary variables, also known as dummy variables or
indicator variables. To show how to do this, we use educational attainment {degree),

46 : Chapter 2 Introduction to Stata

which.is- coded as 0= no diploma, I = high school diplomsa, 2 = associate’s degree,
3 = hachelor’s degree, and 4 = postgraduate degree, with some missing data. We want
to make four binary. variables with the “no diploma” category serving as our 1jefe.rer.1ce
category. We also want observations that have missing values for degree to have missing
values in each of the dummy variables that we create. The simplest way to do this is
to use the generate option with tabulate: :

. use http://www.stata-press.com/data/1f2/gsskidvalue2, clear
(1993 and 1994 General Social Survey)

. tabulate degree, generate(edlevel)

rs highest)
degree | . Freq. Percent Cum.
1t high school 801 i7.47 17.47
high school 2,426 52,92 70.40
junior college 273 5,96 76.35 L
bachelor 750 16.36 92.71
graduate 334 7.29 106,00
Total 4,684 100.00

The generate{name) option creates a new binary variable for each category of the
specified variable. Here degree has five categories, so five new variables are cre-
ated. These variables all begin with edlevel, the root that we specified with the
generate(edlevel) option. We can check the five new variables by typing summarize
edlevels*:

. summarize edlevelx

Variable Obs Mean Std. Dev. " Min Max
edlevelti 4584 .1747382 .3797845 0 1
edlevel2 4584 5292321 .4991992 Q o 1)
edlevel3 4584 .059555 . 2366863 Q0 1
edleveld 4584 . 1636128 . 369964 Q 1
edlevelb 4584 .0728621 .2599384 4] 1

By cross-tabulating the new edlevell by the original degree, we can see that edlevell
equals 1 for individuals with no high school diploma and equals 0 for everyone else except
the 14 observations with missing values for degree:

. tabulate degree edlevell, missing

rs highest degree==1t high school
degree o] i . Total
1t high school] 801 0 801
high school 2,426] 0 2,426
junior ccllege 273 0 0 273
bachelor 760 0 0 750
graduate 334 0 o] 334
.] 0 14 14
Total 3,783 801 14 4,598

2.13.4 Common transformations for RHS variables 47

One limitation of using the generate(name) option of tabulate is that it works
only when there is a one-to-one correspondence between the original categories and the
dummy variables that we wish to create. So, let’s suppose that we want to combine
high school graduates and those with associate’s degrees when creating our new binary
variables. Say also that we want to treat those without high school diplomas as:the
omitted category. The following is one way to create the three binary variables that we
need:

. gen hsdeg = (degree==1 | degree==2) if degres<.
(14 missing values generated)

- gen coldeg = (degree==3) if degree<,
(14 missing values generated)

- gen graddeg = (degree==4) if degree<.
(14 missing values generated)

- tabulate degree coldeg, missing

rs highest coldeg
' degree 8] 1 . Total
1t high scheol 801 0 0 801
high school 2,426 o 0 2,428
junior college 273 o 0 273
bachelor 0 760 [¢] 750
graduate 334 0 o] 334
. o] 14 14
Total 3,834 750 14 4,598

To understand how this works, you need to know that when Stata is. presented with an
expression (e.g., degree==3) where it expects a value, it evaluates the expression and
assigns it a vatue of 1 if true and 0 if false. Consequently, gen coldeg = (degree==3)
creates the variable coldeg that equals 1 whenever degree equals 3 and 0 otherwise.
By adding if degree<. to the end of the command, we assign these values only to
observations in which the value of degree is not missing. If an observation has s missing
value for degree, these cases are given a missing value.

More examples of creating binary variables

Binary variables are used so often in regression models that it is worth providing more
examples of generating them. In the dataset that we use in chapter 5 (ordwarm2.dta),
the independent variable for respondent’s education (ed) is measured in vears. We
can create a dummy variable that equals 1 if the respondent has at least 12 years of
education and 0 otherwise:

- gen ediZplus = (ed>=12) if ed<.

We might also want to create a set of variables that indicates whether an individual
has less than 12, between 13 and 16, or 17 or more years of education. This is done as
follows:

48 Chapter 2 Introduction to Stata

. gen edltl3 = (ed<=12) if ed<.
. gen edl316 = (ed>=13 & ed<=18) if ed<.
. gen ed17plus = (ed>17) if ed<.

Tip: Naming dummy variables Whenever possible, we name dummy variables so
that 1 corresponds to “yes” and 0 to “no”. With this convention, a dummy
variable called female is coded 1 for women (i.e., yes, the person is femsle) and
0 for men. If the dummy variable were named sex, there would be no immediate
way to know what 0 and 1 mean. '

The recode command can also be used to create binary variables. The variable warm
contains responses to the question of whether working women can have as warm a
relationship with their children as women who do not work: | = strongly disagree, 2 =
disagree, 3 = agree, and 4 = strongly agree. To create a dummy indicatihg agreement
as opposed to disagreement, type '

. Een wrmagree = warm

. recode wrmagree 1=0 2=0 3=1 4=1
(wrmagree: 2293 changes made)

. tabulate wrmagree warm

Mom can have warm relations with child
Wrmagree 3D I A S4 Total
0 297 723 0 o] 1,020
1 0 Q 366 417 1,273
Total 207 723 856 417 2,293

Nonlinear transformations

Nonlinear transformations of the independent variables are commonly used in regres-
sion models. For example, researchers often include both age and age?® as explanatory
variables to allow the effect of a 1-year increase in age to change as one gets older. We
can create & squared term as

