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Pr(y — '
n Ml =Tm=%x8 form=1t0J -1
Pr{y >m|x)
where the 3s are constrained to be equal across outcome categories, whereas the constant
term T, différs by stage. As with other logit models, we can also express the model in
terms of the odds:
Pr{y=m|x)

Pr('y>m|x}m exp (7m = %43)

Accordingly, exp (—f8;) can be interpreted as the effect of a unit increase in z; on the
odds of being in m compared with bheing in a higher category given that an individual -

is in category m or higher, holding all other variables constant. From this equatlon1 the
predicted probabilities can be computed as

B _ exp (7, — x3) B ‘ B
Priy=m|x)= H:?Ll{l+exp(fj—xﬁ)} form=1toJ—-1
Tl
Priy=J|x)=1-> Pr(y=j|x)
i=1

These predicted probabilities can be used for interpreting the model. In Stata, this
model can be fitted using ocratio by Wolfe (1998}; type net search ocratio and
follow the prompts to download.

6 Models for nominal outcomes with
case-specific data

An outcome is nominal when the categories are assumed to be unordered. For example,
marital status can be grouped nominally into the categories of divorced, never married,
married, or widowed. Oeccupations might be organized as professional, white collar,
blue collar, craft, and menial, which is the example we use in this chapter. Other
examples include reasons for leaving the parents’ home, the organizational context of
scientific work (e.g., industry, government, and academia), and the choice of language
in a muitilingual society. Further, in some cases a researcher might prefer to treat an
outcome as nominal, even though it is ordered or partially ordered. For example, if
the response categories are strongly agree, agree, disagree, strongly disagree, and don’t
know, the category “don’t know” invalidates models for ordinal outcomes. Or, you might
decide to use a nominal regression model when the assumption of parallel regressions is
rejected. In general, if you have concerns about the ordinality of the dependent variable,
the potential loss of efficiency in using models for nominal outcomes is outweighed by
avoiding potential bias.

This chapter focuses on three closely related models for nominal (and sometimes
ordinal) outcomes with case-specific data. The multinomial logit model (MNLM} is
the most frequently used nominal regression model. In this model, you are essentially
estimating a separate binary logit for each pair of cutcome categories. Next we consider
the multinomial probit model with uncorrelated errors, which is the normal counterpart
to the MNLM. We then discuss the stereotype logistic regression model (SLM). Although
this model is often used for ordiral outcomes, it is closely related to the MNLM. All these
models assume that the data are case specific, meaning that each independent variable
has one value for each individual. Examples of such variables are an individual’'s race
or education. In the next chapter, we consider models that include alternative-specific
data.

Models for norsinal outcomes, both in this chapter and the next, require us to be
more exacting about some basic terminology. Until now we have used *individual”,
“observation”, and “case” interchangeably to refer to observational units, where each
observational unit corresponds to a single row or record in the dataset. In the next
two chapters, we will use only the term “case” for this purpose. Most of the time, we
use the word “alternative” to refer to a possible outcome. Sometimes we refer to an
alternative as an outcome category or a comparison group in order to be consistent with
the usual terminology for a model or the output generated by Stata. The term “choice”
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refers to the alternative that is actually observed, which.can be thought of as the “most

preferred” alternative. For example, if the dependent variable is the party voted for

in the last presidential election, the alternatives mighi be Republican, Democrat, and
Independent. If the person corresponding to a given case voted for the alternative of
Democrat, we would say that the choice for this case is Democrat. But you should not
infer from the term “choice” that the models we describe can be used only for data where
the outcome occurs through a process of choice. For example, if we were modeling the
type of injuries that people (i.e., cases) entering the emergency room of a hospital have,
we would use the term “choice” even though the injury sustained is unlikely to be a
choice. We will continue with this terminology in chapter 7, but with one complication.

Chapter 7 deals with alternative-specific variables that vary not only by case but also

by the alternative. For example, if a commuter is selecting one of three modes of travel,
an alternative-specific predictor might be her travel time using each alternative. Each
case has three rows of data, one for each of the alternatives, since this is the easiest way
to organize the data. We discuss this more fully in the next chapter.

We begin by discussing the MNLM, where the biggest challenge is that the model
includes many parameters and it is easy to be overwhelmed by the complexity of the
results. This complexity is compounded by the nonlinearity of the model, which leads
to the same difficulties of interpretation found for models i prior chapters. Although
fitting the model is straightforward, interpretation invelves many challenges that are
the focus of this chapter. We begin by reviewing the statistical model, followed by
a discussion of testing, fit, and finally methods of interpretation. These discussions
are intended as a review for those who are familiar with the models. For a complete
discussion, see Long (1997). As always, you can obtain sample do-files and data files by
downloading the spost8.do and spost9_ado packages (see chapter 1 for details).

The MNLM can be thought of as simultaneously estimating binary logits for all com-

parisons among the alternatives. For example, let occ3 be a nominal outcome with

the categories M for manual jobs, W for white-collar jobs, and P for professional jobs.
Assume that there is one independent variable, ed, measuring vears of education. We
can examine the effect of ed on occ3 by estimating three binary. logits,

f
L |
m{%ﬂ%%} = Bo,p|ar + B pmed .‘

7 Pr (W i’

} = Oo,pjw + B1,pjwed
A

where the subscripts to-the-55 indicate which comparison is being made (e.g., B1,pias 18
the coeflicient for the first independent variable for the comparison of P and M }.
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The three binary logits include redundant information. Because In a/b=1Ina—Inb,
the following equality must hold: '

o{rrirt) - () e (e )
This implies that

Bo,piae — Bo,w v = Bo,piw (6.1)
Bipim — BLwin = B, ppw

In general, with J alternatives, only J - 1 binary logits need to be estimated. Estimates

for the remaining coefficients can be computed using equalities of the sort shown in
(6.1). '

The problem with fitting the MNLM by estimating a series of binary logits is that

each binary logit is based on a different sample. For example, in the logit comparing P

With M, those in W are dropped. To See this, we can look at the output from a series
of binary logits. First, we estimate a binary logit comparing manual and professional
workers:

. use http://www.stata—press.com/data/lfz/nomintro2, clear
(1982 General Social Survey)

. tab prof_man, miss

pref_man Freq. Percent Cum.
Manual 184 54,60 54.60
Prof 112 33.23 87.83
. 41 12.17 100.00
Total 337 100.00
. logit prof man ed, molog
Logistic regression Number of obs = 298
LR <chi2(1) = 139.78
Prob > chi2 = 0.0000
Log likelihood = -126,43879 Pseudo R2 = 0.3580
prof_man ' CD@:E‘-\\ Std. Err. "z P> z[ [95% Conf. Intervall
ed {.7184599 ) .0858736 8.37  0.000 .560151 .BBETE88
_cons -.-_30.19854/ 1.177457 -8.86  0.000 ~12.50632 -7.89077

