5 Models for ordinal outcomes

Although the categories for an ordinal variable can be ordered, the distances between

the categories are unknown. For example, in survey research, questions often provide

the response categories of strongly agree, agree, disagree, and strongly disagree, but

an analyst would probably not assume that the distance between strongly agreeing and

agreeing is the same as the distance from agree to disagree. Educational attainments can

be ordered as elementary education, high school diploma, college diploma, and graduate

or professional degree. Ordinal variables also commonly result from limitations of data .
availability that require a coarse categorization of a variable that could, in principle,

have been measured on an interval scale. For example, we might have a measure of
income that is simply low, medium, or high.

Ordinal variables are often coded as consecutive integers from 1 to the number of
categories. Perhaps because of this coding, it is tempting to ahalyze ordinal outcomes
with the linear regression model. However, an ordinal dependent variable violates the
assumptions of the LRM, which can lead to incorrect conclusions, as demonstrated strik-
ingly by McKelvey and Zavoina (1975, 117) and Winship and Mare (1984, 521-523).
Accordingly, with ordinal outcomes it is much better to use models that avoid the as-
sumption that the distances between categories are equal. Although many different
models havé been designed for ordinal outcomes, in this chapter we focus on the logit
and probit versions of the ordinal regression model (ORM), introduced by McKelvey
and Zavoina (1975) in terms of an underlying latent variable and in biostatistics by
McCutlagh (1980), who teferred to the logit version as the proportional odds model.

As with the binary regression model, the ORM is nonlinear, and the magnitude of the
change in the outcome probability for a given change in one of the independent variables
depends on the levels of all the independent variables. As with the BRM, the challenge
is to summarize the effects of the independent variables to fully reflect key substantive
processes without overwhelming and distracting detail. For ordinal outcomes, as well as
for the models for nominal outcomes in chapter 6, the difficulty of this task is increased
by having more than two outcomes to explain.

Before proceeding, we caution that researchers should think carefully before conclud-
ing that their outcome is indeed ordinal. Simply because the values of a variable can
be ordered, do not assume that the variable should be analyzed as ordinal. A variable
that can be ordered when considered for one purpese could be unordered or ordered
differently when used for another purpose. Miller and Volker (1985) show how dif-
lerent assumptions about the ordering of occupations resulted in different conclusions.
A variable might also reflect ordering on more than one dimension, such as attitude
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scales that reflect both the intensity and the direction of opinion. Moreover, surveys
commonly include the category “don’t know”, which probably does not correspond to
the middle category in a scale, even though analysts might be tempted to treat it this
way. Overall, when the proper ordering is ambiguous, the models for nominal outcomes
discussed in chapter 6 should be considered.

We begin by reviewing the statistical model, followed by an examination of testing,
fit, and methods of interpretation. These discussions are intended as a review for those

who are familiar with the models. For a complete discussion, see Long (1997). We end _

the chapter by considering several less common models for ordinal outcomes, which can
be fitted using ado-files that others have developed. We also introduce the stereotype

logit model, added in Stata 9 with the slogit command, but we postpone a full dis- '
cussion until chapter 6. As always, you can obtain sample do-files and data files by

downloading the spost9.do and spost9_ado packages (see chapter 1 for details).

5.1 The statistical model

The ORM can be developed in different ways, each of which leads to the same form of
the model. These approaches to the model parallel those for the BRM. Indeed, the BRM
can be viewed as a special case of the ordinal model in which the ordinal outcome has

only two categories.

5.1.1 A latent-variable model

The ordinal regression model is commonly presented as a latent-variable model. Defining
y* as a latent variable ranging from —oc to co, the structural model is =

y; =% te
Or, for the case of one independent variable,
y; =+ bz +e
where 7 is the observation and ¢ is a random error, as discussed further below.

The measurement model for binary outcomes is expanded to divide y* into ./ ordinal
categories,
yi=m WUry 1Sy <7 form=1toJ

where the cutpoints 7 through 7;_; are estimated. (Some authors refer to these as
thresholds.) We assume 79 = —oo and 77 = oo for reasons that will be clear shortly.

To illustrate the measurement model, consider the example used in this chapter.
People are asked to respond to the following statement:

A working mother can establish just as warm and secure of a relationship
with her child as a mother who does not work.
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Possible responses are 1 = Strongly Disagree (SD), 2 = Disagree (D), 3 = Agree (A),
and 4 = Strongly Agree (SA). The continuous latent variable can be thought of as
the propensity to agree that working mothers can be warm and secure mothers. The
observed response categories are tied to the latent variable by the measurement model:

1=sp if m=-co<yl<n
2=D if Tlgyf<7‘2
3=a if m<yf<m
4=8A Hplyf<y=x

Wi =

Thus when the latent y* crosses a cutpoint, the observed category changes. Anderson

© (1984) referred to ordinal variables created in this fashion as “grouped continuous”

variables, and referred to what we call the ordinal regression model as the “grouped
continuous model”.

-LTo__

Figure 5.1: Relationship between observed y and latent y* in ordinal regression model
with one independent variable. '

For one independent variable, the structural model is y* = a+Bx+e, which is plotted
in figure 5.1 along with the cutpoints for the measurement model. This figure is similar
to that for the binary regression model, except that there are now three horizontal lines
representing the cutpoints 71, 7o, and 73. The three cutpoints lead to four levels of y
that are labeled on the right-hand side of the graph.

The probability of an observed outcome for a given value of z is the area under the
curve between a pair of cutpoints. For example, the probability of observing y = m
for given values of the xs corresponds to the region of the distribution where y* falls
between 7,1 and 7,,:

Pr{y=m|x}=Pr{rm, 1 <y <7m|x%)

Substituting x8+ ¢ for y¥* and using some algebra leads to the standard formula for the
predicted probability in the ORM,

Pr(y=m|x)=F (T ~x8) — F (1,1 — x8) (5.1)
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where £ is the cdf for . In ordinal probit, F is normal with Va.f(e) = 1; in ordinal

logit, ¥ is logistic with Var(e) = x*/3. Tor y = 1, the second term on the right drops
out because F (—oo — x3) = 0, and for y = J, the first term equals F (oo —x@) = 1.

Comparing these equations with those for the BRM shows that the ORM is identical
to the binary regression model, with one exception. To show this, we fit chapter 4’s
binary model for labor-force participation using both logit and ologit (the command
for ordinal logit):

. use http://www.stata-press.com/data/1£2/binlfp2, clear
(Data from 1976 PSID-T Mroz)

. logit 1fp kB k618 age wc hc lwg inc, nolog
(output omitted )

. estimates store logit

. ologit 1lfp k5 k618 age wc hc lwg inc, nclog
(output omitted)

. estimates store ologit

To compare the coefficients, we combine them using estimates table, which leads to
the following table:!

. estimates table logit ologit, b(})9.3f) t label varwidth(30} equations{1:1)

Variable logit ologit
#1
# kids < & -1.463 -1.4863
-7.43 -7.43
# kids 6-18 -0.085 -0.065
-0.95 -0.95
Wife’s age in years -0.083 -0.063
-4.92 ~4.92
Wife College: i=yes O=no G.807 0.807 N
3.51 3.51
Husband College: i=yes O=no ¢.112 0.112
) 0.54 0.84
Log of wife’s estimated wages 0.605 0.605
4.01 4.01
Family income excluding wife’s -0.034 -0.034
-4.20 -4.20
Constant 3.182
4.94
cutl .
Constant -3.182
-4.94
legend: b/t

1. Because logit has a constant and olegit has a cutpeint, by defanit estimates table will not line
up the coeflicients from the two models. Rather, each of the independent variables will be listed twice.
‘equations(1:1} tells estimates table to line up the coefficients. This is easiest to understand if you
try.our command without the equations{1:1) option.
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'The slope coeflicients and their standard errors are identical, but for logit an intercept
is reported (i.e., the coeflicient associated with —cons}, whereas for ologit the constant
is replaced by the cutpoint labeled /cut1, which is equal but of opposite sign.

This difference is due to how the two models are identified. As the ORM has been
presented, there are “too many” free parameters; that is, you cannot estimate J — 1
thresholds and the constant, too. For a unique set of ML estimates to exist, an identifying
assumption needs to be made about either the intercept or one of the cutpoints. In Stata,
the ORM is identified by assuming that the intercept is 0, and the values of all cutpoints
are estimated. Some statistics packages for the ORM instead fix one of the cutpoints to
0 and estimate the intercept. In presenting the BRM, we immediately assumed that the
value that divided y* into observed 0s and 1s was 0. In effect, we identified the model
by assuming a threshold of 0. Although different parameterizations can be confusing,
keep in mind that the slope coefficients and predicted probabilities are the same under
either parameterization (see Long 1997, 122-23 for more details).