- gen agesq = age*age

Likewise, income is often logged so that the impact of each additional dollar decreases
as income increases. The new variable can be created as

. gen lnincome = 1ln(income)
(495 missing values generated)

We can use the minimum and maximum values reported by summarize as a check on
our transformations:

2.14.1 Variable labels : | 49

. ‘summarize age agesq income lnincome

Variable Cbs Mean Std. Dev. Min Max
age 4598 46.12375 17.33165 18 ‘99
_agesq 4598 2427.72 1798.477 324 9801
?ncome 4103 34790.7 22387.45 1000 75000
Inincome 4103 10.16331 8852605 6.907755 11.22524

[nteraction terms

In regres.sion meodels, you can include interactions by taking the product of two indepen-
dent variables. For example, we might think that the effect of family income differs for

men and women. If sex is measured as the dummy variable female, we can construct
an interaction term as follows:

- gen feminc = female * income
(495 missing values generated)

2.14 Labeling variables and values

Variable labels provide descriptive information about what a variable measures. For
example, the variable agesq might be given the label “age squared”, or warm could

-have the label “Mother has a warm relationship”. Value labels provide descriptive

information about the different values of a categorical variable. For example, value
labels might indicate that the values 1-4 correspond to survey responses of sérongly
agree, agree, disagree, and strongly disagree. Adding labels to variables and values is
not much fun, but in the long run, it can save much time and prevent misunderstandings.
Also many of the commands in SPost produce output that is more easily understood if
the dependent variable has value labels.)

2.14.1 Variable labels

The label variable command attaches a label of up to 80 characters to a variable.
For example,

{Continued on next page)

50 Chapter 2 Introduction to Stata

. label variable agesq "Age squared"

. describe agesq

storage display value
variable name type format Label variable label
agesq float %9.0g Age squared

If no label is specified, any existing variable label is removed. For example,

. label variable agesq

. describe agesq

storage display value
variable name type format label variable label
agesq float %9.0g

"

Tip: Use short labels Although variable labels of up to 80 characters are allowed,
we tecommend that you use short labels whenever possible. Output often does
not show all 80 characters. For the same reason, we also find it useful to put the
most important information at the beginning of the label. That way, if the label
is truncated, you will still see the critical information.

Tip: Searching variable labels Typing lookfor siring will search the data file and
list all variables in which string appears in either the variable name or label.

2.14.2 Value labels

Beginners often find value labels in Stata confusing. Remember that Stata splits the
process of labeling values into two steps: creating labels and then attaching the labels

to variables.

Step 1 defines a set of labels without.reference to a variable. Here are some examples
of value labels:

. label define yesno 1 yes O no

. label define posnegd 1 veryN 2 negative 3 positive 4 veryP

. label define agree4 1 Strongd 2 Agree 3 Disagree 4 StrongD

. label define agreeb 1 StrongA 2 Agree 3 Neutral 4 Disagree 5 StrongDd

First, each set of labels is given a unique name (e.g., yesno, agree4). Second, individual
labels are associated with a specific value. Third, none of our labels has spaces in them
{e.g., we use Strongh not Strong 4). Although you can have spaces if you place the
label within quotes, some commands crash when they encounter blanks in value labels.
So, it is easier not to do it. We have also found that the period, colon, and left curly
bracket ({) in value labels can cause similar problemss. Fourth, our labels are eight

2.14.2 Value labels ' 51

letters.or shorter in length because some programs have trouble with value labels longer
than eight letters. '

Step 2_ assigns_ the value labels to variables. Let’s say that variables female, black,
and anykids all imply yes/no categories with 1 as yes and 0 as no. To assign labels to
the values, we would use the following commands:

- label values female yesno

- label values black yesno

- label values anykids yesno

- describe female black anykids

) storage display value
variable name type format label variable label
female byte ¥9.0g yesno Female
blac% byte %9.0g yesno Black
anykids byte 19.0g yesno R have any children?

The output for describe shows which value labels were assigned to which variables.
The new value labels are reflected in the output from tabulate:

. tabmlate anykids

R have any
children? Freq. Percent Cum.
no 1,267 27.64 27.64
yes 3,317 72.36 100.00
Total 4,584 100.00

For the degree variable that we looked at earlier, we assign labels with

- label define degree 0 "no_hs" 1 "hs® 2 "jun_col" 3 "bachelor" 4 "graduate®
- label values degree degree

. tabulate degree

rs highest

degree Freq. Percent Cum.
no_hs 801 17.47 17.47
) hs 2,426 52,92 70.40
Jun_col 273 5.96 76.35
bachelor 750 16.38 92.71
graduate 334 7.29 100.00

Total 4,584 100.00

We used underscores () instead of spaces.

I you want a list of the value labels being used in your current dataset, use the
command labelbook, which provides a detailed list of all value labels, iﬁcluding which
labels are assigned to which variables. This can be useful both in setting up a complex
datasei and for documenting your data.

52 Chapter 2 Introduction to Stata

2.14.3 notes command

The notes command allows you to add notes to the dataset as a whole or to specific
variables. Because the notes are saved in the dataset, the information is always available
when you use the data. IHere we add one note describing the dataset and two that

describe the income variable:)

. notes: General Social Survey extract for Stata book
. notes income: self-reported family income, measured in dollars

. notes income: refusals coded as missing
We can review the notes by typing notes:

. notes

_dta:
i. General Social Survey extract for Stata bock

income:
1. self-reported family income, measured in dellars

2. refusals coded as missing

If we save the dataset after adding notes, the notes become a permanent part of the

dataset.