Forty-one cases are missing for prof_man and have been deleted. These correspond to
respondents who have white-collar occupations. Likewise, the next two binary logits
also exclude cases corresponding to the excluded category:
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. tab wec_man, miss Multincmial logistic rogression Nu.mbe]f‘ c()f)obs = 337
) percent Cum. ‘LR c¢hi2(2 = 145.89
we_man Freq : Prob > chi2 = 0.0000
— Lo4 5460 B4.60 Log likelihood = -248.14786 Pseudo R2 = 0.2272
WhiteCol a1 12.17 66.77
. 112 33.23 100.00 oce3 Coef. Std. Err. z P>|z| [95% Conf. Interval]
Total 337 100.00 WhiteCol P
_ 4. nolo _ e ed |1~ 73000735 .0841358 3.57  0.000 J13B1703  .4649767
- logit weman ed, molog Number of obs = 206~ —comd || -5.232602| 1.096086  -4.77 0.000  -7.380892  -3.08431
Logistic regression IR cha21) {3_,,/—-*‘11'5'.06' L0 |
Prob > chi2™ = 0.0001 Prof ~
Pseuds B2 - 0.0749 ed ‘/ .7195673  .0805117 8.94  0.000 .BB1767T1  .8773674
Log likelihood = -98.818194 - i ~coms | | ~10.21131  1.106913  -9.22 0.000  -12.38072  -8.041698
we_man ,_,E?ff; Std. Ezr.;/:‘f Z P>lz| [o5% Conf.. _,I_E.t.’fé_rvalj M(og?_:%ff}'l_gx_;ual/is\bhe_,béfse outcome)
= A .BR49BTE < e ey s . )
ed | @ .3418255 0934517 3-?2 g-ggg _gli’igggg -35374262 The output from mlogit is divided into two panels. The top panel is labeled WhiteCol,
-cons | -5.758148 1.216291  -4.73 O i which is the value label for the second category of the dependent variable; the second
R — panel is labeled Prof, which corresponds to the third outcome category. The key to
s 88 . . . .
- tab prof_wc, mi . percent cun understanding the two panels is the last line of output: occ3==Manual is the base
Ireqd. b . . . .
prot_ve ¢ outcome. This means that the panel WhiteCol presents coefficients from the comparison
WhiteCol 41 12.17 }é-ig of W to M. The second panel, labeled Prof , holds the comparison of P to M. Accord-
Prof 1;2 zi'gg 100,00 ingly, the top panel should be compared with the coefficients from the binary logit for
W and M (outcorne variable wc_man) listed above. For example, the coefficient for the
Total az7 100.00 comparison of W to M from mlogit is Brwia = 3000735 with 2 = 3.57, whereag the
. logit prof_wc ed, nolog Nambor of obs = 153 logit estimate is 3, win = 3418255 with z = 3.66. Overall, the estimates from the ai% L
B} : ) N 5 O R S T et 1
Logistic regression LR chiZ2(1) = 23.34 binary model are close to those from the MNLM but not exactly _the same. la
Prob > chi? = 0.0000 T T e T T —
Log likelihood = -77.257045 Pseude R2 = 0.1312 Although theoretically Brpisa — Brwin = B1,ppw s the estimates from the binary
T logits are B1,p|m — Biwim = 7184599 — 3418255 = 3766344, which does not equal :
Coef Std. Err. z P>iz| {95% Conf. Intervall . i . -~ . . . . .
prof_wc oel- ' : the binary logit estimate Bipw = .3735466. A series of binary logits using logit |
od .3735466  .0874469 4.27  0.000 .2021538 -533?(?22 does not impose the constraints among coefficients that are implicit in the definition of
_coms | -4.332833 1.227293  -3.53 0.000 . -6.738283 1.9 the model. When fitting the model with mlogit, the constraints are imposed. Indeed,

The results from the binary logits can be compared with the output from mlogit,
the command that fits the MNLM:

. tab occ3, miss

occ3 Freq. Percent Cum.
Manual 184 54.60 54.60
WhiteCol 41 12.17 66.77
Prof 112 33.23 100.00
Total 337 100.00

e

6.1.1 Formal statement of the model

Formally, the MNLM can be written as

InQ,, (x) =In

Priy=m|x)
Pr(y=bx)

=%,y form=1t0J

the output from mlogit presents only two of the three comparisons from our example,
namely, W versus M and P versus M. The remaining comparison;W-versus P
gliﬁf_gygnce between the two sets of estimated coefficients.

zfis flh? %
étalls on using listeoef to }?M
automatically compute The Temaifing comparisons are given below.

where b is the base category, which is also referred to as the comparison group. As
Q45 (x) = Inl = 0, it must hold that Bepp = 0. That is, the log odds of an outcome
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compared with itself are always 0, and thus the effects of any independent v.a.ria';b-lc_e’s musi
also be 0. These J equations can be solved to compute the predicted probabilities:

exp (xﬁm|b) ,
z;;l exp (X ﬂ‘_b)r

Pr(y =m|x)=

Although the predicted probability will be the same regardlfass of the base ()utcom'e,
b, changing the base outcome can be confusing since the resulting output from mlogit
appears to be quite different. Suppose that you have three outcfomes and fit the model
with alternative 1 as the base category. Your probability equations would be

EXp (xﬁmu)
E;,Ll exp (Xﬁju)

and you would obtain estimates B2|l and B, where By = 0. If'someone else set up
the model with base category 2, their equations would be

oxp (x0)
I .
3 i1 ©XP (Xﬁﬂz)

and they would obtain BH? and ,@3‘2, where 3, = 0. Allthough the eal;tlmated pa-
rameters are different, they are only different parameterizations that provide thfa same
predicted probabilities. The confusion arises enly if you are not clear about which pa-
rameterization you are using. Unfortunately, some software packages—but not S-taita—
make it hard to tell which set of parameters is being estimated. We return to t'hIS issue
when we discuss how Stata’s mlogit parameterizes the model in the next section.

Pr(y =m|x)=

Priy=m|x)=

6.2 Estimation using mlogit |
The multinomial logit model is fitted with the following command and its basic options:

nlogit depvar [indepvars| | if | [in] [weight] [, noconstant
baseoutcome(#) constraints(clisi) robust Qusfaer(mmame) level (#)

rrr nolog]

In our experience, the model converges quickly, even when there are many outcome
categories and independent variables.