5.1.2 A nonlinear probability model

The ordinal regression model can also be developed as a nonlinear probability model
without appealing to the idea of a latent variable. Here we show how this can be done
for the ordinal logit model. First, we define the odds that an outcome is less than or
equal to m versus greater than m given x: b

/11

Priy <m|x)

Qm>m (¥) = Priy > m|x)

form=1,J-1

Y

For example, we could compute the odds of disagreeing or strongly disagreeing {i.e.,
m < 2) versus agreeing or strongly agreeing (m > 2). The log of the odds is assumed
to equal

InQcpmimm (%) = Tm — x3 (5.2)

For one independent, variable and three categories (where we are fixing the mtercept to
equal 0),

Pr(y<1lX) h
"Priy>1|x “161‘“' L U
nPr(y<2|x) ﬁ:c \ 0
Pr(y>2|x) L

Although it may seem confusing that the model subtracts S rather than adding it, this
is a consequence of computing the logit of y < m versus y > m. While we agree that

it would be simpler to stick with 7,, + Sz, this is not the way the model is normally

presented.
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5.2 Estimation using ologit and oprobit

The ordered logit and probit models can be fitted with the following commands and
their basic options:

ologit depuar [indepvars| [if ]| [in] [weight] |, robust cluster(varname)

level (#) nolog]

oprobit depvar [indepvars] [if | [in] [weight] [, robust cluster(varname)
level(#) nolog| '

In our experience, these models take more steps to converge than the models for either
binary or nominal outcomes. '

Variable lists

depvar is the dependent variable. The specific values assigned to the outcome cat-
egories are irrelevant, except that larger values are assumed to correspond to
“higher” outcomes. For example, if you had three outcomes, you could use the
values 1, 2, and 3, or —1.23, 2.3, and 999. Up to 50 outcomes are allowed in
Intercooled Stata and Stata/SE; 20 outcomes are allowed in Small Stata.

indepvars is a list of independent variables. If indepvars is not included, Stata fits a
model with only cutpoints. '

Specifying the estimation sample

if and in qualifiers can be used to restrict the estimation sample. For example, if you
want to fit an ordered logit model for only those in the 1989 sample, vou could
specify ologit warm age ed prst male white if yr89==1.

Listwise deletion Stata excludes cases in which there are missing values for any of
the variables in the model. Accordingly, if two models are fitted using the same
dataset but have different sets of independent wvariables, it is possible to have
different samples. We recommend that you use mark and markout {discussed in
chapter 3) to explicitly remove cases with missing data.

Weights

Both ologit and oprobit can be used with fweights, pweights, and iweights. See
chapter 3 for more details.
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Options

robust indicates that robust variance estimates are to be used. When cluster() is
specified, robust standard errors are automatically used. See chapter 3 for more
details. )

cluster (varname) specifies that the observations are independent across the groups
specified by unique values of vorname but not necessarily within the groups. See
chapter 3 for further details.

level(#) specifies the level of the confidence interval for estimated parameters. By
default, Stata uses a 95% interval. You can also change the default level, say, to a
90% interval, with the command set level 90.

nolog suppresses the iteration history.

5.2.1 Example of attitudes toward working' mothers

Our example is based on a guestion from the 1977 and 1989 General Social Survey. As
we have already described, respondents were asked to evaluate the following statement:
“A working mother can establish just as warm and secure of a relationship with her child
as a mother who does not work”. Responses were coded as: 1 = Strongly Disagree (SD),
2 = Disagree (D), 3 = Agree (A), and 4 = Strongly Agree (SA). A complete description
of the data can be obtained by using describe, summarize, and tabulate:

. use http://uww.stata-press.com/data/1f2/ordwarm2
(77 & 89 General Social Survey)

. describe warm yr89 male white age ed prst

storage display value
variable name  type format label variable label
warm byte %10.0g SD25A Mom can have warm relations
with child
yres byte %10.0g yribl Survey year: 1=1989 0=1977
male byte %10.0g sexlbl Gender: l=male O=female
vhite byte %10.0g race2lbl  Race: 1=white 0=not white
age : byte  %10.0g Age in years
ed byte  %10.0g Years of education
prst byte  %10.0g Occupational prestige
. summarize warm yr89 male white age ed prst
Variable Obs Mean 3td. Dev. Min Max
warm 2293 2.607501 . 9282156 1 4
yr8e 2293 .3086044 4897178 0 1
male 2293 4648932 . 4988748 0 1
white 2293 .8765808 ©.3289894 Q 1
age 2293 44.93546 16.77903 18 89
ed 2203 12.21805 3.180827 0 20
prst 2293 39.58626 14.49226 12 82
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. tabulate warm
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Mom can
have warm
relaticns

with child Freq. Percent Cun.

8D 297 12,956 12.95

D 723 31.53 44 .48

A 856 37.33 81.81

54 417 18.19 100,900

Total 2,293 100,00

Using these data, we fitted the model

where

Pr{warm = m | x;) = F(7m — %8} — F(Tin—1 — x8)

%08 = Breoyr89 + Fumrelale + SGanscewhite + Bugeage + Goeed -+ Bpiseprat

Here are the results from ologit and oprobit. We store each model with estimates

store so that we can later make a table combining the results:

. ologit warm yr89 male white age ed prst, nolog

Ordered logistic regression Number of obs = 2293
LR chi2(8) = 301,72
Prob > chi2 = 0.0000
Log likelibood = -2844.9123 Pseudo R2 = 0.0504
warm Coef. Std. Err. z P>lz| [95% Conf. Intervall
yre9 .5239025 - .0798988 6.56  0.000 .3673037  .6805013
male | -.7332997  .0784827  -9.34 0.000  -.8871229 -.5794766
white | -.3911595  .1183808  -3.30 0.001  -.6231815 -.1501374
age | -.0216665 .0024683  -8.78 0.000  -.0265032 . -.0168278
ed 0871728 .015975 4.20  0.000 .0358624  .0084831
prst .0060727  .0032929 1.84 0.065  -.00038i3  .0125267

Y
Jeutl | <3.465362° .2389126 -2,933622  -1.997102
Jout2 | | -.630804 ° .2333155 -1.088194  -.173614
Jeut3 | Y 1.261854 1.2340179 (8031873 1.720521

S

. estimates store olegit-" (

-

o
A
A
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. oprobit warm yr89 male white age ed prst, nolog

Ordered probit regressiocn Number of obs = 2293
) LR chi2(6) = 204,32

Prob > chi2 = 4.0000

Log likelihecod = -2848.611 Pseudo R2 = 0.0401
warm Coef.  Std. Err. z P>lz| {96 Conf. Interval]

yreg .3188147  .0468519 6.80 Q.000 . 2269867 -4106427

male -.4170287  .0455459 -9.16  0.000 -.5062971  -.3277603

white -.2265002  .0894773 -3.26 0.00t -.3626733 -.0903272

age -.0122213  .0014427 -8.47  0.000 -.0150489  -.0093937

ed .0387234  .0093241 4.15  0.900 . 0204485 -0569982

prst .003283 -001928 1.71  0.088 -.0004899 .0070559

/ecutl -1.428578  .1387742 -1.700571  -1.156586

/cut2 -.3606589  ,1369219 -.6289209 -.092197

/cut3 .T681637  .1370564 .4998381 1.036789

. estimates store oprobit
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The information in the header and the table of coefficients is in the same form as
discussed in chapter 3. Since we stored the results for both models, we can compare the

results using estimates table:

. estimates table ologit oprobit, b(}9.3f) t label varwidth(30)

Variable ologit oprobit
warm
Survey year: 1=1989 0=1977 0.524 0.31%8
6.56 6.80
Gender: l=male O=female -0.733 -0.417
-9.34 -9.186
Race: 1=white O=not white -0.391 -0.227
~-3.30 -3.26
Age in years -0.022 -0.012
-8.78 -8.47
Years of education G.087 0.039
4,20 415
Occupational prestige 0.006 0.003
1.84 1.71
cutl
Constant -2.465 -1.429
-10.32 -10.29
cut2 .
Constant -0.631 -0.361
-2.70 -2.63
cut3
Constant 1.262 0.768
5.39 5.80

legend: b/t
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As with the BRM, the estimated coefficients differ from logit to probit by a factor of
about 1.7, reflecting the differing scaling of the ordered logit and ordered probit models.
Values of the z-tests are very similar because they are not affected by the scaling,
but they are not identical because of slight differences in the shape of the assumed
distribution of the errors. :

5.2.2 Predicting perfectly

If the dependent variable does not vary within one of the categories' of an independent
variable, there will be a problem with estimation. To see what happens, let’s transform
the prestige variable prst info a dummy variable:

. gen dumprst = (prst<20 & warm==1)

. tab dumprst warm, miss
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the command drop if dumprst==1 to do this} and refit the model withoul dumprst.
This corresponds to what is done antomatically for binary models fitted by logit and
probit.

5.3 Hypothesis. testing with test and Irtest

Hypothesis tests of regression coeflicients can be evaluated with the z-statistics in the
estimation output, with test for Wald tests of simple and complex hypotheses, and
with 1rtest for the corresponding likelihood-ratio tests. We will briefly review each.

5.3.1 Testing individual coefficients

If the assumptions of the model hold, the ML estimators from ologit and oprobit
are distributed asymptoticaily normally. The hypothesis Hy: 8, = 8* can be tested

Mom can have warm relations witk child
dumprst 8D D A SA Total
4] 257 723 866 417 2,263 7
i 40 0 Q 0 40
Total 297 723 856 417 2,293

In all cases where dumprst is 1, respondents have values of SD for warm. That s, if
you know dumprst is 1, you can predict perfectly that warm is 1 (i.e., SD}. Although we
purposely constructed dumprst so this would happen, perfect prediction can also occur
in real data. If we fit the ORM using dumprst rather than prst, the perfectly predicted
observations are dropped from the estimation sample.