2.15 Global and local macros

Although macros are most often used when writing ado-files, they are also very useful
in do-files. Later in the book, and especially in chapter 9, we use macros extensively.
Accordingly, we will discuss them briefly here. Readers with less familiarity with Stata
might want to skip this section for now and read it later when macros are used in our

exarmples.

In Stata, you can assign values or strings to macros. Whenever Stata encounters
the macro name, it automatically substitutes the contents of the macro. For example,
pretend that you want to generate a series of two-by-two tables where you want cell
percentages, requiring the cell option; missing values, requiring the missing option;
values printed instead of value labels, requiring the nolabel option; and the chi-squared
test statistic, requiring the chi2 option. Even if you use the shortest abbreviations, this
would require typing ¥, ce m nol ch” at the end of each tab command. Instead, you
could use the following command to define a global macro called myopt:

. global myopt = ", cell miss nclabel chi2 nokey"

Then whenever you type $myopt {the $ tells Stata that myopt is a global macro), Stata
substitutes , cell miss nolabel chi2 nokey. If you type

. tab 1lfp wc $myopt

Stata interprets this as if you had typed

2.15 Global and Iocal macros ’ . 53

- tab 1fp wc, cell miss nolabel chi? nokey

Global macros are “global” because, once they are set, they can be accessed by any
do (or ado) program in the current session. The ﬂip side is that the global macros
that you are using can be reset by any of the do- or ado-files that you use along the
way. By contrast, “local” macros can be accessed only within the do- or ado-file in
w.hich they are defined. When the do- or ado-file program terminates, the local macro
disappears. We prefer using local macros whenever possible because you do not have
to worry about conflicts with other programs or do-files that try to use the same macro
name for a different purpose. Local macros are defined using the local command, and
they are referenced by placing the name of the local macro in single quotes; for exar,nple
‘myopt". The two single quote marks use different symbols {on many k:ayboards th(;
left single quote is in the upper left-hand corner, whereas the right single quote is ’next
to the Enter key). If the operations we Just performed were in a do-file, we could have
produced the same output with the following lines: ,

- local opt = ", cell miss nolabel chi2 nekey"”
. tab 1fp we “opt”
{output omitted)

.Local and global macros can also be used as a shorthand way to refer to lists of
variables. For example, you could use these commands to create lists of variables:

. local demogvars "age white female"
- local edvars “highsch college graddeg"

Then when you run regression models, you could use the command
- Tegress y ‘demogvars’ ‘advars’
which Stata would translate into
- regreas y age white female highsch college graddeg
Or, you could use the command
- regresa y ‘demogvars’ ‘edvars’ xl x2 x3
which Stata would translate into
- regress y age vhite female highsch college graddeg xl x2 x3

"This technique has several advantages. First, it is easier to write the commands since
you do not have to keep retyping a long list of variables. Second, if you change the
set, of demographic variables that you want to use, you have to do it only in one place
which reduces the chance of errors. J

Often vffhen vou use a local macro name for a list of variables, the list becomes longer
than one line. As with other Stata commands that extend over one line, you can use

///, a8 in

b4 Chapter 2 Introduction to Stata

2.16 Graphics ‘ 55

local vars age age squared income education female occupation dadeduc dadoce ///

nemeduc momoce

Twoway graph {scatterpiot, fine, etc.)

You can also define macros to equal the result of computations. After entering Cvcrit e v o

s_psuse binfpZ '

global four = 2+2, the value 4 will be substituted for $four. Also Stata contains (A
T S . - . o Bar charts vi 81 copyrs -
many macro functions in which items retrieved from memory are assigned to macros. 41 Dotchats ’ sggécl;::g?; 1984-2005
H : 3 3 : Fie chart 4905 Lakeway Drive
For exan;ple, to display the variable label that you have assigned to the variable we, - ggyege Ry Dedve s TS bsa
011 can e istogram -STATA-PC http: //www. stata, com
y YD Box plat 979-696-4600 stata@sTara. com

979~-696-4601 (fax)

- Scatterplot maktix
s herpatual Tlicensas

Disteibustivnal graphs

. global wclabel : variable label wc

. display "$wclabel” »
' rels i Sreoothing and densities » P19
Wife College: 1= =
ife College yes O=no Regression diagnosti; plots H F'Iogy
. R Nc Tirme series graphs [
We have only scratched the surface of the potential of macros. Macros are immensely Cross-sectional tig-seriss lne plats~ mamary-3 10.00 MB allocatad to data
flexible and are indispensable for a variety of advanced tasks that Stata can perform. Surival analysis graphs b iaxvar-3 5000 maximun variables
ROC analysis

t; Cusality control

Perhaps most importantly, macros are essential for doing any meaningful Stata pro-
Hore statistical graphs

gramming. If you look at the ado-files for the commands we have written for this book,
you will see many instances of macros, and even of macros within macros. For users
interested in advanced applications, the macro entry in the Programming Reference
Manual should be read closely. '

Table of graphs

E .w? Manage graphs
Change schemefsize

Wressmmummmmanmy JMWM/MW I T WMWWMZ/// WM/M}@

2.16 Graphics

Stata has a very extensive and powerful graphics system. Not only can you create many
different kinds of graphs, but you have a great deal of control over almost all aspects
of a graph’s appearance. The cost of this is that the syntax for making a graph can
get complicated. Here we provide a brief introduction to graphics in Stata, focusing
————on-the-types-of-craphs-that-weuse-inlater-chapters. Our hope is to provide a. basic
understanding of how the graphics system works so that you can start using it. For more
information, we suggest the following. Stata has a manual dedicated to the syntax for
graphics. Although we find the Staia Graphics Reference Manual to be an invaluable
reference when you already have a good understanding of what you want to do, we
find it less helpful when you want to be reminded of the way to do something, what an
option is called, or to get ideas about what kinds of graph to use. In this regard, we find
Mitchell’s 2004 A Visual Guide to Stata Graphics to be extremely useful. This book
shows hundreds of graphs drawn in Stata, along with the commands used to generate
them. The book is organized in a way that makes it easy to scan the pictures until you
see a graph that does what you want. Then you can look at the text to find out which

options to use.