Variable lists

depvar is the dependent variable. The actual values taken on by the dependent variable
are irrelevant. For example, if you had threei outcomes, you couid use the values

6.2 Estimation using mlogit ' : o229

1, 2, and 3 or —1, 0, and 999. Up to 50 outcomes are allowed in Stata/SE and
Intercooled Stata, and 20 outcomes are allowed in Small Stata. -

indepuars is a list of independent variables. If indepvars is not included, Stata fits a
model with only constants.

specifying the estimation sample

if and in qualifiers can be used to restrict the estimation sample. For example, if
you want to fit the model with only white respondents, use the command mlogit
occ ed exper if white==1, ' ' SR

Listwise deletion Stata excludes cases in which there are missing values for any of the
variables. Accordingly, if two models are fitted using the same dataset but have
different sets of independent, variables, it is possible to have different samples. We
recommend that you use mark and markout (discussed in chapter 3) to explicitly
remove cases with missing data. '

Weights

nlogit can be used with fweights, pweights, and iweights. In chapter 3, we provide a
brief discussion of the different types of weights and how weights are specified in Stata’s
syntax.

~Options

.. nocongtant excludes the constant terms from the model.

baseoutcome (7#) specifies the value of depvar that is the base category (i.e., reference
group) for the coefficients that are listed. This determines how the model is param.-
eterized. If the baseoutcome() option is not specified, the most frequent outcorne
in the estimation sample is chosen as the base. The base category is always reported
immediately below the estimates; for example, Outcome occ3==Manual is the base
cutcome. :

constraints(clist) specifies the linear constraints to be applied during estimation.
The default is to perform unconstrained estimation. Constraints are defined with
the corstraint command. This option is illustrated in section 6.3.3 when we discuss
an LR test for combining outcome categories.

robust indicates that robust variance estimates are to be used. When cluster() is
specified, robust standard errors are automatically used. See chapter 3 for more
details.

cluster (varname) specifies that the observations be independent across the groups
specified by unique values of warname but not necessarily independent within the
groups. See chapter 3 for more details,



230 Chapter 6 Models for nominal outcomes with case-specific data

level (#) specifies the level of the confidence interval for_ estimated parameters. By
default, Stata uses 95% intervals. You can also changeé the default level to, say, a.
90% interval, with the command set level 90.

rrr reports the estimated coefficients transformed to relative risk .ratios, defined as
exp {(b) rather than b, along with standard errors and confidence intervals for these

ratios.

nolog suppresses the iteration history.

6.2.1 Example of occupational attainment

The 1982 Ceneral Social Survey asked respondents their occupation, Wl’%iCh we recod-eq
into five broad categories: menial jobs (M), blue collar jobs (B), .cra.ft jobs (C’),_ (;Whli(;f
collar jobs {W), and professional jobs (P). Three independent variahles are conzl ere L
white indicating the race of the respondent, edn measuring years of education, an exper_
meagiiring years of Work experience.

. summarize white ed exper

Variable | Obs Mean Std. Dev. Min Max
white 337 .9169139 . 2784227 0 23
ed 337 13.09498 2.946427 3 o

exper 337 20.50148 '+ 13.,95938 2

The distribution among cutcome categories is

. tab occ
Occupation Freq. Percent Cum.
Menial 3T 9,20 9720
BlueCol 69 20.47 29.67
Craft 84 24,93 54.60
WhiteCol 41 12,17 66.77
Prof 112 33.23 10C.00
Total 337 100.00 .

Using these variables, the following MNLM wag fitted:

InQanp (x:) = Bo,urp + Buar pwhite + f pyped + By aypexper
InQpip (x;) = Bo,B|p + P15 pwhite + B piped + F3 p pexper
InQqp (%) = Bo,cip + B, pwhite + B2 o ped + O3 o pexper
Iny p {(x:) = Bo,w|p + Brwipwhite + F wiped + [3 | pexper

where we specify the fifth outcome P as the base category:

6.2.2 Using different base categories 231

. mlogit occ white ed exper, baseoutcome (5) nolog

Maltinomial logistic regression Number of obs = 337
LR chi2(12) = 166.09
Prob > chi2 = 0,0000
Log likelihood = -426.80048 Pseudo R2 0.1629
oce Coef. Std. Ezr, 2 P>z} [e5% Conf. Interval]
Menial :
white -1.774306  .7550543 -2.35 0,019 —3.254186  -.2944273
ed -. 7788519  ,1146203 -6.79  0.000 -1.003521 -.5541826
exper -.0358509 018037 -1.98 0.048 -.0710028 -.000299
_cons 11.51833  1.849358 6.23  0.000 7.893659 15.143
BlueCel
white -.6378027  .7996033 -0.67 0.501 -2.104996 1.029391
ed -.8782767  .1005448 -8.74  0.000 -1.07634 -.6812128
expsr -.0309296  .0144086 -2.15  0.032 -.06917  -.0026893
_cons 12.268568  1.668144 -T.36  0.000 8.990081 15.52907
Craft
white ~1.301963 647416 -2.01  0.044 -2.670875  -.0330509
ed ~.6850365  .0892996. -7.67  0.000 —-.8600606 -.5100125
exper —-.0079671  .0127055 -0.83 0.531 -.0328693 .0169351
_cons 16.42698 1.517943 6.87 07060 7.451864 13.40209
WhiteCol
white —-.2029212 8593072 -0.23 0.815 -1.906732 1.50089
ed -.4256943 0922192 -4.62 07000 ~. 6064407  -.2449479
exper -.001055  .0143532 -¢.07  0.941 ~-. 0291967 . 0270866
_cons 5.279722  1.684008 3.14  T.002 1.879132 8.580313

(occ==Prof is the base outcome)

0.2.2 Using different base categories

tions. Or, as illustrated in the last exam

Methods of testing coefficients and interpretation of the estimates will be considered
after we discuss the effects of using different base categories.