. ologit warm yr89 male white age ed duﬁprst, nolog

Drdered logistic regression Number of obs = 2293
LR chi2(6) = 447.02

Preb > chi2 = 0.0000

Log likelihood = -2772.2621 Pseudo R2 = 0.0748
wara Coef. Std. Err. z P>lz| [e5% Conf. Intervall

yr8g 5268578  .0B0bS97 6.54 0.000 . 3688853 6848303

male -.7251825  .0792896 -9.15  0.000 -.8806872 -.BBITTY8

white -. 4240687 .1197416 -3.54 0.000 -.658758  -.1893795

age -.0210692 . 0024482 -8.61  0.000 -.0258638 -.0162648

ad .072143  .0133133 5.42  0.000 0460494 . 0982366

dumprst -34.58373 1934739 ~0.00 1.000 -3792053 3791983
[ecuel ~2.776233 . 243582 ~3.253645  —2.298822

[feut2 -.8422903 ., 2363738 -1.306674  —.3790065

/cut3 1.06148 .236561 .5978287 1.525131

Note: 40 cbservations completely determined.

The note at the bottom of the output above indicates the problem. In practice, the
next step would be to delete the 40 cases in which dumprst equals 1 (you could use

Standard errors questionable.

with 2z = (ﬁk — ﬁ*) /&‘ék. Under the assumptions justifying ML, if Hy is true, then z
is distributed approximately normally with a mean of 0 and a variance of 1 for large

samples. For example, consider the results for the variable male from the ologit output
above:

. ologit warm male yr89 white age ed prst, nclog
(output omitted}

warm Coef . Std. Err. z P>lz| [958} Conf. Intervall

male -, 7332007
{output omitted)

. 0784827 -9.34 0.000 -.8871229

-.b794766

We conclude that sex significantly affects attitudes toward working mothers
(z = =9.34, p < 0.01 for a two-tailed test).

Either a one-tailed or a two-tailed test can be used as discussed in chapter 4.

The 2-test in the outpui of estimation commands is a Wald test, which can also be
computed using test. For example, to test Hy: Fpa1e = 0,

. test male
(1) [warmlmale = O
chiz2( 1) = 27.30
Prob » chi2 = Q.0000

We conclude that sex significantly affects attitudes toward working mothers
(X2 =87.30,df =1, p < 0.01).

The value of a chi-squared test with 1 degree of freedom is identical to the square of
the corresponding z-test, which can be demonstrated with the display command:

". display "z#z=" -9.343%-9.343
z#z=87.291649
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Another way to verify this is to use the information that test leaves in memory. After

test, we type

. return list

scalars:

r({drop) = 0

r{chi2) = 87.30028866314404
r{df) = 1
r(p) = $.32342050928e-21

The return r(chi2) contains the value of the chi-squared test statistics. We can take
the square root of this quantity to confirm the relationship between’ ‘the z-test and the
chi-squared test.

. di "chi2=" r(chi2) "; sqrt(chi2)= " sqrt(r{chil})
chi2=87.300289; sqrt(chi2)= 9.3434623

An LR test is computed by comparing the log likelihood from a full model with that
of a restricted model. To test one coefficient, we begin by fitting the full model:

. ologit warm yr89 male white age ed prst, nclog

Ordered logistic regression Number of obs = 2293
LR chi2(8) = 301.72
Prob > chiZ = G.0000
Log likelihood = -2844.9123 Pseudo R2 .= 0.0504
{output omitted)
. estimates store fmodel
Then we fit the model, excluding male:
. ologit warm yr89 white age ed prst, nolog
Ordered logistic regression -Number of obs = 2293
LR chi2(5) = 212.98
Prob > chi2 = 0.0000
Log likelihood = -2889.278 Pseudo R2 = 0.0355
{output omitted}
. estimates store nmodel
. lrtest fmodel nmodel
Likelihood-ratio test LR chi2{i) = 83.73
(Assumption: nmodel nested in fmodel) Prob > chi2 = 0.0000

The resulting LR test can be interpreted to mean that the effect of being male is signif-
icant at the .01 level (LRX? =88.73, df = 1, p < .01).

5.3.2 Testing multiple coefficients

We can also test a complex hypothesis that involves more than one coefficient. For
exanple, our model has three demographic variables: agé, white, and male. To test
that all the demographic factors are simultaneously equal to zero, Ho: fage = Punire =
Buate = 0, we can use either a Wald or an LR test. For the Wald test, we fit the full
mode] as befare and then type
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. test age white male
{ 1) [warmlage =0
(2) [warmlwhite = 0
( 3) [warmlmale = 0O

chi2( 33
Probk > chi2

166.62
0.0000

We conclude that the hypothesis that the demographic effects of age, race, and sex are
simultaneously equal to zero can be rejected at the 01 level
(X2 =166.62, df =3, p < .01).

test can also be used to test the equality of effects as shown in chapter 4.

'To compute an LR test of multiple coefficients, we first ft the full model and save
the results with 1rtest, saving(0). Then to test Hy: Bage = Penite = Puare = 0, we
fit the model that excludes these three variables and run lrtest:

- ologit warm yr89 male white age ed prst, nolog
(output omitted )

. estimates store fmodel

. ologit warm yr89 ed prst, nolog
{output omitted )

. estimates store nmodel
. Irtest fmodel nmodel

Likelihood-ratio test LR chi2(3)
(Assumption: nmodel nested in fmodel) Prob > chi2

171.58
0.0000

o

We conclude that the hypothesis that the demographic effects of age, race, and sex are
simultaneously equal to zero can be rejected at the .01 level
(X? = 171.58, df = 3, p < .01).

We find that the Wald and LR tests usually lead to the same decisions. When there
are differences, they generally occur when the tests are near the cutoff for statistical

significance. Because the LR test is invariant to reparameterization, we prefer the LR
test.

5.4 Scalar measures of fit using fitstat
As we discuss more in chapter 3, scalar measures of fit can be useful in comparing

competing models (see also Long 1997, 85~113). Several different measures can be
computed after either ologit or oprobit with the SPost command fitstat:
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. ologit warm yr8% male white age ed prst, molog
(output omitted }

. fitstat

Measures of Fit for ologit of warm

Log-Lik Intercept Only: -2995.770 Log-Lik Full Model: -2844,912

D{2284): ) 5689,826 LR(6): o 301.716
Prob > LR: - 0.000

McFadden’s R2: 0.050 McFadden’s Adj R2: 0.047

ML (Cox-Snell) R2: 0.125 Cragg-Uhler{Nagelkerke) R2: 0.133

McKelvey & Zavoina’s R2: 0.127 w

Variance of y*: ' 3.768 Variance of error: . ©3.290

Count R2: 0.432 Adj Count R2: . 0.093

AIC: 2.48%  AICkxn: . 5707.826

BIC: -11882.891  BIC’: -255.291

BIC used by Stata: 5759.463  AIC used by Stata: 5707.825

Using simulations, both Hagle and Mitchell {1992) and Windmeijer (1995) find that,
for ordinal outcomes, McKelvey and Zavoina’s R? most closely approximates the R?
obtained by fitting the linear regression model on the underlying latent variable.

5.5 Converting to a different parameterization®

Earlier, we noted that different software packages use different parameterizations to
identify the model. Stata sets Sy = 0 and estimates 71, whereas some programs fix 7 =0
and estimate By. Although all quantities of interest for the purpose of interpretation
(e.g., predicted probabilities) are the same under both parameterizations, it is useful to
see how Stata can fit the model under either parameterization. The key to understanding
how this is done is the equation B

Pr(y=m|x)=F([rm — 0] = [Bo — 0] = x8) — F([rm-1 — 0] = [fo — 8] = x0)

Without further constraints, it is possible to estimate only the differences 7, — ¢ and
8o — 6. Stata assumes § = [y, which forces the estimate of 3y to be 0, whereas some
other programs assume & = 11, which forces the estimate of 7, to be 0. For example,

Model Stata’s Alternative
parameter estimate parameterization
Bo G —fFo=0 Bo—mi
T1 1 — o T—-711=0
T2 72 — Bo CoT T
T3 73 — o T3 — T1

Although you would only need to compute the alternative parameterization if you
wanted to compare your resulis with those produced by another statistics package,
seeing how this is done illustrates why the intercept and thresholds are arbitrary. To
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estimate the alternative parameterization, we use lincom to estimate the difference
between Stata’s estimates (see page 190) and the estimated value of the first cutpoint:?

- ologit warm yr89 male white age ed prst, mnolog
(output omitted )

. * intercept
. lincom 0 - _bf/cuti]

(1) - [cutl]l_cons = 0

warmn Coef. Std, Err. z P>|z| [95% Conf. Interval]

(6] 2.465362 .2388126 10.32  0.000 1,997102 2.933622

Here we are computing the alternative parameterization of the intercept. ologit as-
sutnes that f#y = 0, so we simply estimate 0 — ; that is, 0-b[/cut1]. The trick is
that the cutpoints are contained in the vector b[1; using the labels /cuti, /cut2, and
/cut3. For the thresholds, we are estimating 7 — 7, and 75 — 71, Which correspond to
bl/cut2]-b[/cutl] and bl/cut3]- bl/cutl]:

. ¥ cutpeint 2
. lincom _b[/cut2] - _bl[/cuti]

{ 1) - [cutl]_cons + [cut2] _cons = 0

warm Coef.  Std. Err. z P>|z| [96%, Conf. Intervall

(1) 1.834458 .0530432 29.10  0.000 1.710895 1.95802

. * cutpoint 3
. lincom _b([/cut3] - _bl[/cutl]

( 1) - [cut1]_cons + [cus3]_cons = 0

warm Coef. Std. Err. z P>{z]| [958, Conf. Interval]

(1 3.727216 -0826215 45.11  0.000 3.566281 3.889151

The estimate of 77 — 7y is, of course; 0.