Selecting any of these will call up a dialog box. (The first time you open a dialog
box there can be a considerable delay, but it is shorter the next time.) Selecting Twoway
graph (scatterplot, line, etc. } from the Graphics menu displays the following:

Fcrlmal.

L.abal gap:

D\falue Isbels Labe} size: [Det
(74l labels “~

2 v Scale options -
The way we use Stata to make graphs differs from how we use Stata to fit models ";2_'5" | | DRange: £ avie
or do virtually anything else. Namely, when making graphs, we make extensive use of : 14 Cotox |1 eg
dialog boxes. If you pull down the Graphics menu (or type Alt-g), you will see a list of L Ouergmm | [JReverse

the plot types and families of plot types available in Stata:

56 Chapter 2 Introduction to Stata

You can make selections from each tab and then click Submit or OK. (Submit leaves
the dialog box open, whereas OK closes it before generating the graph.) The dialog
box will translate your options into the commands Stata uses to draw the graph. These
commands are echoed to the Results window, while the graph appears in a Graph
window. Next we tweak the options until we have the graph the way we want it. Then
we copy the command from the Results window and paste it into a do-file, so that we
can reproduce the graph later. We can also edit tie do-file to modify the graph.

In the rest of this section, we describe the basic syntax for Stata graphics, because
it is helpful to understand how this syntax works even if you ultimately V_uée dialog
boxes to do the bulk of the work. We focus on plots of one or more outcomes against
a single explanatory variable. For this, we use the commands graph twoway scatter
and graph twoway comnected. (In later chapters, we will introduce a few other types
of graphs as they are needed.) Namely, we consider plots of one or maore outcomes
against an independent variable using the command graph twoway. The syntax of this
command has the form: ‘

graph twoway plottype ...

The Stata Graphics Reference Manual lists 38 different plottypes for the graph
twoway command. Since we discuss only two (scatter and connected) plottypes here,
interested readers are encouraged to consult the Graphics Reference Manual or to type

help graph for more information.?

Graphs that you create in Stata are drawn in their own window, which should appear

on top of the four windows we discussed above. If the Graph window is hidden, you
o

can bring it o the front by clicking on . You can make the Graph window larger
or smaller by clicking and dragging the borders. :

2.16.1 graph command

The type of graph that we use most often shows how the predicted probability of ob-
serving a given outcome changes as a continuous variable changes over a specified range.
Tor example, in chapter 4 we show you how to compute the predicted probability of a
woman being in the labor force according o $he number of children she has and the
family’s income. In later chapters, we show you how to compute these predictions, but
for now you can simply load them into memory with the command use lfpgraph2,
clear. The variable income is family income measured in thousands of dollars, ex-
cluding any contribuiion made by the woman of the household, whereas the next three
variables show the predicted probabilities of working for a woman who has no children
under six (kidOp1), one child under six (kid1pl), or two children under six (kid2pl).
Because there are only 11 values, we can easily list them:

5. We also use a third plottype called called rarea, but we will postpone describing that until later.

2.16.1 graph command . . ' 57

. use http://www.stata-press.con/data/
. 1£f2/1f
(Sample predictions to plot.) /1fpgraph2, clear

. list income kidOpl kidipil

income kid0p1 kidlipi

1. 10 .7330963 .3887608
2, i8 .6758616 .3266128
3. 26 .6128353 .2682211
4, 34 54579 .2176799
5. 42 LATT042 1743927
6. 50 -409153 .1381929
7. 58 .3445598 .1085198
8. 66 285241 ,0845925
9. 74 .2325117 -065553
10. 82 -18898 0505621
11. 90 .1486378 .0388569

;ﬁcsegeilat as ai?uatl)inlcoxﬂe increases the predicted probability of being in the labor
eases. Also by looking across any row, we see that f i i

a5 by 1 or a given level of incom
f:he probablhty of bemg_ in the labor force decreases as the number of young childrer(j
increases. We want to display these patterns graphically.

graph twoway scatter can be used to draw a scatterplot in which the values of
one or more y-variables are plotted against values of an z-variable. Here Jinc .
the. #-variable, and the predicted probabilities kidop1, kidlp1, and i{id2 1 are :Ee "
variables. Thus for each value of z, we have three values of y.’ In makingp scatterp?o?;

with graph twoway scatter, the y-vari i i
st oo s , the y-variables are listed first, and the z-variable is listed

- graph twoway scatter kidOpl kidlpl kid2pl income, ytitle(Probability)

we obtain the following graph:

(Continued on next page)

58 Chapter 2 Introduction to Stata

Mo young children ¢ One young child :

® Two young children

Our simple scatterplot shows the pattern of decreasing probabilities as income or number
of children increases.