By default, mlogit sets the base category to the alternative with the most observa-
ple, you can select the base category with
baseoutcome (). mlogit then reports coefficients for the effect of each inde endent
variable on each category relative to the base Cm&o ex-
amine the effects ofl other pairs of outcorne categories.
interested in how race affects the allocation of workers
(e-g.; f1,8)c), which was not estimated in the output liste
cient can be estimated by rerunning mlogit with a differe
occ white ed exper,

For example, you might be
between Craft and BlueCol
d above. Although this coeffi-
nt base category (e.g., mlogit
baseoutcome (3)), it is easier to use listcoef, which presents
estimates for all combinations of outcome categories. Because listcoe
much output, we show two options that limit which coefficients are lis
can include a list of variables, and only coefficients for those variables wi
example,

f can generate
ted. First, you
Il be listed. For
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. listcoef white, help
mlogit (N=337): Factor Change in the Ddds of occ
Variable: white (sd=.27642268)

Odds comparing
Alternative 1
to Alternative 2 =] z P>zl e"b e bStdX
Meniai -BlueCol -1.23660 -1.707 0.088 0.2904 0.7105
Menial -Craft -0.47234 -0.782 0.434 0.6235 0.8776
Menial -WhiteCecl -1.57139 -1.741 0,082 0.2078 0.8477
Menial -Prof -1.77431 -2.360 0.019. 0.1696 0.86123
_ElueCol -Menial 1.23650 1.707 0.088  3.4436 1.4075
BlueCol -Craft 0.76416 1.208 0.227 2.1472 1.2352
BlueCol -WhiteCol -0,33488 -0.359 ©.720 0.7154 0.9116
BlueCol -Prof -0.537820 -0.673 0.501 0.5840 0.8619
“Crats -Menial 0.47234 0.782 0.434 1.8037 1.13%96
Craft -BlueCol [ -0.76418 -1.208 0.227 0.4657 D.SOSQ
Craft ~WhiteCol ~1.09904 -1.343 0.179 0.3332 0.7380
Craft ~Prof -1.30196 ~2.011 0.044 0.2720 0.6978
“WhiteCol-Menial 1.5713% 1.741 0,082 4.8133 1.5440
WhiteCol-BlueCol 0.33488 0.359 0.720 1.3978 1.0970
WhiteCol-Craft 1.09904 1.343 0.179 3.0013 1.3550
JWhiteCel- Prof -0.20292 -0.233 0.815 0.8163 0.9465
“Broz -Menial 1.77431 2.350 0.019 5.8%62 1.6331
Prof -BlueCol 0.53780 c.673 $.501 1.7122 1.1603
Frof -Craft 1.30198 2,011  ©0.044 3.6765 1.4332
Prof —WhiteCol 0.20292 0.233 0.815 1.2250 1.0577

b = raw coefficient
z = z-score for test of b=0
P>lz| = p-value for z-test ]
e~b = exp(b) = factor change in odds for unit increase in X
e bStdX = exp(b*SD of X) = change in odds for SD increase in X

O you-can lmit-the output to those coefficients that are significant at a:given level

using the pvalue(#) option, which specifies that only coefficients 31gmﬁcant at the #
significance level or smaller will be printed. For example,

. listcoef, pvalue(,05)

mlogit (N=337): Factor Change in the Ddds of occ
Variable: white (sd=.27642268)

0dds comparing
Alternative 1

6.2.2 Using different base categories

when P>lz| < 0.05

to Alternative 2 b z P>iz| e"b e bStdX
Menial -Prof ~1.77431 -2.350 C.019 0.1696 0.6123
Craft  -Prof -1.30196 -2.011 0.044 0.2720 0.6978
Prof -Menial 1.77431 2.350  0.019 5.8962 1.6331
Prof -Craft 1.30196 2.011 0.044 3.6765 1.4332
Variable: ed (sd=2.9464271)

0dds comparing

Alternative 1

to Alternative 2 b z P>|z| e”b  e”bStdX
Menial -WhiteCol -0.383i16 -3.011 {(.003 ©.7026 0.3533
Menial -Prof -0.77885 -6.796 0.000 0.458% 0.1008
BlueCol -Craft -0.19324 -2.494 0.013 = 0.8243 0.5859
ElueCol -WhiteCol ~-0.45268 -4.428 0.000 0.6360 0.2636
BlueCol -Prof -G.87828 -8.735 0.000 0.4155 ' 0.0752
Craft -BlueCol 0.19324 2,484  0.013  1.2132 1.7871
Craft -WhiteCol -0.26834  -2.773 0.006 0.7716  0.4657
Craft  -Prof -0.68504 -7.671 0.000 0.5041 0.1329
WhiteCol-Menial 0.36316 3.011  0.003 1.4236 2.8308
WhiteCol-BlueCol 0.45258 4.426 0.000 1.5724 3.7943
WhiteCol-Craft 0.26934 2.773  0.006 1.2961 2.1471
WhiteCol-Prof -0.42569 -4.616 0.000 0.6533 0.2853
Prof -Menial 0.77885 6.795  0.000 2.17Y90 9.9228
Prof -BlueCol ¢.87828 8.736 0.000 2.4067 13.3002
Prof —-Craft 0.68504 7.671  0.000 1.9838 7.5284
Prof -WhiteCol 0.42569 4.616  0.000 1.5307 3.5053
Variable: exper (sd=13.959364)

Odds comparing

Alternative 1

to Alternative 2 b z P>|z| e"hb  e"bStdX
Menial -Prof -0.03565 -1.977 0.048 0.9660 0.6079
BlueCol -Prof -0.03093 -2.147 0.032 0.9695 0.6494
Prof -Menial 0.03565 1.877  0.048 1.0363 1.644%
Prof -BilueCol 0.03093 2.147  0.032 1.0314 1.5400

(Continued on next page)
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If you do not need to see the comparisons between all pairs of alternatives, you can
limit the output with the gt or 1t options of listcoef. By default, listcoef lists
comparisons in both directions. For example, it will show you the effect on the odds of
alternative 1 versus alternative 2 and the effect on the odds of 2 versus 1. The gt option
limits comparisons to those in which the first alternative is greater than the second; 1t

shows comparisons when the first alternative is less than the second. For example,
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. listcoef ed, pvalue(.05) gt nolabel

mlogit (N=337): Factor Change in the Odds of occ when P>[z] < 0.0B
Variable: ed (sd=2.9484271) ’

0Odds comparing

Alternative 1

to Alternative 2 b z P>|zl e"b  e”b3tdX
3 -2 0.19324 2.494 0.013 1.2132 1.7671
4 -1 0.35316 3.011 " 0.003 1.4236 2.8308
4 -2 0.45258 4.4256  0.000 1.5724 - 3.7943
4 -3 0.25934 2.773  0.008 1.2951 2.1471
5" -1 0.77885 6.795 0.000 2.1790  9.9228
5 -2 0.87828 8.735 0.000 2.4067 -13.3002
5 -3 0.68504 7.671 0.9000 1.9838 7.5264
5 -4 0.42569 4.616  $.000 1.5307  3.50563

We used the nolabel option to show the category values of the two alternatives rather
than their value labels, and the pvalue(.05) option limits the coefficients that are
-printed to those that are significant at the .05 level.