5.6 The parallel regression assumption

Befo.re. di_scussing inferpretation, it is important to understand an assumption that is
implicit in the ORM, known as both the parallel regression assumption and, for the

ordinal logit model, the proportional odds assumption. Using {5.1), the ORM can be
written as

2. Prior to version 9, Stata labeled the cutpoints as, for example, _cutl instead of the newer /cutl.

If you are using a version of Stata prior to version 9, simply replace the /s with _s in the commands in
this chapter.
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Pr(y=1|x)=F(7y —x8) |
Pl"r(yZm|X):F(Tm—xﬁ)*F(Tm_1—XB) form=2toJ -1

Pr(y;JlX)zl—F(Tm714x6)

These equations can be used to compute the cumulative probabilities, which have the

Pr{iy <m|x)=F(rm—xB) form=1toJ—1

This equation shows that the ORM is equivalent to J — 1 binary regressions .Wlth the
critical assumption that the slope coefficients are identical across each regression.

For example, with four outcomes and one independent variable, the equations are
Pr(y <1|x)=F(n - fz)

Pr(y<2|x)=F(n - fz)
Pr(y<3|x)=F(r3 - fiz)

The intercept o« is not in the equation since it has beenaassumed to equal 0 to ideutify
the model. These equations lead to the following figure:

Priye=t1lx) ——=—- Priy<=21x}
........... Priy==3 1 x)

Fach probability curve differs only in being shifted to the left or right. Tkllla,t is, tti};eny
are parallel as a consequence of the assumption that the Ss are equal for each equation.

data. The
3. This plot illustrates how graph can be used to construct graphs. tha?t are noi’% bﬁsed azr;e:lspi 2 The
or-nmand]i:s for this graph are contained in st9chSordinal.do, which is part of the p: Z
¥

See chapter 1 for details.
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This figure suggests that the parallel regression assumptioncan be tested by com-
paring the estimate from the J—1 binary regressions,

Pl"(ySle):F(Tm‘xﬁm) form=1,J-1

where the s are allowed to differ across the equations. The parallel regression assurmp-
tion implies that 3, = By=-.=p J—1- To the degree that the parallel regression
assumption holds, the coefficients El, 32, s, B s—1 should be close. There are two
commands in Stata that perform this test.

An approximate LR test

The command omodel (Wolfe and Gould 1998) is not part of official Stata but can
be obtained by typing net search omodel and following the brompts. omodel com-
putes an approximate LR test. IEssentialty, this method compares the log likelihood
from ologit (or oprobit) with that obtained from pooling J — 1 binary models fitted
with logit (or probit), making an adjustment for the correlation between the binary
outcomes defined by y < m. The syntax is

omedel [logit]probit} depoar [z’ndepmrs] Lif | [in] [ weight |

where the subcommand logit or probit indicates whether ordered logit or ordered
probit is to be used. For example, '

- omodel logit warm yr89 male white age ed prst
(same output as for clogit warm yr89 male white age ed prst)

Approximate likelikood-ratio test of proportionality of odds
across response categories:
chi2{12) = 48.91
Prob > chi2 = 0.0000

Here the parallel regression assumption can be rejected at the .01 level,

A Wald test

The LR test is an omnibus test that the coefficients for all variables are simultaneously
equal. Accordingly, you cannot determine whether the coefficients for some variables are
identical across the binary equations while coefficients for other variables differ. To this
end, a Wald test by Brant (1990} is useful since it tests the parallel regression assumption
for each variable. The messy details of computing this test are found in Brant (1990) or
Long (1997, 143-144}. In Stata, the test is computed quickly with brant, which is part
of SPost. After running ologit (brant does not work with oprobit), you run brant
with the syntax: ) '

brant [, detail]
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The detail option provides a table of coefficients from each of the binary models. For
example, :

. brant, deta:il
Estimated coefficients from j-1 binary regressions
.oyl y>2 y>3
yr8s .9647422 56540626 313907316
male -.30636425 -.69054232 -1.0837888
white -.B5265759 -.31427081 -.39299842
age -.0164704 -.02533448 -.018590561
ed  .10479624  .05285266  ,0575b466
prst  -.00141118  .00953216  .00553043
_cons  1.8584045  .73032873 -1.0245168

Brant Test of Parallel Regression Assumption

Variable chi2  p>chi2 df
411 49,18 0.000 iz

yreg 13.01 0.001 2
male 22.24 0.000 2
white 1.27 0.5631 2
age 7.38 0.025 2

ed 4,31 0.118 2

prst 4.33 0.115 2

4 significant test statistic provides evidence that the parallel
regression assumption has been violated.

The chi-squared of 49.18 for the Brant test is close to the value of 48.91 from the LR
test. However, the Brant test shows that the largest violations are for yr89 and male,
which indicates that there may be problems related to these variables.

Caveat regarding the parallel regression assumption We find that the parallel
regression assumption is frequently violated. When the assumption of parallel
regressions is rejected, alternative models that do not impose the constraint of
parallel regressions should be considered. Violation of the parallel regression
assumption is not a rationale for using ordinary least squares regression since
the assumptions implied by the application of the LRM to ordinal data are even
stronger. Alternative models that can be considered include models for nominal
outcomes discussed in chapter 6 or other models for ordinal outcomes discussed
in section 5.9. '

5.7 Residuals and outliers using predict

Although no methods for detecting influential observations and outliers have been devel-
oped specifically for the ORM, Hosmer and Lemeshow (2000, 305) suggest applying the
methods for binary models to the J — 1 cumulative probabilities that were discussed in
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the last section.  As noted by Hosmer and Lemeshow, the disadvantage of this approach
is that you are evaluating only an approximation to the model you have fitted, because
the coefficients of the binary models differ from those fitted in the ordinal model. But
if the parallel regression assumption is not rejected, you can be more confident in thé
results of your residual analysis. ‘

To illustrate this approach, we start by generating three binary variables correspond-
ing to warm < 2, warm < 3, and warm < 4:

. gen warmlt2 = (warm<2} if warm <.
. gen warmlt3 = (warm<3) if warm <.

. gen warmltd = (warm<4) if warm <.

For example, warmlt3 is 1 if warm equals 1 or 2, else 0. Next we estimate binary logits
for warmlt2, warmlt3, and warmlt4 using the same independent variables as in our
original ologit model. After estimating each logit; we generate standardized residuals
using predict (for a detailed discussion of generating and inspecting these residuals
see chapter 4): ,

* warm < 2
- logit warmlt2 yr89 male white age ed prst
{output omitted )

. predict rstd_1t2, rs
* warm < 3

. logit warmlt3 yr89 male white age ed prst
(output omitted)

. predict rstd_1t3, rs

* warm < 4
- logit wvarmlt4 yr89 male white age ed prst
{output omitted )

. predict rstd_lt4, rs

Next we create an index plot for each of the three binary equations. Using the results
from the logit of warmlt3 yields the following graph:

(Continued on next page)
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5.8.1 Marginal change in y*
+ BOrt prsi In the ORM, ¥* = x3 +¢, and the marginal change in y* with respect to z;, is
. gen index = _n ) . _
. graph twoway scatter rstd_1t3 index, yline{(0) ylabel{-4(2}4) /// ay
> xtitle("Observation Number") xlabel(0(500)2293) _ /Y 5 = G
> msymbol{(Dh) k

Because y* is latent (and hence its metric is unknown), the marginal change cannot be
interpreted without standardizing by the estimated standard deviation of 7,

g e —~
312,* = 3 Var (x) 8 + Var (¢)
where Var (x) is the covariance matrix for the observed 8, E}' contains ML estimates,

and Var(e) = 1 for ordered probit and 72/3 for ordered logit. Then the y*-standardized
coeflicient for = is

s’génd__ardiiéd_Pealr'ébn:r:esichal_-‘f PR

Sy* ﬂk
LY =
; [o Y
= o 0 - - - y - - *
Tl AR e A S which can be interpreted that for a unit increase in Zk, ¥* is expected to increase by
[+] [+]

ﬁf ¥" standard deviations, holding all other variahles constant.