This simple command produces a reasonable first graph. Indeed, S?ta"s defaul}t1
settings are usually a good place to begin. Even so, we can 'make a more ef ectgle %rsgls
by including more options. Below we focus only on adding titles and cha,ngmgh e la -
for the axes. Remember that if you want to change other aspect's of the_grap },\-y(;}.l }\lntrll
almost certainly be able to get what you want if you find the right options. A slightly
more detailed syntax® for graph twoway is

7gfaph%jeﬁaymp lotr{plote | Lploty | [if] [in] [, twoway optio 78 |

where plot; is defined to be

[(] plottype varlist, |title("siring") subtitle("string") ytitle("string)

xtitle("string") caption("string") xlabel(walues} ylabel(walues)

other_options| [)]

This syntax highlights the fact that it is possible ?0 put multiple plots on the saizg
graph.” The plots can be of different plot types. For 1nsi?a.nce,”suppose that v;:e gva% o
the symbols in the plot corresponding to “No young children” to be conmected.
plot type is called connected. For example,

6. The syntax presented here is incomplete. We wish only to explain the element::: tkgtfwe ha.vidfailll;i
ou1:se1ves using in presenting analyses like those in this book. See the Stata Graphics Reference

fi ore information.) ,
0’; Il-lThe parentheses are used to separate the different plots when there are multiple plots. When there

is only one plot, the parentheses are not required.

2.16.1 graph command - 7 59

graph twoway (connected kidOpl income} .
> {scatter kidipl kid2pl income), ytitle(Probability)

{ —#— No young children % Cne young child
Two young children ;

With the exception of the title on the y-axis, the default choices for the symbols,
line styles, etc., all are all quite nice. Stata made these choices within the context of
an overall look or scheme. For example, because our book is published in mbnochrome,
we wanted our graphs to be drawn in monochrome. The Graphics Reference Manual
describes how' they could be changed. (Type help schemes in Stata for the latest
Information about the available schemes.} Users can choose the overall look of their
graphs by setting the scheme. In writing this book, we simply included the line

- set scheme sj

at the top of our do-files.

Adding titles

Now we provide a quick introduction that shows how %o set the five titles that we
often wish to change: (1) overall title, (2) overall subtitle, (3) y-axis title, (4) z-axis
title, and (5) graph caption. The options for setting each of these five titles are in the

syntax diagram above. The command and graph below illustrate how we might use
each of these titles.

graph twoway (comnected kid0Opi kidilp1 kid2pl income),
yeitle("Probability™)
title("Predicted Probability of Female LFP")
subtitle("(as predicted by logit model)")
xtitle("Family income, excluding wife’s")
caption("Data from 1976 PSID-T Mroz")

YOV OV v

60 Chapter 2 Introduction to Stata

*"‘Predicted Probability of Female LFP
' - (as predicted by fogitmodel -

- Probability LT
=il _

A0 oLt 60 .80
< = Family income, excluding wife’s

~| —a— No young children ~ —-%— One young child
G | —&— Twao young children
" Data trom 1976 PSID-T Mroz- .

This graph is much more effective in illustrating that the probability of a worman being in
the labor force declines as family income increases, and that the differences in predicted
probabilities between women with no young childrer: and those with one or two young
children are greatest at the lowest levels of income. '

Labeling the axes

Even though the defaults are nice, it is common to want to change the labeling of
the ticks on the z-axis or y-axis. The ylabel() and xlabel() options allow users to
specify either a rule or a set of values for the tick marks. A rule is simply a compact

way to specify a'list of values.

Let’s consider specilying a list of values first. A common change is to alter the
frequency or range of tick marks. This change can also be made with the xlabel() and
ylabel() options. Suppose that we liked the frequency of the ticks on the z-axis but
wanted to restrict the range to [10, 90]. We make this change in the command

graph twoway (connected kidOpi kidipl kid2pl income),
ytitle("Probability"}
title{"Predicted Probability of Female LFP")
subtitle("(as predicted by logit model}")
xtitle("Family income, excluding wife’s")
caption("Data from 1976 PSID-T Mroz")
xlabel(10 20 30 40 50 60 70 BC 90)

VWV VOV Y

2.16.1 graph command | 61

. Predicted Probability of Female LFP. - *
" . (@spredicted by logit model)

Probabilty,

R R Y 40780 0 B0 S 70
e M e e o Fanhily'incoms, excluding wifes T

| —#— Mo young children —%—— One young child 3
.| —=— Two young children -

- Datafrom 1976 PSID-T Mroz -

We could have obtained the same graph by specifying a rule for a new set of z-axis
values. Although there are several ways to specify a rule,® we find the form # ()
most useful. In this form, the user specifies three numbers: #7 specifies the begilnnile 03%
the sequence of values, #3 specifies the increment between each value, and # speci%’les
the maximum value. For instance, instead of specifying the option , ’

xlabel (10 20 30 40 50 60 70 80 90)
in the previous graph, we could have specified
xlabel (10{10)990)

to obtain the same graph.

Naming graphs

When you crfaa,te a graph, it is displayed in a Graph window and is also saved in
memory. Accordingly, when you close the Graph window, you can redisplay the graph
with the command graph display. By default, a graph is stored in memory with the
name Graph, and this graph is overwritten whenever you generate a new graph. If you
want to store more than one graph in memory (this is not the same as storing t'henf to

disk, which is discussed in the next secti .
ction), you need to .
example,) ¥ use_the name (} option. For

< scatter y x, name{examplel)

stores the scatterplot for y against x in memory with the name examplel. Then

- scatter z X, name(example2)

8. Type help axis_label_options for other ways to specify a rule.

62 Chapter 2 Introduction to Stata

will save the scatterplot for z against x with the name example2. Stata displays each
named graph in its own window, and multiple Graph windows can be displayed simul-
taneously. Even if you have closed the Graph windows, you could redisplay the graphs
with the commands 2T

. graph display exampleil

. graph display example2
In do-files, you might want to use name (examplel, replace) so that the pr(}gram will
overwrite graph examplel if it exists.