0.2.3 Predicting perfectly

mlogit handles perfect prediction somewhat differently than the estimations commands
for binary and ordinal models that we have discussed. logit and probit automatically
remove the observations that imply perfect prediction and compute estimates accord-
ingly. ologit and oprobit keep these observations in the model, fit the z for the
problem variable as 0, and provide an incorrect LR chi-squared but also warn that a
given number of observations are completely determined. You should delete these ob-
servations and refit the model. mlogit is just like ologit and oprobit, except that you

—do ot Tecelve s warning Tiessage. You will see; towever, that all coetficieiits agsociated

with the variable causing the problem have » = 0 (and p > |z| = 1). You should refit
the model, excluding the problem variable and deleting the observations that imply the
perfect predictions. Using the tabulate command to generate a cross tabulation of the
problem variable and the dependent variable should reveal the combination that results
in perfect prediction.

6.3 Hypothesis testing of coefficients

In the MNLM, you can test individual coefficients with the reported z-statistics, with
a Wald test using test, or with an LR test using 1rtest. As the methods of test-
ing one coefficient that were discussed in chapters 4 and 5 still apply fully, they are
not considered further here. However, in the MNLM there are new reasons for testing
groups of coefficients. First, testing that a variable has no effect requires a test that
J — 1 coefficients are simultaneously equal to zero. Second, testing whether the inde-
pendent variables as a group differentiate between two alternatives requires a test of K
coefficients. This section focuses on these two kinds of tests.
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Caution regarding specification searches Given the difficulties of interpretation
that are associated with the MNLM, it is tempting to search for a more parsimo-
nious model by excluding variables or combining outcome categories based on a
sequence of tests. Such a search requires great care. First, these tests involve
multiple coefficients. Although the overall test might indicate that as a group the
coefficients are not significantly different from zero, an individual coefficient can
still be substantively and statistically significant. Accordingly, you should exam-
ine the individual coefficients involved in each test before deciding to revise your
model. Second, as with all searches that use repeated, sequential tests, there is a
danger of overfitting the data. When models are constructed based on prior testing
using the same data, significance levels should be used only a8 rough guidelines.

6.3.1 mldgtest for tests of the MNLM

i

Although the tests in this section can be computed using test or lriest, in practice
this is tedious. Themlogtest command (Freese and Long 2000) makes the computation
of these tests easy. The syntax is

el ) T
/ mlogtest [Uarlz'st] {, all 1r wald combine lrcomb C,/

"V'”'“‘"“get(mrlist[\ wrh’st[\...ﬂ) iia hausman smhsiao detail gase]

varlist indicates that the variables for which tests of significance should be computed.
If no varlist is given, tests are rum for all independent variables.

“Options

1r requests a likelihood-ratio (LR) test for each variable in varlist. If varlist is not
specified, tests for all variables are computed.

wald requests a Wald test for each variable in varlist. If varlist is not specified, tests
for all variables are computed.

combine requests Wald tests of whether dependent categories can be combined.

lrcomb requests LR tests of whether dependent categories can be combined. These tests
use constrained estimation and overwrite constraint #999 if it is already defined.

set (varlist [\ varlist [\. . ]] ) specifies that a set of variables is to be considered together
for the LR test or Wald test. \ is used to specify multiple sets of variables. TFor
example, mlogtest, 1r set(age age? \ iscatl iscat2) computes one LR test for
the hypothesis that the effects of age and age2 are jointly 0 and a second LR test
that the effects of iscati and iscat? are jointly 0.

Other options for mlogtest are discussed later in the chapter.
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A likelihcod-ratio test
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The results of the LR test, regardless of how they are computed, can be interpreted
. : as follows:

With J dependent categories, there are J — 1 nonredundant coefficients associated with '

each independent variable z;. For example, in our logit on occupation, there are four

coefficients associated with ed: 3, M|y B2,BiP: Ba,cip, and 8y wp. The hypothesis that

xy, does not affect the dependent variable can be written as

Ho: Bgap = =B ap =10

where b is the base category. Because Bk,slp 15 necessarily 0, the hypothesis imposes
constraints on .JJ — 1 parameters. This hypothesis can be tested with either a Wald or
an LR test.

The effect of race on occupation is significant at the .10 level but not at the’
05 level (X? = 8.10, df = 4, p= .09). The effect of education is significant
at the .01 level (X? = 156.94, df = 4, p < .01).

Or, it can be stated more formally:

The hypothesis that all the coefficients associated with education are simul-
taneously equal to () can be rejected at the .01 level
(X% =156.94, df = 4, p < .01). '

- A Wald test

The LR test involves (1) fitting the full model, including all the variables, resulting in
the likelihood-ratio statistic LR%,; (2) fitting the restricted model that excludes variable -
2y, resulting in LR%; and (3) computing the difference LR%, , — LR% — LR, which -
is distributed as chi-squared with J—1 degrees of freedom if the null hypothesis is true.
This can be done using 1rtest: *

Although the LR test is generally considered superior, its computational costs can be
prohibitive if the model is complex or the sample is very large. & Wald tests can also
be computed using test without fitting additional models. For example,

- mlogit occ white ed exper, baseoutcome(5) nolog
(output omitted )

. test white
( 1) [Menial]white = ©
( 2) [BlueCollwhite = 0
( 3) [Craft]white = O
( 4) [WhiteCollwhite = O

. use http://www.statafpress.com/data/1f2/nomocc2, clear
(1982 General Social Survey)

. mlogit occ white ed exper, baseoutcome(5) nolog
{output omitted )

. estimates store fmodel

. mlogit ccc ed exper, baseoutcome(5) nolog chiz( 4) = 8.185
(output omitted ) Prob > chi2 = 0.0863
. estimates store nmodel_white . test ed S
. lrtest fmodel nmodel_white ) B B ) . ( 1) [Menialled = 0
Likelihood-ratio test LR chi2(4) = 8.10 €2) [BlueColled = 0
(Assumption: nmodel_white nested in fmodel) Prob > chi2 =  0.0881 € 3) [Craft]ed = 0
logit hit b t {5) mol ( 4) {WhiteColled = 0
. mlogit occ white exper, baseoutcome nolo, Lo
(andgso on) e ¢ DAL | chi2( 4) = 84d.97
Prob > chi2 =  0.0000
Although using 1rtest is straightforward, the command mlogtest, 1ris even simpler - - test exper 5
because it automatically computes the tests for all variables by making repeated calls s { 1) [Meniallexzper = 0 e