The fully standardized coefficient is

D00 e 1B00
- -Observation Number: ..~ ;

o Sy
ﬂf = = G'kﬁky
y*

which can be interpreted that for a standard deviation imcrease in Tk, Y* is expected to

Given the size of the dataset, no residual stands out as being especially large. See increase by 82 standard deviations, holding ali other variables constant.

i in which you can examine outliers and influential cages. . . ‘
soction 4.4 for ocher ways i w y These coefficients can be computed with listcoef using the std option. For exam-

ple, after fitting the ordered logit model,

5_8 .]nterpretation - listcoef, std help

ologit (N=2293): Unstandardized and Standardized Estimates

Observed SD: .9282156
Latent SD; 1.9410634

If the idea of a latent variable makes substantive sense, simple interpretations are pos-
sible by rescaling y* to compute standardized coefficients that can he useq just like
coefficients for the linear regression model. If the focus is on the categories of the

ordinal variable (e.g., what affects the likelihood of strongly agrgeing), t}tli mg;};’?(%s varn . . —_ ook boear oseany -
i rated for the BRM can be extended to multiple outcomes. Because the is

E})I;fltinaear in the outcome probabilities, no approach can fully describe the relation§hip izgz —8:?::28 _g:gzg g:ggg _gzgzgg »8: 3332 _gjgﬁﬁ 8: ig:g
between a variable and the outcome probabilities. Consequently, you should con51.de1" ahite | -0.39116 -5.508  0.001 o en g oprd 0-1885 0-4989
each of these methods before deciding which approach is most effective in'your applica- ag: _g_ gé’;f; _E'Z;g g.ggg _g'g ?gg 'g'g;ig ‘g-iggz 12-"{32
tion. For purposes of illustration, we continue to use the example of attltllldes toward pr:t 00677 4.205 0000 0.2123  0.0345 0. 1088 3 doos
working mothers. Remember that the test of the parallel regression assumption suggests _

N . : b = raw coefficient

that this model is not appropriate for these data. 2 = ocore feli o
P>|z| = p-value for z-test
bStdX = x-standardized coefficient
bStdY = y-standardized coefficient
b3tdXY = fully standardized coefficient
8DofX = standard deviation of X
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If we think of the dependent variable as measuring support for mothers in the workplace, '
then the effect of the year of the interview can be interpreted as indicating that in 1989
support was .27 standard deviations higher than in 1977, holding all other variables

constant. .

To consider the. effect, of education, each standard deviation increase in education in-
creases support by .11 standard deviations, holding all other variables constant.

5.8.2 Predicted probabilities

We usuelly prefer interpretations based somehow on predicted probabilities. These
probabilities can be estimated with the formula '

f’;(y:m | X) :F(:mexﬁ) _F(?m—.l *XB)
with cumulative probabilities computed as
Bry <m|x) =F (rn—xB)

The values of x can be based on observations in the sample or can be hypothetical
values of interest. The most basic command for computing probabilities is predict,
bus our SPost commands can be used to compute predicted probabilities in particularly

useful ways.

5.8.3 Predicted probabilities with predict

After fitting a model with ologit or oprobit, a useful first step is to compute the
in-sample predictions with the command ‘

predict mewvar! [newvar2[newvar3...]| [if] [in]

where you indicate one new variable name for each category of the dependent variable.
For instance, in the following example predict specifies that the variables SDwarm,
Dwarm, Awarm, and SAwarm should be created with predicted values for the four outcome

categories:

. ologit warm yr89 male white age ed prst, noloeg

{output omitted)

. predict SDiogit Dlogit Alogit SAlogit

(option p assumed; predicted prcbabilities)
The message (option p assumed; predicted probabilities) reflects that predict
can compute many different quantities. Because we did not specify an option indicating
which quantity to predict, option p for predicted probabilities was assumed.

An easy way to see the range of the predictions is with dotplot, one of our favorite
commands for quickly checking data: '
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. label var SDwarm "Pr{SD}"

. label var Dwarm "Pr{(D}"

. label var Awarm "Pr(A)"

. label var SAwarm "Pr(SA)"

. dotplot SDwarm Dwarm Awarm SAwarm, ylabel(0(.25).75)

"-'P_r(_IS_D? ] BrD)

PrtA) pr(lSA}

The predi(':te_d probabilities for the extreme categories tend to be less than .25, with
most Predlctlons for the middie categories falling between .25 and .5. In only a few
cases is the probability of any outcome greater than .5.

Examining predicted probabilities within the sample provides a first, quick check of
the model. To understand and present the substantive findings, however, it is usually
more effective to compute predictions at specific, substantively informa.tivza values. Our
commands prvalue, prtab, prgen, and prchange are designed to make this simple,

5.8.4 Individual predicted probabilities with prvalue

Predicted probabilities for individuals with a particular set of characteristics can be

C(?I.nputed vi\.ritl} prvalue. For example, we might want to examine the predicted proba-
bilities for individuals with the following characteristics:

¢ Working-class men in 1977 who are near retirement.
® Young, highly educated women with prestigious jobs.
e An “average” individual in 1977.

s An “average” individual in 1989.
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Each of these can be easily computed with prvalue (see chapter 3 for a discussion of
options for this command}. The predicted probabilities for older, working-class men are

. prvalue, x(yr89=0 male=1 prst=20 age=64 ed=16) rest(mean)

ologit: Predictions for warm

Confidencé intervals by delta method ’ .

95% Conf. Interval
Pr(y=8Dix): 0.2317 { 0.1776, 0.2857]
Pr(y=D|x): 0.4221 [ 0.3942, 0.45040]
Pr(y=Alx): 00.2723 1 0.2249, 0.3198]
Pr(y=SAix): 0.0739 [ 0.0523, 0.0954]

yrég male white age ed prst

b 0 1 .8765809 84 16 20

For young, highly educated women with prestigious jobs, they are

. prvalue; x(yr89=1 male=0 prsi=80 age=30 ed=24) rest(mean) brief

ologit: Predictions for warm
95 Conf., Interval

Pr{(y=8D|x): 0.0164 [ 0.0108, 0.0222]
Pr{y=Dlx): 0.0781 [ 0.05854, 0.1008]
Pri{y=Alx): 0.3147 [ 0.26386, 0.3658]
. Pr{y=8Alx): 0.5908 [ 0.5143, 0.6673]

and so on, for other sets of values.

We have set the values of the independent variables that deiine our hypothetical
person using the =() and rest() options. The output from the first call of prvalue
lists the values that have been set for all independent variables. This allows you to verify
that x() and rest () did what you intended. For the second call, we added the brief
option. This suppresses the output showing the levels of the independent variables. If
you use this option, be certain that you have correctly specified the levels of all variables.
Remember that the output of prvalue labels the categories according to the value labels
assigned to the dependent variable. For example, Pr(y=8D | x): 0.2317. As it is easy
to be confused about the outcome categories when using these models, it ig prudent to
assign clear value labels to your dependent variable (see chapter 2}.

We can summarize the results in a table that lists the ideal types and provides a
clear indication of which variables are important:
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Probability for
outcome category:

Ideal type b D A sA

Working-class men in 1977 who are near retirement .23 .42 27 .07
Young, highly educated women in 1989 with

prestigious jobs 02 08 32 59
An “average individual” in 1977 A3 .36 - .37 -14
An “average individual” in 1989 08 28 43 .21

- 5.8.5 Tables of predicted probabilities with prtab

In other cases, it can b.? useful to compute predicted probabilities for all combinations
of a set of categorical independent variables. For example, the ideal types illustrate
the importance of sex and the year when the question was asked. Using prtab, we can

eaSII')f SI].OW tlle degree IO Wh]'.Ch [llese va [iables af}e tr ()[)IIIIOI}S f()r thOSe average o Ol]le
C
g 11

- prtab yr89 male, novarlbl
ologit: Predicted probabilities for warm
Predicted probability of outcome 1 (SD)

male
yrs9 Women Men

1977 | 0.0989 0.185¢
1989 | 0.0610 0.1191

Predicted probability of cutcome 2 (D)

male
yr89 Women Men

1977 | ¢.3083 0.4026
1989 [ 0.2282 0.3394

Pradicted probability of outcome 3 (4)

male
yrég Women Men

1977 | 0.4129 0.3162
1989 | 0.4406 0.3904
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Predicted probability of outcome 4 {(SA)

male
yrao Women Men

1077 | 0.179¢ 0.0953
1989 | 0.2703 0.1510

i d prst
r89 male white age e
x= .3986%445 46489315  .8765809 44.935456 12.218055 39.585259

{tables for other outcomes omitted )

Tip Sometimes the output of prtab is clearer without the variable labels. These can
be suppressed with the novarlbl option.

The output from prtab can be rearranged into a table that .clea,rly shows _tl.lat men
are more likely than women to strongly disagree or flisa,gree with the proposition tha‘;
working mothers can have relationships with their children that are as warm as those o
mothers who do not work. The table also shows that between 197.7 %ﬂd 1989 there was
a2 movement for both men and women toward more positive at_fmtudes about working

mothers.

1977 SD D A SA

Men .19 40 .32 10
Women .10 31 A1 18
Difference .09 09 —-09 —.08

1989 sb D A SA

Men 12 34 .39 15
Women .06 .23 44 27
Difference .06 Jd1 —0h —.12

Change from 1977 to 1989
sSD D A SA

Men .07 -—-.06 07 .05
Women —.04 —.08 .03 09

prtab does not include confidence intervals. If we want confidence intervals for the
probabilities in the table, we need to make separate calls to prvalue. For the first row
in the above table, we could compute the confidence intervals as follows:
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. prvalue, x(yr89=0 male=1)
ologit: Predicticns for warm
Confidence intervals by delta method
i 95% Conf. Interval

Pr{y=8DI|x): 0.1859 [ 0.1631, 0.2088]
Pr{y=D|x):" 6.4026 [ 0.3777, 0.4275]
Pr(y=A{x): 0.3162 [ 0.2835, 0.3400]
Pr{y=SAlx): 0.0953 [ 0.0814, 0.1092]

yr89 male white age ed prst

x= .0 1 .8765809 44.935456 12.218055 39.585259

The confidence intervals for the other cells can be generated by the following commands:

- prvalue, x(yr89=0 male=0)
. prvalue, x(yr8%=1 male=1)
. prvalue, x(yr8%=1 male=0)

5.8.6 Graphing predicted probabilities with prgen

Graphing predicted probabilities for each outcome can also be useful for the ORM. Here
we consider women in 1989 and show how predicted probabilities are affected by age. Of
course, the plot could also be constructed for other sets of characteristics. The predicted
probabilities as age ranges from 20 to 80 are generated by prgen:

- prgen age, from(20) to(80) generate(w8%) x(male=0 yr&9-1) ncases(13)}
ologit: Predicted values as age varies from 20 to 80,

yr39 male white age ed prst
x= 1 0 .8765809 44.93b466 12.218055 39.585259

You should be familiar with how z() operates, but it is useful to review the other
options:

from(20) and to(80) specify the minimum and maximum values over which inc is to
vary. The default is the variable’s minimum and maximum values.

generate (w89) is the root name for the new variables.

ncases(13) indicates that 13 evenly spaced values of age between 20 and 80 should
be generated.