Saving graphs

N

Graphs can be either saved in a file or stored in memory. When a graph is saved to a
file, it remains there until the file is erased. When a graph is stored in memory, it remains
there until you exit Stata or drop the graph from memory. Specifying saving(filename,
replace) saves the graph to a file in Stata’s proprietary format (indicated by the suffix
.gph) in the working directory. Including replace tells Stata to overwrite a file with
that name if it exists. Specifying name (name, replace) stores the graph in memory.
The replace option teils Stata to replace any existing graphs stored under that name.

Graphs must be either saved to files or stored in memory before you can combine
them. For example, if we were to later need the graph we just created, we could store
it in memory under the name graphl with the command

graph twoway {connected kidOpl kidipl kid2pl income),
ytitle("Probability™)
title("Predicted Probability of Female LFP™)
subtitle{"(as predicted by logit model)")
xtitle("Family income, excluding wife’s")
caption("Data from 1976 PSID-T Mroz")
xlabel (10{10)90) name(graphl, replace)

VOV VY VYV

Tip: Exporting graphs to other programs If you are using Windows or Macin-
tosh and want to export graphs to another program, such as a word processor, we
find that it works best to save them as a Windows Enhanced Metafile (EMF) in
Windows, or as a Macintosh PICT file in Mac OS X. In Windows with the graph
currently displayed in the Graph window, you can export it in the EMF format
with the command graph export filename.emf. In Mac OS X with the graph
currently displayed in the Graph window, you can export it in the PICT format
with the command graph export filename.pct. You cannot export a graph to the
.pet format in Windows, nor can you export a graph to the .emf format in Mac
0S8 X; the formats are exclusive to their respective operating systems. If the file
is already saved in .gph format, you can export it to either .emf or .pct format
in two steps. First, redisplay the graph with the command graph use filename.
Then export the graph with the cominand graph export filename.enf or graph
export filename.pct. The replace option can be used with graph export to
automatically overwrite a graph of the same name, which is useful in do-files.

2.16.4 Combining graphs 63

2.16.2 Displaying previously drawn graphs

There ate several commands used for manipulating graphs that have been previousl
drawn and §aved to memory or disk. graph dir lists graphs previously saved in memo 4
or to a file in the current working directory. graph use copies a graph stored in a ﬁrlz
into memory and displays it. graph display redisplays a graph stored in memory.

2.16.3 Printing graphs

g ig t}alasi(.asi(:i to print a graph once it is in the Graph window. When a graph is in the
rapn window, you can print it by selecting Fil i

. 7 i 14 ing re—%Prrnt—»Graph(gmphname)
menus or by clicking' on . .You can also print a graph in the Graph window with the
command graph print. .To print a graph saved to memory or disk, first use graph use
or graph display to redisplay it, and then print it with the command graph print

from the

2.16.4 Combining graphs

Multiple graphs that have been saved can be combined. This is useful, for. exam le
wher'l you want to place two graphs side by side or stack them. In chaI;ter 5, we gﬂi
find '1t‘usefull to combine two graphs. Here we use two of the graphs that we d}scuss in
detail in section 5.8.6 to illustrate graph combine. When we originally drew the eraphs
we sa:ved them in memory under the names graphl and graph2. Now we useg rz h’
combine to put the two graphs side by side in one Graph window. =

- graph combine graphi graph2, imargin{small)

Penél A: Predicted Probabiliies - = .. " Panol B: Curiulative Probabilities

Chapter 2 Introduction to Stata 2.17 A brief tutorial : , 65
64

-2.17 A brief tutorial

This combined graph is not as effective as one in Which the graphs are stac}l:ecg Th}e;
trick is to understand that when multiple graphs are combined, Stata leldEfS lr11: e raii "
window into an array. The rows() and cols() optlo.ns can be used to sett _e_m;lmthe
of rows and columns in the array. Of course, as with most aspects qf adgrap}; the
Graphics Reference Manual describes how almost any part of the comblne. gg;p b o
be changed.® By default, the individual graphs are allocated over the rows 1}1 e
in which the filenames are listed in the graph combine command.

This tutorial uses the science2.dta dataset that is available from the book’s web site,
You can use your own dataset as you work through this tutorial, but you will need to
change some of the commands to correspond to the variables in your data. In addition
to our tutorial, the User’s Giuide provides a wealth of information for new users.

: Opening a log
To display the graphs stacked vertically, specify the col() option:
The first step is to open a log file for recording your results. Remember that all

commands are case sensitive. The commands are listed with a period in front, but you
do not type the period:

. graph combine graphi graph2, iscale(*.9) imargin(small) col(1}

© o Panel AcPredicted Probabilties .

. capture log close
- log using tutorial, text:

log: d:\spostdata\tutorial.log
log type: text
opened on: 26 Sep 2005, 11:18:15

: . Loading the data

We assume that science?.dta is in your working directory. clear tells Stata to
“clear out” any existing data from memory before loading the new dataset:

[—e— s —— oD

o —— A —a— SA

. use http://www.stata-press.com/data/1£2/science2, clear
{Note that some of the variables have been artificially constructed.)