( 2) [BlueCollexper = 0
( 3) [Craft]exper = 0
( 4) [WhiteCollexper = 0

to lrtest:

. m]:_qgi_‘[:‘ occ white ed exper, baseoutcome(5) nolog .
{vutpui dmitted ) chi2( 4)

e - Prob > chi2
mlogtest, 1r

7.99
0.0918

#4%% Tikelikiood-ratio tests for independent variables {(N=337)

. The output from test makes explicit which coefficients are being tested. Here we see the
Ho: All coefficients asscciated with-given variable{s} are 0.

way in which Stata labels parameters in models with multiple equations. For example,

oce chi? af Pochi2 1 [Meniallwhite is the coeflicient for the effect of white in the equation comparing the

white 8.085 4  0.088 | . _ outcome Menial with the base category Prof; [BlueCollwhite is the coefficient for the

ed 166.837 4 0.000 effect of white in the equation comparing the outcome BlueCol with the base category
exper 8.561 4 0.073 |

/ _ : Prof.
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As-with the LR fest, mlogtest, wald automates this"pr(")'cess:

T
//. mjl:g_g:c_g_iﬁi'wald

S—kFar Wald t“e‘sts*f"’c;lﬂr independent variables (N=337)
Ho: 811 coefficients associated with given variable(s) are 0.

oce chi2 df P>chi2
white 8.149 4 0.086
ed 24,968 4 0.000
eXper 7.995 4 0.092

These tests can be interpreted in the same way as shown for the LR test above.

Testing multiple independent variables

The logic of the Wald or LR tests can be extended to test that the effects of two or more
independent variables are simultaneously zero. For example, the hypothesis to test that
zx and xp have no effect is '

Ho: Brap == Brgip = Beap == Begp =0

The set{varlist [\ varlist [\. . ]]) option in mlogtest specifies which variables are to
be simultaneously tested. For example, to test the hypothesis that the effects of ed and
exper are simultaneously equal to 0, we could use 1rtest as follows:

. mlogit occ white ed exper, baseoutcome(5) noleg
(output omitted)

. estimates store fmodel

. mlogit occ white, baseoutcome(5) noleg
{ontpui omitted)

. estimates store nmodel
. lrtest fmodel nmodel

Likelihood-ratio test LR chiz(s?
(Assumption: nmodel nested in fmodel) Prob > chi2

160.77
0.0000
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or, using mlogtest,

- mlogit occ white ed exper, baseoutcome(5) nolog
(output omitted ) ’

.v/.-»—'“" ‘."_ML_«"" s - .»-""m—{“ ”

¢+ mlogtest, 1r s&t(&d ex;fj:/))

#%+* Likelihood-ratio tests for independent variables (N=337)

Ho: All coefficients associated with given variable(s) are 0.

oce chi2z df P>chi2
white 8.095 4 0.088
ed 156.937 4 0.000
exper 8.561 4 0.073
set_1: 160.773 8 ¢.000
ed
exper

6.3.3 Tests for combining alternatives

If none of the independent variables significantly affect the odds of alternative m versus
alternative n, we say that m and n are indistinguishable with respect to the variables in
the model (Anderson 1984). Alternatives m and n’s being indistinguishable corresponds
to the hypothesis that

Ho: Bimjn = - B = 0

which can be tested with either a Wald or an LR test. In our experience, the two tests
provide similar results. If alternatives are mdistinguishable with respect to the variables
n the model, then you can obtain more efficient estimates by combining them. To test
whether alternatives are indistinguishable, you can use mlogtest.

A Wald test for combining alternatives

The command mlogtest, combine computes Wald tests of the null hypothesis that two
alternatives can be combined for all pairs of alternatives. For example,

(Continued on next page)
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. mlogit occ white ed exper, baseoutcome(5) nclog
—— (output omitted )
»f,.w.“/ir\_.qﬂla'gtest, combille;}

k% Waid té8ts Tor combining alternatives (N=337)

Ho: A1l coefficients except intercepts asscociated with a given pair
of alternatives are 0 (i.e., alternatives can be combined).

Alternatives tested| chi2 df P>chi?2
Menial- BlueCol 3.992 3 0.262 %
Menial-  Craft 3.203 3 0.361
Menial-WhiteCol 11.951 3 0.008
Menial- Prof 48,190 3 0.000§
BlueCol- Craft 8.441 3 0.038
BlueCol-WhiteCol 20,055 3 0.000 :
BlueCol- Prof 76.393 3 0.000 ;
Craft-WhiteCol 8.8902 3 0.031
Craft- Prof 60.583 3 0.000
WhiteCol- Prof 22.203 3 0.000

For example, we can reject the hypothesié that categories Menial and Prof are indis-
tinguishable, whereas we cannot reject that Menial and BlueCol are indistinguishable.

Using test [category]*

The mlogtest command computes the tests for combining categories. with the test
command. For example, to test that Menial is indistinguishable from the base category
Prof, type :

. test [Meniall
( 1) [Meniallwhite = 0

( 2) [Menialled = 0

( 3) [Meniallexper = O
.chi2( 3) = 48.19
Prob > chi2 = $.0000

which matches the results from mlogtest in row Menial-Prof. [outcome] in test is
used to indicate which equation is being referenced in multiple equation commands.
mlogit is a multiple equation command because it is in effect estimating J — 1 binary
logit equations.

The test is more complicated when neither outcome is the base category. For exam-
ple, to test that m and n are indistinguishable when the base category & is neither m
nor n, the hypothesis you want to test is

Ho: (Brymp —Biup) == (Bicmip — B mpp) =0

That is, you want to test the difference hetween two sets of coefficients. This can be

done with test [outcomel=outcome2]. For example, to test if Menial and Craft can
be combined, type
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. test [Menial=Craft]

( 1) [Meniallwhite ~ [CraftIwhite = 0
(2} [Menialled ~ [Craft]ed = 0
( 3) [Meniallexper - [Craftlexper = 0
chi2( 3) = 3.20
Prob > chi2 = 0.3614

Again the results are identical to those from mlogtest.