Here w89x contains values of age ranging from 20 to 80. The p# variables contain
the predicted probability for outcome # (e.g., w89p2 is the predicted probability of
outcore 2). With ordinal outcomes, prgen also computes cumulative probabilities (i.e.,
summed) that are indicated by s (e.g., w89s2 is the sum of the predicted probability of
outcomes 1 and 2).
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. desc w89

atorage display valae .
variable name type format label variable label
w8ox float ¥9.0g . Age in years
w89pl . fioat J9.0g pr(8D)=Pr (1}
w89p2 float ¥%9%.0g pr{D)=Pr(2)
w89p3 float ¥9.0g pr(4)=Pr(3)
waopd float %9.0g pr{5A)=Pr(4)
w89s1 float ¥9.0g pry<=1)
w89s2 flcat . %9.0g pry<=2)
w8953 float ¥%9.0g pr(y<=3)
w89s4 float %9.0g pr{y<=4)

Although prgen assigns variable labels to the variables it creates, we can change these
to improve the look of the plot that we are creating. Specifically,

. label var w8%pl1 "SD"

. label var w8%p2 "D

. label var w89p3 "A"

. label var w89p4d "SA"

. label var w889s1 "8D"

. label var w89s2 "SD or D"

- label var w89%s3 "S8D, D or A"

First, we plot the probabilities of individual outcomes using graph. Because the graph
command is long, we use /// to allow the commands to be longer than one line in our
do-file.

. // step 1: graph predicted probabilities
- graph twoway connected w89pl w8Sp2 w89p3 w89p4d w89x, ///

> title("Panel A: Predicted Probabilities") 174
> xtitle{"Age") xlabel(20{10)80) ylabel (8(.25).50) /77
> yscale(nciine) ylabel{"") xline(44.93) 117

> ytitle("") name(graphl, replace}

This graph command plots the four predicted probabilities against generated values
for age contained in w89x. Standard options for graph are used to specify the axes
and labels. The vertical line specified by xline(44. 83) marks the average age in the
sample. This line is used to illustrate the marginal effect discussed in section 5.8.7.
Option name (graph1, replace) saves the graph in memory under the name graphi so
that we can combine it with the next graph, which plots the cumulative probabilities:

. // step 2: graph cunmulative probabilities

- graph twoway connected w89sl w39s2 w8933 w89x, 1y
> title("Panel B: Cumulative Probabilities") e
> xtitle("Age"} x1abel(20(10}80)} ylabel(0D{.25)1) s
> yscale(noline) ylabel("") name(graph2, replace} ///
> ytitle("n)
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Next we combine these two graphs (see chapter 2 for details on combining graphs):

A/ Step.S: combine graphs

- graph combine graphl graph?, col(1) iscale(*.9) imargin{small) ///
> ysize{4.31) xsize(3.287)

This leads to figure 5.2. Panel A plots the predicted probabilities and shows that with
age the probability of SA decreases rapidly, whereas the probability of D (and to a lesser
degree, SD) increases. Panel B plots the cumulative probabilities. Both panels present,
the same information; which method you use is up to you.

SUE L Panel At Predicted Probabiliies” -
i 8 — | ' o

Figure 5.2: Plot of predicted probabilities for the ardered logit model.

5.8.7 Changes in predicted probabilities

When there are many variables in the model, it is impractical to plot them all. In such
cases, measures of change in the outcome probabilities are useful for summarizing the
effects of each variable. Before proceeding, however, we hasten to note that values of
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both discrete and marginal change depend on the levels of all variables in the model.
‘We return to this point shortly.

Marginal change with prchange

The marginal chaﬁge in the probability is computed as
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Using the same values for the independent variables as in the example above, we obtain
the following results:

. mfx, at(male=0 yr89=1) predict {(cutcome (1))

warning: no value assigned in at{) for variables white age ed prst;
means used for white age ed prst )

Marginal effects after ologit

OPr(y=m|x) O0F(rm —xB) OF(rm—1 —x8)
E%Ek . -

6$k

8$k

which is the slope of the curve relating x), to Pr{y=m|x), holding all other variables con-
stant. Here we consider the marginal effect of age {8Pr(y = m | x) /fage} for women
in 1989 who are average on all other variables, This corresponds to the slope of the
curves in panel A of figure 5.2 evaluated at the vertical line (recall that this line is drawn
at the average age in the sample). The marginal is computed with prchange, where we
specify that only the coefficients for age should be computed:

. prchange age, x(male=0 yr89=1) rest(mean)

¥y = Pr{warm==1) (predict, outcome(l))
= .06099998
variable dy/dx Std. Err. z Prlz| [ 98 C.I. 1] X

yr89* -.0378526 .00601 -6.30 0.000 -.049633 -.026072 i
male* . 0581355 .00731 7.95  0.000 .043803 .0T2468 0
whitex* .0197511 . 0055 3.59  0.000 008972 .03063 .B76581

age .001241 .00018 7.68  0.000 000925 0016587 449355

ed -.0038476 .000e7 -3.96  0.000 -.0057b54 -.001941 12.2181
prat —.0003478 .00019 -1.83 0.068 -.000721 .000025 39.5863

(#) dy/dx is for discrete change of

dummy variable from O to 1

clogit: Changes in Probabilities for warm

age
) hvg|Chgl 3D D A sS4
Min->Max  .16441458  .10941909 .21941006 -.05462247 -.27420671
-+1/2  .00222661 .0012408¢  .00321223  -.0001803 -.00427291
—+s4/2 .0373126 .0208976  .0B372739 -.00300205 -.07162295
MargEfct  .00222662  .00124098  .00321226 -.00018032 -.00427292
sSD D A SA
Pr(ylz) .06099996 .22815652 .44057754 27026597
yré9 male white age ed prst
x= 1 0 .876b681 44.8355 12.2181 39.5853

sd(x)= .489718 .498875 .328989 16.779 3.16083 14.4923

The first thing to notice is the row labeled Pr{y|x), which is the predicted probabilities
at the values set by x() and rest (). In panel A, these probabilities correspond to the
intersection of the vertical line and the probability curves. The row MargEfct lists the
slopes of the probability curves at the point of intersection with the vertical line in the
figure. For example, the slope for SD (shown with circles) is .00124, whereas the slope
for A (shown with squares) is negative and small. As with the BRM, the size of the
slope indicates the instantaneous rate of change but does not correspond exactly to the
amount of change in the probability for a change of one unit in the independent variable.
However, when the probability curve is approximately linear, the marginal effect can be
used to summarize the effect of a unit change in the variable on the probability of an
outcome.

Marginal change with mfx

Marginal change can aiso be computed using mfx, where at () is used to set values of the
independent variables. And it estimates the marginal effects for only one outcome cate-
gory at a time, where the category is specified with the option predict (outcome (#)).

The marginal for age is .001241, which matches the result obtained from prchange.
The advantage of mfx is that it computes standard errors and confidence intervals.

Discrete change with prchange

As the marginal change can be misleading when the probability curve is changing rapidly
or when an independent variable is a dummy variable, we prefer using discrete change
(mfx computes discrete change for independent variables that are binaty but not for
other independent variables). The discrete change is the change in the predicted prob-
ability for a change in z, from the start value xg to the end value zg (e.g., a change
from z3 = 0 to 2 = 1). Formally,

APr{y=m|x)
llmk

_:Pr(y:m|x,mk::1:E)—Pr(y=m\x,xkzms)

where Pr{y = m | x,2;) is the probability that y = m given x, noting a specific value
for xx. The change is interpreted as indicating that when x;, changes from zg to g,
the predicted probability of outcome m changes by APr(y = m | x) /Az;, holding all
other variables at x.

The value of the discrete change depends on (1) the value at which zy, starts, (2) the
amount of change in z;, and (3} the values of all other variables. Most often, each
continuous variable except z; is held at its mean. For dummy independent variables,
the change could be computed for both values of the variable. For example, we could
compute the discrete change for age separately for men and women.