The message after loading the data reflects that this dataset was created for teach-
ing. Although most of the variables contain real information, some variables have been

artificially constructed.

. —m— SD,Dor A

As we described earlier, graph export can be used to save the graph as a Windows (Continued on next page)
Enhanced Metafile that can be imported to a word Processor or other program, I}/[ore
details on combining graphs can be found in the Stata Graphics Reference Manual.

9. In particular, see Advanced use in [G] graph combine for a rather impressive example.

66

Examining the dataset

Chapter 2 Introduction toStata

describe gives information ahout the dataset.

. describe
Contains data from science2.dta
obs: 308 Note that some of the variables .
have been artificially
constructed.
vars: 35 10 Mar 2001 05:51
size: 17,556 (98.3% of memory free) (_dta has notes)
storage display value !
variable name type format label variable label
id float %9.0g ID Number. .)
citi int %9.0g Citations: PhD yr -1 to 1.
cit3 int %#2.0g Citations: PhD yxr 1 to 3.
cité int #9.0g Citations: PhD yr 4 toc 6.
citd int %9.0g Citations: PhD yr 7 to 9.
enrol byte %9.0g Years from BA to PhD.
fel float %9.0g Fellow or PhD prestige.
felclass byte %9.0g prstlb * Fellow or PhD prestige class.
fellow byte %9.0g fellbl Postdoctoral fellow: 1=y,0=n.
female byte %9.0g femlbl Female: 1=female,(=male.
job float %9.0g Prestige of 1st umiv job.
jobclass byte ¥9.0g prstlb #* Prestige class of 1st job.
mcit3 int %9.0g Mentor’s 3 yr citatiom.
mcitt int %9.0g Mentor’s total citations.
mmale byte %9.0g malelb Mentor male: I=male,0=female.
mnas byte %9.0g naslb Mentor NAS: i=yes,O=no.
mpub3 byte %9.0g Mentor’s 3 year publications.
nopubl byte ¥9.0g nopublb 1=No puba PhD yr -1 to 1.
ropub3 byte %9.0g nopublb 1=No pubs FhD yr 1 to 3.
nopub8 byte %9.0g nopublb 1=No pubs PhD yr 4 to 6.
nopubd’ byte %9.0g nopublb 1=No pubs PhD yr 7 to 9.
phd float 7#92.0g Prestige of Ph.D. department.
phdclass byte %9.0g prstlb * Prestige class of Ph.D. dept.
publ byte %8.0g Publications: PhD yr -1 to 1.
pub3 byte %8.0g Publications: PhD yr 1 to 3.
pubé byte 18.0g Publications: PhD yr 4 to 6.
pub® byte %2.0g Publications: PhD yr 7 to S,
work byte %9.0g worklbl Type of first job.
workadmn byte %#9.0g wadmnlb Admin: 1=yes; O=no.
worktch byte ¥%9.0g wtchlb * Teaching: 1=yes; O=no.
workuniv byte %9.0g wunivlb * Univ Work: 1=yes; O=no.
Wt byte %9.0g ’
faculty byte %9.0g faclbl 1=Faculty in University
jobrank byte %9.0g jeblbkl Rankings of University Job.
totpub byte %9.0g Total Pubs in 9 Yrs post-Ph.D.

* indicated variables have notes

Sorted by:

2.17 A brief tutorial

Examining individual variables

67

A series of commands gives us information about, individual variables. You can use
whichever command you prefer, or all of them.

. Bummarize work

Variable ' Obs Mean 5td. Dev. Min Max
work | 302 2.062914 = 1.37829 1 5
. tabulate work, missing
Type of
first job. Freq. Percent Cum.
FaclUniv 160 51.95 51.85
ResUniv 17.21 69.16
ColTck 8.44 77.60
IndRes 11.69 89.29
Admin 8.77 98.05
1.95 100.00
Total 308 100.00

. codebook work

work

Type of first job.

type:
label:

range:
unique values:

tabulation:

Graphing variables

rameric (byte)
worklbl

f1,5]
5

Freq. Numeric
160
53

26
36
27

8

Uk W N

units:
missing .:
Label
FacUzniv
ResUniv
ColTch
IndRes
Admin

Graphs are also useful for examining data. The command

. dotplet work

creates the following graph:

1
6/308

68 Chapter 2 Introduction to Stata

Saving graphs
To save the abéve graph as a Windows Enhanced Metafile, type

. graph export myname.emf, replace) .
(file d:\spostdata\myname.emf written in Windows Enhanced: Metafile format)

Adding comments

To add comments to your output, which allows you to document your command

files, type * at the beginning of each comment. The comments are listed in the log file: ~~

. * saved graph as work.emf

Creating a dummy variable

Now let’s make a dummy variable with faculty in universities coded 1 and all others
coded 0. The command gen isfac = {work==1) if work<. generates i‘sfac as a
dummy variable where isfac equeals 1 if work is 1, else 0. The s-tatement if work<.
makes sure that missing values are kept as missing in the new vam_able.

. gemerate isfac = (work==1) if work<.
(6 missing values generated)

Six missing values were generated because work contained six missing observations.