LR test for combining alternatives

An LR test_ of combining m and n can be computed by first fitting the full model with
no cc.)nstramts, with the resulting LR statistic LR%. Then we fit a restricted model
Mg in which outcome m is used as the base category and all the coeflicients except
the constant in the equation for outcome n are constrained to 0, with the resulting
test statistic LRY,. The test statistic is the difference LR} ,p = LR% — LR%, which
is distributed as chi-squared with K degrees of freedom. The command mlogtest,

lrcomb computes J x (J — 1) tests for all pairs of outcome categories. For example,

. mlogit occ white ed exper, baseoutcome(5) nolog
(output omitted )

. mlogtest, lrcomb
*x+% LR tests for combining alternatives (N=337)

Ho: All coefficients except intercepts associated with a given pair
of alternatives are 0 {i.e., alternatives car be collapsed),

Alternatives tested chi2 df P>chi2
Menial~ BlueCol 4.095 3 0.251
Merial- Craft 3.376 3 0.337
Menial~-WhiteCol 13.223 3 0.004
Menial- Prof 64,607 3 £.000

BlueCol- Craft 9.176 3 0.027
BlueCol-WhiteCol 22.803 3 0.000
BlueCol- Prof 125699 3 0.000
Craft-WhiteCol -9,992 3 0.019
Craft- Prof 95.889 3 £.000
WhiteCol- Prof 26,736 3 0.000

Using constraint with Irtest*

The command mlogtest, 1rcomb comnputes the test by using the powerful constraint
command. To show this, we use the test comparing Menial and BlueCol reported by
mlogtest, lrcomb above. First, we fit the full model and save the results of 1rtest:

- mlogit occ white ed exper, molog
{output omitied) -

- estimates store fmodel



242 Chapter 6 Models for nominal outcomes with case-specific data

Second, we define a constraint using the command
. constraint define 999 [Meniall

This defines constraint 999, where the number is arbitrary. The expression [Menial]
indicates thaf all the coeflicients except the constant from the Menial equation should
be constrained to 0. Third, we refit the model with this constraint. The base category
must be BlueCol, so that the coefficients indicated by [Menial] are comparisons of
BlueCol and Menial: :

§

.. mlogit occ exper ed white, base(2) constraint(999) noloeg

Multinomial logistic regression Number of obs = 337
LR chi2(9) = 161.99
: Prob > chi2 = G. 0000
Log likelihood = -428.84791 Pseudo R2 = 0.1589
(1) [Meniallexper = ©
( 2) [Menialled = O
{ 3) [Meriallwhite = 0
occ Coef. Std. Err. z P>z} [95% Conf. Interval}
Menial
exper {dropped)
ed (dropped)
white (dropped)
_cons -.8001193 .2162194 -3.70 0.000 -1.223901 -.3763371
Craft
exper .0242824 .0113959 2.13  0.033 . 0019469 0466172
ed .1599345 . 0603853 2.31 0.021 0239418 .29569273
white -.2381783 LA9T8563 -0.48 0.632 -1.213959 . 7376021
_cons ~1.962087 1.054935 -1.87 0,062 -4.036721 .098547
WhiteCol )
CRpET 0312007 TOI43598 2717 0.030 70030561 7 0593464
ed .4196709 . 0958978 4.38 0.000 .2316147 .607527
white . 8829927 .843371 1.05 0.295 —-.7699841 2.536969
_cons | -—7.140306 1.623401 —4.40 0.000 -10.32211 -3.9558498
Prof
exper .032303 .0133778 2.41 0.016 . 0060827 .0685233
ed . 8445082 .023709 9.01 0.000 . 6608429 1.028176
white 1,097459 .BBTTI39 1.60 0.111 -.2506923 2.44561
_Cons -12.42143 1,569897 ~7.91 0.000 —15.49837 -9.344489

(occ==BlueCol is the base outcome)

. estimates store nmodel
. lrtest fmodel nmodel
Likelihood-ratio test

{Assumption: nmodel nested in fmodel)

LR chi2(3)
Prob » chi2

mlogit requires the option constraint (999) to indicate that estimation should impose
this constraint. The output clearly indicates which constraints have been imposed.
Finally, we use lrtest to compute the test:

4,09
0.2514
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6.4 Independence of irrelevant alternatives

Both the MNLM and the conditional logit model (discussed below) make the assump-

tion known as the independence of irrelevant alternatives (I1A). Here we describe the
assumption in terms of the MNLM. In this model,

BT = {x (B =)}

where the odds do not depend on other alternatives that are available. In this sense,
‘these alternatives are “iirelevaiit”.” What this means is that adding or deleting alter-
natives does not affect the odds s @Mﬂ@ﬁﬁg@gﬂgﬁx& This point is often
made with the red bus—blue bus example. Suppose that you have the choice of a red
bus or a car to get to work and that the odds of taking a red bus compared with those
of taking a car are 1:1. IIA implies that the odds will remain 1:1 between these two
altérnatives, even if a new hlue bus company comes to town that is identical to the red
bus company, except for the color of the bus. Thus the probability of driving a car can
be made arbitrarily small by adding enough different colors of buses! More reasonably,
we might expect that the odds of a red bus compared with those of a car would be
reduced to 1:2 since half of those riding the red bus would be expected to ride the blue

bus.

"Fests of 1A involve comparing the estimated Qé@@g{ﬁ}ﬂ@__ﬁ om the full model to those
frormestricﬁgi model that excludes at least one of the alternatives. If the test statistic
is significant, the assumption of 11A is rejected indicating that the MNLM is ] i_I}éBEIQp_riﬂ?-
In this section, we consider the two most common tests of 1IA: the Hausman—-McFadden
(HM) test (1984) and the Small-Hsiao (SH) test (1985). For details on other tests, see
Fry and Harris (1996, 1998). In a model with J alternatives, there are J — 1 ways of
computing each test. If you remove the first alternative and refit the model, you get the
first restricted model. If you remove the second alternative, the second, and so on, for
a total of J —1 restricted models, each of these restricted models will lead to a different
test statistic, as we demonstrate below.

Both the HM and the SH tests are computed by mlogtest, and for both tests we
compute J — 1 variations. As many users of mlogtest have told us, the HM and sH
tests often provide conflicting information on whether 1TA has been violated (i.e., some
of the tests reject the null hypothesis, whereas others do not). To explore this further,
Cheng and Long (2005) ran Monte Carlo experiments to examine the properties of these
tests. Their results show that the HM test has poor size properties even with sample
sizes of more than 1,000. For some data structures, the SH test has reasonable size
properties for samples of 500 or more. But, with other data structures the size prop-
erties are extremely poor and do not get better as the sample size increases. Overall,
they conclude that these tests are not useful for assessing violations of the HA prop-
erty. It appears that the best advice regarding ITA goes back to an early statement by
McFadden (1973), who wrote that the multinomial and conditional togit medels should
be used only in cases where the alternatives “can plausibly be assumed to be distinct
and weighted independently in the eyes of cach decision maker”. Similarly, Amemiya,
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(1981, 1,517) suggests that the MNLM works well when the altérnatives are dissimilar. - -

Care in specifying the model to involve distinect alternatives th?,t are not S};bstitutes for
one another seems to be reasonable, albelt unfortunately ambiguous, advice. Nor.iethe—
less, we cortinue to include these tests in mlogtest, but we'do not encourage their use.
As we will show here, these tests can produce contradictory results.