Here the discrete-change coefficients for male, age, and prst' for women in 1989,
with other variables at their mean, are computed as follows:
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. prchange male age prst, x(male=0 yr89=1) resat{mean)
ologit: Changes in Probabilities for warm

male .
Avg|Chg| sD D 4 BA
0->1 . 08469636 . 05813552 .11125721  ~,05016317 -,11923965
apge -
Avg|Chgl SD D A 13
Min->Max .16441458 .1084£909 .21941006 -.05462247 -.27420671
-+1/2 . 00222661 .00124099 .00321223 -.0001803 -.00427291
-+sd/2 .0373125 . 0208976 .0B372738  -.00300205. ~,07162295
MargEfct . 00222662 . 00124098 .003212268 -.00018032 -.00427292
prst i
AvglChgl sD D A SA

Min->Max .04278038 -.02352008 -.06204067 .00013945 .08542132
~+1/2 .00062411  -.00034784 -.00090037 .00005054 -00119767
~+sd/2 .00904405 -.00504204 -.01304607 . 00073212 ~01735598
MargEfct .00062411 -.00034784 -.,00090038 . 00005054 .00119767

Sp D A 84

Pr(yfx) .06099996 .22815652 .44057754 27026597
yri9 male white age aed prst
x= i 0 .876b681 44.93556 12.2181 39.5853

sd{x)= .489718 .498875 .328989 16.779 3.16083 14.4923

For variables that are not binary, the discrete change can be interpreted for a unit
change centered on the mean, for a standard deviation change centered on the mean,
or as the variable changes from its minimum to its maximum value. The following are
two examples:

For a standard deviation increase in age, the probability of disagreeing in-
creases by .05, holding other variables constant at their means.

Moving from the minimum prestige to the maximum prestige changes the
predicted probability of strongly agreeing by .08, holding all other variables
constant at their means. o

The J discrete-change coefficients for a variable can be summarized by computing
the average of the absolute values of the changes across all the outcome categories:

el

L |APr(y = |%)
Zﬁxk

1
J =

The absolute value must be used because the sum of the changes without taking the

absolute value is necessarily zerc. These are labeled as AvgiChgl. For example, the

effect of being a male is on average 0.08, which is larger than the average effect of a
standard deviation change in either age or occupational prestige.
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Confidence intervals for discrete changes

Although prchange computes discrete changes, it does not compute confidence intervals
for these changes. If you want confidence intervals, vou need to use prvalue with the
save and diff optfons. In the first call to prvalue, you provide the starting values for
the explanatory variables and specify save. In the second call, you provide the ending
values and specify diff.

Consider the change in probabilities associated with a change from 0 to 1 in a dummy
variable. With prchange, we calculated the difference in probabilities between men and
women in 1989, holding the other variables at their means. We can compute this same
change using prvalue, which will give us the confidence intervals as well.

- qui prvalue, x(male=0 yr89=1) rest{mean) save
» prvalus, x{male=1 yr89=1) rest(mean) diff
ologit: Change in Predictions for waram

Confidence intervals by delta method

CGurrent Saved Change 95} CI for Change
Pr(y=8D|x}: 0.1191 0.0610 0.0581 [ 0.0438, 0.0725]
Pr(y=D|x): 0.3204  0.2282  0.1113 [ 0.0876, 0.1350]
Pr(y=alx): 0.3904 06.4406 -0.0502 [-0.06792, -0.0324]
Pr{y=SAlx): 0.1510 90.2703 -0.1192 [-0.1448, -0.0937]
yrag male white age ed prst
Currents= 1 1 8765809 44.935456 12.218055 39.585259
Saved= 1 0 .B765809 44.935456 12.218055 29.585259
Diff= 0 1 0 0 0 0

If you compare the results listed in the Change column with the earlier results from

prchange, you will see that they are the same. For example, the probability of strongly
agreeing with the item about working mothers is .119 lower for men than for women.
The estimated bounds of the 95% confidence interval for differences in probabilities
between men and women in 1989 are —.145 and —.094, holding other variables at their
means. Or, we might say, the results suggest that the difference between men and
women in the predicted probability of strongly agreeing is .12 and the difference could
be as small as .09 or as large as .14 with 95% confidence.

Now let’s consider discrete change with a continuous variable. Earlier, prchange
computed the changes associated with a standard deviation increase in age centered
around the mean. The mean age is 44.9, with a standard deviation of 16.8. Accordingly,
we want to compute the change in probabilities when age increases from 36.5 to 53.3.
The start and end values for age are computed using the display command:

. di 44.935 - (.5%16.779)
36.5455

. di 44.935 + (.5%16.779)
53.3245
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i values in a pair of prvalue commands, we find~
Usmg hese P P 7 , . prchange age, x(male=0 yr89=1) rest(mean) delta(10)

ologit: Changes in Probabilities for warm
(Note: d = 10)

age

. qui prvalue, x(male=0 yr8g=1 age=36.5455) rest(mean) save
. prvalue, z(male=0 yr89=1 age=53.3245) rest{mean) diff
ologit: Change in Predictions for warm
Avg|Chgl 8D D A SA
Min->Max .16441458 .10941909 .21941006 -.05462247 -.27420671
-+d/2 . 02225503 .01242571 .03208634 .00179818 —,04271388

Confidence intervals by delta method
Current Saved Change  95% CI for Change

Pr{y=5D|x): 0.0723  0.0514  ©0.0209 [ 0.0155,  0.0262] -+sd/2  .0373125  .0208976  .0537273% -.00300205 -.07162295
Pr(y=DIx): 0.2656  0.2019  0.0537 [ 0.0414, 0.0861] MargEfct — .00222662  .00124098  .00321226 -.00018032 -.00427202
Pr(y=Alx): 0.4362  ©0.4392 -0.0030 [-0.0118,. 0.0058] - : : o :
= : ; . -0.0716 [-0.0883, -0.0549]
Pry=shix): 0.2359  0.3076 (-0.0883, : Pr(y|x) .06099996 .22815652 .44057754 27026597
yr89 male white age ed prst 5 L "
Current= 1 0  .876580%  53.3245 12.218056 39.585259 o male  white age ed  prst
Saved= 1 0 8765809  36.5455 12.218055 39.585259 x= 1 0 .876581 44.9355 12.2181 39.5853
DIt o o o 16.779 o o sd(x)= .489718 .498875 .328989 16.779 3.16083 14.4923
1r1= . .,

For females interviewed in 1989, the results in the -+d/2 row show the changes in the

t of change matches the results from prchange, but now we have confidence rh vien _ : :
e amoun of chang P & predicted probabilities associated with a 10-year increase in age centered on the mean.

intervals. For otherwise average women in 1989, a standard deviation increase in age,
about 17 years, increases the probability of disagreeing by .054 with estimated bounds
for the 95% confidence interval at .041 and .066.

5.8.8 Odds ratios using listcoef

i 10- increase in age
Computing discrete change for a 10-year incr & For ologit, but not oprobit, we can interpret the results using odds ratios. Earlier,
In the example above, age was measured in years. Not surprisingly, the change in the {5.2) defined the ordered logit model as
predicted probability for a l-year increase in age is trivially small. But, to characterize

i Qe = -
the effect of age, we could report the effect of a 10-year change in age. <m|>m (X) = exp (T — %/3)

For example, Witl( fotir Eutcomes we would simultaneously estimate three equations:

Qc1ys1 (%) =exp {1 —x8) 17 o,
Qeglmo (%) = exp (12 — x8) D -
QS3[>3 (X) = exXp (T3 — xﬁ) Losvn, B

Warning It is tempting to compute the discrete change for a 10-year change in age by
simply multiplying the 1-year discrete change by 10. This will give you approxi-
mately the right answer if the probability curve is nearly linear over the range of
change. But, when the curve is not linear, simply multiplying can give misleading

results and even the wrong sign. To be safe, do not do it! Using the same approach as shown for binary logit, the effect of a change in zg of 1

equals

ng,|>'m (X: Ty + 1) B _ 1
Q<m]>m ('X. xk) eBi

The delta(#) option for prchange computes the discrete change as an indepen-
dent value changes from #/2 units below the base value to #/2 above. Here we use
deita(10) and set the base value of age to its mean:

Wthh can be interpreted as indicating that for & unit: mcreé§ F i

1 Lf’ﬂ"
"éﬁﬂﬁﬁ)@ngégesﬁthm@mmdi@g@éd by the factor exp (—

other variabies constant. /I\

The value of the odds ratio does not depend on the value of m, which is why the parallel
regression assumption is also known as the proportional odds assumpt;on We could

A e s o e e T

interpret the odds ratio as follows: -

For a unit increase in z;,, the odds of a lower cutcome compared with a higher ?
outcome are changed by the factor exp (—#;), holding all other variables
constant.
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or, for a change in z of §,

1
Qemlsm (X, 2k + 6) =exp (=6 x ) =
glgnﬂ>nz{xawk)

so that

for an increase of § in xy, the odds of a lower outcome compared with a
higher outcome change by the factor exp (=48 x B holdmg all other vari-

ables constant.

In these results, we are discussing factor changes in the odds of lower outcomes
compared with higher outcomes. This is done because the model is traditionally written
a8 In Qcppyom (X) = Tm — X3, which leads to the factor change coefficient of exp (—5%).
For purposes of interpretation, we could just as well consider the factor change in the
odds of higher versus lower values; that is, changes in the odds Qum|<m (x} This would

equal exp {fr).

The odds ratios for both a unit and a standard deviation change of the independent_
variables can be computed with listcoef, which lists the factor changes in the odds of
higher versus lower outcomes. Here we request coefficients for only male and age:

. ologit warm yr89 male white age ed prst, nclog
{output omitted }

. listcoef male age, help
ologit (N=2293): Factor Change in Odds

exp (0 X Bx)

5.8.8 Odds ratios using listcoef

or to compute percent changes in the odds,

. listcoef male age, help percent
ologit (N=2203): Percentage Change in Odds

Odds of: >m vs <=m
warm . b z P>)z| % %Stdx SDofX
male -0.73330 -9.343 0.000 ¢ —52.0' -30.6 0.4989 -
age -0.021867 -8.778 0.000 =z -30.5 16.7790
b = raw coefficient

P>z

z-gcore for test of b=0
p-value for z-test

% = percent change in odds for unit increase in X
%5tdX = percent change in odds for SD increase in X
SbofX = standard deviation of X

These results can be interpreted as follows:

The odds of having more positive attitudes toward.working : mothers are
.48 times smaller for men than women, holding all other variables constant.