2.17 A brief tutorial . ' 69

Checking transformations

One way to check transformations is with a table. In general, it is best to look at
the missing values, which requires the missing option: :

- tabulate isfac work, missing

Type of first job.)
isfac Faclniv ResUniv ColTch IndRes Admin ~ Total
) 0 53 26 36 a7 142
1 160] 0 o] 0 160
0 0 0 0 0 6
Total 180 53 26 36 27 308
Type of
first job.
isfac .) Total
0 [o] 142
1 o 160
] [
Total 6 308

Labeling variables and values

For many of the regression commands, value labels for the dependent, variable are
essential. We start by creating a variable label, then create isfac to store the value
labels, and finally assign the value labels to the variable isfac:

. label variable isfac "1=Faculty in University"
- label define isfac 0 "NotFac" 1 "Faculsy"

. label values isfac isfac

Then we can get labeled output:

. tabulate isfac

1=Faculty
in
University Freq. Percent Cum.
NotFac 142 47.02 47.02
Faculty 180 52,987 100.00
Total 302 100.00

Creating an ordinal variable

The prestige of graduate programs is often referred to using the categories of ade-
quate, good, strong, and distinguished. Here we create such an ordinal varizble from

70 Chapter 2 Introducthn to Stata 217 A brief tutorial _ | o | -

the con_tinuops 'vaaria:ble for the prestige of the first job. missing tells Stat‘a'?tq show Corﬁbining variablos
cases with missing values. '
Now we create a new variable by summing existing variables. 1f we add pub3; pub§,

- tab job, missing and pub9, we can obtain the scientist’s total number of publications over the 9 years

Frostige of following receipt of the Ph.D.

job. Freq. Percent Cum.

i : 7. generate pubsum = pub3 + pub6 + pub9
1.01 1 0.32 0.32 - label variable pubsum "Total Pubs in § Yrs post-Ph.D."
t.2 t 0.32 0.65 summarize pub3 pubf pubd pub
1.22 1 0.32 0.97 ' PUbS pUbE pubd pubsun
1.32 1 0.32 1.30 Variable Obs Mean Std. Dev. Min Max
1.37 1 0.32 1.62

(output omitted) pub3 . 308 3.185068 3.908752 0 31

3.97 6 1.95 48,38 pubs 308 4.165584 4.780714 0 29
1.18 2 0.65 49.03 pubg 308 4.512987 5.315134 0 33
4 a7 1 .39 49.35 pubsum | - 308 11.86364 12.77623 0 84
4.5 6 1.95 51.30 .
4.69 14; 4}{:% 1gg:g§ _ - A scatterplot matrix graph can be used to plot all pairs of variables simultaneously:

Total 308 100-00 . graph matrix pub3 pub6 pub9 pubsum, half msymbol {(smcircle_hollow) .

The recode command makes it easy to group the categories from job. Of course, we
then label the variable:

o
] / }:’ 3

. generate jobprst = job

(145 missing values generated)

. recode jobprst .=. 1/1.99=1 2/2,99=2 3/3.99=3 4/5=4
(jobprat: 162 changes made)

/ n

i

! -_.:':j%::"{i
o

. label variable jobprst "Rankings of University Job" [H}%/ﬁ/

- label define prstlbl 1 "Adeg" 2 "Good" 3 "Strong" 4 "Dist" o

. label values jobprst prstlbl

i
0 /

Here is the new variable (we use the missing option so that missing values are included
in the tabulation}:

7
%f

. tabulate jobprst, missing

Rankings of
University)
Job Freq. Percent Cum.
Adeq 31 10.06 10.06 o .
Good 47 15.26 25.32 Saving the new data
Strong 71 23.05 48,38 :
Dist 14 4.55 52.92 After you make changes to your dataset, save the data with a new filenarme:
145 47.08 100.00 " .
Total 308 100.00 . save sciwork, replace

file sciwork.dta saved

72 Chapter 2 Introduction to Stata 2.17 A brief tutorial

73
Closing the log file

// combining variables
" generate pubsum = pyb3 + pubs + pubg .

label Yariable pubsum "Total Pubs in 9 Yrs post-Ph.D."
summarize pub3 pub6 pub?® pubsum o

Last, we need to close the log file so that we can refer to it in the future.

. log close
log: d:\spostdata\tutorial.log
log type: text

clesed on: 26 Sep 2005, 11:18:27

// graphing variables

graph matrix pub3 pub6 pub8 pubsum, half msymbol (smeircle_hollow)

// saving graph
graph export 02matrix.emf, replace

// saving the new data

note: temporary dataset for st9ch2tutorial .do
save sciwork, replace

A batch version

If you have read section 2.9, you know that a better idea is to create a batch (do-) file,

perhaps called tutorial.do:!” /7 close the 1og
log close

// batch version of tutorial do-file
version 9

set scheme sj

zet more off

capture log cloze

log using ch2tutorial, replace

T o .
hen type do tutorial in the Command window or select File—Do... from the memy

// leoading the data
use http://www.stata-press.com/data/1f2/science2, clear

// examining the dataset
describe

// examining individual variables
summarize work

tabulate work, missing

codebook work

// graphing variables
dotpiot work

// saving graph
graph export G2dotplot2.emf, replace

// creating a dummy variable
gen isfac = {work==1} if work<.

// checking transformations
tabulate isfac work, missing

// labeling variables and values

label variable isfac “1=Faculty in University"
label define isfac O "NotFac" 1 "Faculty"
label values isfac isfac

tabulate isfac

// creating an ordinali variable

tabulate job, missing

generate jobprsi=job

recode jobprst .=. 1/1.99=1 2/2.99=2 3/3.99=3 4/5=4

label variable jobprst "Rankings of University Job"

label define prstlbl 1 "Adeq" 2 "Good" 3 "Strong" 4 "Dist"
label values jobprst prstlbl

tabulate jobprst, missing

10. If you download this file from cur web site, it is called st9ch2tuterial.do.