Equivalently, the odds of having more positive values are 52% smaller for

men than women, holdmg other variables constant.

For a standard deviation increase in age, the odds of having more positive
attitudes decrease by a factor of .69, holding all other variables constant.

i
i

oo, 3
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When presenting odds ratios, we find that people find it easier to understand the

0dds of: >m wvs <=m
Warm b z P>iz| e™d e bStdX SDofX
male -0.73330 -9.343 0.000 10.480 0.6936 0.4989
age -0.02167 -8.778 Q.000 0. 5 0.6952 16,7790

b = raw coefficient
z = z-score for test of b=0
P>|z| = p-value for z-test
e"b = exp(b)} = factor change in odds for unit increase in X
e bStdX = exp(b*SD of X) = change in oddg for SD increase in X
SDofX = standard deviation of X

results if you talk about increases in the odds rather than decreases. That is, it is clearer
to say, “The odds increased by a factor of 2” than to say, “The odds decreased by a
factor of .5”. If you agree, then you can reverse the order when presentmg odds. For

example, we could say that

The odds of having more negative attitudes toward working mothers are
2.08 times larger for men than women, holding all other variables constant.

This new factor change, 2.08, is just the inverse of the old value .48 (that is, 1/.48).
listcoef computes the odds of a lower category versus a higher category if you specify

the reverse option:

. listcoef male, reverse
ologit (N=2293): Factor Change in Odds
Odds cf: <=m vs >m

warm b z P>|zj

e"b

e bStdX

SDoifX

male -0.73330 -9.343 0.000

2.0818

1.4417

0.4989
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The output now says Odds of: <=m vs >n instead of Odds of: >m vs <=m, as it did’
earlier. '

When interpreting the odds ratios, remember two points that are discussed in detail
in chapter 4. First, because odds ratios are multiplicative coefiicients, positive and
negative effects should be compared by taking the inverse of the negative effect (or
vice versa). For example, a negative factor change of .5 has the same magnitude as a
positive factor change of 2 = 1/.5. Second, the interpretation assumes only that the
other variables have been held constant, not held at any specific values (as was required
for discrete change). But, a constant factor change in the odds does not correspond to
a constant change or constant factor change in the probability. '

5.0 Less common models for ordinal outcomes

Stata can also be used to fit several less commonly used models for ordinal outcomes. In
concluding this chapter, we describe these models briefly and note their commands for
estimation. Qur SPost commands do not work with these models. For ocratio, this is
mainly because these commands do not fully incorporate the new methods of returning
information that were introduced with an earlier version of Stata.

5.9.1 The stereotype model

The stereotype logistic model (SLM), also referred to as the stereotype ordered regres-
sion model (SORM), was proposed by Anderson (1984) in response to the restrictive
assumnption of parallel regressions in the ordered regression model. This SLM, which can
be fitted with in Stata using the slogit command, is a-compromise between allowing
the coefficients for each independent variable to vary by outcorte category (as is the
case with multinomial logit model considered in the next chapter) and restricting the
coefficients to be identical across all outcomes as was the case with the OLM. The SLM

is defined as
St =213y (6, - b (xB) (5.3)
Pr{y=r|x) K 4
where 3 is a vector of coefficients associated with the independent variables, the 8s are
intercepts, and the ¢s are scale factors that mediate the effects of the z’s. Because this

model is so closely related to the multinomial logit model, and is sometimes used for
nominal data, we will postpone discussion until the next chapter.

5.9.2 The generalized ordered logit model

The parallel regression assumption results from assuming the same coeflicient vector 3
for all comparisons in the J — 1 equations

InQepmjmm (x) =71 —x0

5.9.3 The continuation ratio model 221

where Qs (%) = {Pr(y <m | x)} / {Pr( i i
< < ¥ > m | x)}. The generalized ordered logit
model (GOLM) allows 3 to differ for each of the J — 1 comparisons. That is ¢

INQcmiom (K) =Tm —x8,, forj=1toJ—1
where predicted probabilities are computed as
Priy=1]x) = 2PN -x8)
1+exp(n —x83,)

exp (Tj — Xﬁj) exp (Tj—l —x jfl)

Priy=j]x)= -
t+exp (5 —x8;)  1+exp(r; ; ~x3;_1)

for j=2t0J-1

Priy=J|x)=1-— " (-1 = xB,_,)
I+exp (r7-1 - xB;_4)

To ensure that the Pr(y = § | x) is between 0 and 1, the condition

(5 — x8;) > (71 ~ xB;_1)

fnust hold. Omnce predicted probabilities are computed, all the approaches used to
interpret the ORM results. can be readily applied. This model has been discussed by
Clogg and Shihadeh (1994, 146-147), Fahrmeir and Tuts (1994, 91), and McCulla, i
and Nelde? (1989, 155). It can be fitted in Stata with the add-on comm;md gologit (gu
1998). This command has not been recently updated and thus is no longer supported in
SPost. More recently, Williams (2005) has written gologit2, which extends the original
comman_d to fit two special cases of the general models: the proportional odds model and
the partial proportional odds model (see Lall et al. 2002; Peterson and Harrell 1990)
These models are less restrictive than the ordinal logit model fitted by ologit but.
more parsimonious tham the multinomial logit model fitted by mlogit. We plan to add
support for gologit2 to SPost. '

5.9.3 The continuation ratio model

The coptinuation ratio model was proposed by Fienberg (1980, 110) and was designed
.for ordinal outcomes in which the categories represent the progression of events or stages
In some process through which an individual can advance. For example, the outcome
could be faculty rank, where the stages are assistant professor, associate i)zofessor and
full professor. A key characteristic of the process is that an individual must pass thr,ough
each stage. For example, to become an associate professor you must be an assistant
professor; to be a full professor, an associate professor. Although there are versions

of t}.ﬂs model based on other binary models (e.g., probit), here we consider the logit
version,

. If Pry =m | x) is ‘the probability of being in stage m given x and Pr (y >m|x)
;S th@;1 grqbabﬂﬁy of being in a stage later than m, the continuation ratio model for the
og odds is
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M}:meﬁ form=1toJ—1
Pr(y >m|x)

where the 3s are constrained to be equal across outcome categories, whereas the constarhlt
term T,, differs by stage. As with other logit models, we can alsq express the model in

terms of the odds: Pr(y = m | %)

Pr{y > m|x} ,
Accordingly, exp (—fx) can be interpreted as the effect of a unit increase in-zg on the

odds of being in m compared with being in a higher category given that an inc_lividual
is in category m or higher, holding all other variables constant. From this equation, the

predicted probabilities can be computed as

= exp (Tm — X53)

_ exp (T — %) to J—1
Priy=mix)= H;’;l{l—l-exp(?'j—xﬁ)} form=1to
J-1
Pr(y=J|x)=1-Y Pr{y=3j|x)
i=1

These predicted probabilities can be used for interpreting the model. In Stata, this
model can be fitted using ocratio by Wolfe (1998); type net search ocratio and

follow the prompts to download.

6 Models for nominal outcomes with
case-specific data

An outcome is nominal when the categories are assumed to be unordered. For example,
marital status can be grouped nominally into the categories of divorced, never married,
married, or widowed. Occupations might be organized as professional, white collar,
blue collar, craft, and menial, which is the example we use in this chapter. Other
examples include reasons for leaving the parents’ home, the organizational context of
scientific work (e.g., industry, government, and academia), and the choice of language
in a multilingual society. Further, in some cases a researcher might prefer to treat an
outcome as nominali, even though it is ordered or partially ordered. For example, if
the response categories are strongly agree, agree, disagree, strongly disagree, and don’t
know, the categary “don’t know” invalidates models for ordinal outcomes. Or, you might
decide to use a nominal regression model when the assumption of parallel regressions is

rejected. In general, if you have concerns about the ordinality of the dependent variable,

the potential loss of efficiency in using models for nominal outcomes is outweighed by
avoiding potential bias.

This chapter focuses on three closely related models for nominal (and sometimes
ordinal) outcomes with case-specific data. The multinomial logit model (MNLM) is
the most frequently used nominal regression model. In this model, you are essentially
estimating a separate binary logit for each pair of outcome categories. Next we consider
the multinomial probit model with uncorrelated errors, which is the normal counterpart
to the MNLM. We then discuss the stereotype logistic regression model (SLM). Although
this model is often used for ordinal outcomes, it is closely related to the MNLM. All these
models assume that the data are case specific, meaning that each independent variable
has one value for each individual. Examples of such variables are an individual’s race
or education. In the next chapter, we consider models that include alternative-specific
data.

Models for nominal outcomes, both in this chapter and the next, require us to be
more exacting about some basic terminology. Until now we have used “individual”,
“observation”, and “case” interchangeably to refer to observational units, where each
observational unit corresponds o a single row or record in the dataset. In the next
two chapters, we will use only the term “case” for this purpose. Most of the time, we
use the word “alternative” to refer to a possible outcome. Sometimes we refer to an
alternative as an outcome category or a comparison group in order to be consistent with
the usual terminology for a model or the output generated by Stata. The term “choice”