Hausman test of HIA

The Hausman test of 11A involves the following steps: © - #
1. Fit the full model with all J alternatives inciuded, with estimates in 8.

2. Fit a restricted model by eliminating one or more alternatives, with estimates in

Br-

3. Let E‘; be a subset of EJ 7 after eliminating coefficients not fitted in the restricted

model. The test statistic is

1= (B - B2 (T (Ba) - Vat(B2)) " (B Bv)

where H is asymptotically distributed as chi-squared with degrees of freedom
equal to the rows in f'}  if IIA is true. Significant values of /f indicate that the 1A
assumption has been violated. )

The Hausman test of 1A can be computed with mlogtest. Here the results are

. mlegit occ white ed exper, baseouwtcome(5) nolog
{output omitted)

. mlogtest, hausman base

*#%4% Hausman tests of IIA assumption (N=337)

Ho: Ddds{Outcome~J vs Dutcome-XK) are independent of other alternatives.

Dmitted chi2 df P>chi2 evidence
Menial 7.324 12 0.83b for Ho
BlueCol 0,320 12 1.000 for Eo
Craft -14.4386 12 1,000 for Ho
WhiteCol -5.541 11 1.000 for He
Prof -0.119 12 1,000 for Ho

Five tests of 11A are reported. The first four correspond to excluding one of the four
nonbase categories. The fifth test, in row Prof, is computed by refitting the model
using the largest remaining outcome ag the base category.? Aithough none of the tests
9 reject the ) that 114 holds, the results differ considerably, depending on the outcome
* Considerad. "Further, three of the test statistics are negative, which we find to be very

1. Even though mlogtest fits other models to compute various tests, when the comma,r?d gndslit
restores the estimates from your original meodel. Accordingly, other commands that require results
from your original mlegit, such as predict and prvalue, will still work correctly.
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common. Hausman and McFadden (1984, 1226) note this possibility and conclude that
a megative result is evidence that IIA has not been violated. A further sense of the
variability of the results can be seen by rerunning mlogit with a different base category
and then running mlogtest, hausman base.

Small—Hsiao test of 1A

To compute Small and Hsiao’s test, the sample is divided randomly into two subsamples
~8
of about equal size. The unrestricted MNLM is fitted on both subsamples, where ,Bul

~8
contains estimates from the unrestricted model on the first subsample and ﬁuz is its
counterpart for the second subsample. A weighted average of the coefficients is computed

as
"-8152 1 "‘Sl 1 ASZ

w = | —= R e ,
B = (Gg) a0+ ()}
Next a restricted sample is created from the second subsample by eliminating all cases
with a chosen value of the dependent variable. The MNLM is fitted using the restricted

sample, yielding the estimates 322 and the likelihood L(Efz) The Small-Hsiao statistic

18
ASlS2

SH=—2{LB,"™) - 1B}

which is asymptotically distributed as a chi-squared with the degrees of freedom equal
to the number of coefficients that are fitted both in the full model and the restricted
model],

To compute the Small-Hsiao test, you use the command miogtest, smhsiac (our
program uses code from smhsiao by Nick Winter, available at the ssC-IDEAS archive).
For example, :

. mlogtest, smhsiac
*4+* Small-Hsiao tests of ITA assumption (N=337)

Ho: 0dds(Outceme-J vs Outcome—K) are independent of other alternatives.
Omitted 1nL(full) 1nL(omit) chi2 df P>chi2 evidence

Menial -182.140  ~189.907 24.468 12 0.018  against Ho
BlueCol -148.711 -140.064 17.315 12 0.138 - for Ho

Craft -131.801 ~118.286 25.030 12 0.015 against Ho

WhiteCol -161.436 -148.5B0 25.772 12 0.012 against Ho

In three variations of the Su test, we reject the null, whereas the HM test accepted the
nuyll in all cases.

Because the Small-Hsiao test requires randomly dividing the data into subsamples,
the results will differ with successive calls of the cormand, as the sarple will be divided
differently. To obtain test results that can be replicated, you must explicitly set the
seed used by the random-number generator. For example,
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we propose are similar to those for ordinal outcomes, and accordingly, these are treated
briefly. However, methods of plotting discrete changes and factor changes are new, so
these are considered in greater detail.

. set seed 8675309

. mlogtest, smhsiao

#+x+ Small-Hsiao tests of IIA assumption (N=337)

Ho: Odds{Outcome-J vs Outcome-K) are independent of other altermatives.
Omitted InL(full) 1nL{omit) chi2 df P>chi2 evidence

6.6.1 Predicted probabilities

Predicted probabilities can be computed with the formula

Menial -189.785 -161.523 16.523 12  0.168 for Ho
BlueCol -131.900 -125.871 12.058 12  0.44i for Ho o .
Craft -136.934 -129.905 14.058 12  0.297 for Fo o exp (xﬁml J)
WhiteCol -155.364 -150.239 10.250 12  0.594 for Ho Priy=m|x)=

Zj:l exp (XAjIJ)

Using a new seed, we accept the null in each case, illustrating a common problem when
using the SH test—you can get quite different results depending on how the sample is

randomly divided.

where x can contain values from individuals in the sample or hypothetical values. The
mqst basic command for computing probabilities is predict, but we also illustrate a
series of SPost commands that compute predicted probabilities in useful ways.

Advanced: setting the random seed The random numbers that divide the sample ~ 6.6.2 Predicted probabilities with predict
for the Small-Hsiao test are based on Stata’s uniform() function, which uses a
pseudorandom mimber generator. This generator creates a sequence of numbers
based on a seed number. Although these numbers appear to be random, the same
sequence will be generated each time you start with the same seed number. In this
sense (and some others), these numbers are pseudorandom rather than random.
If you specify the seed with set seed #, you ensure that you can replicate your

results later. See the Data Management Reference Manual for more details.

After fitting the model with mlogit, the predicted probabilities within the sample can
be calculated with the command

predict newwarl [newwar,? ...[newvan}” [zf] [m}

where you must provide one new variable name for each of the .J categories of the
dependent variable, ordered from the lowest to highest numerical values. For example,

- mlogit occ white ed exper, baseoutcome(5) nolog
{output omitted )

- predict ProbM ProbB ProhC ProbW ProbP

6.5 Maeasures of fit

As with the binary and ordinal models, scalar measures of fit for the MNLM model can (OPEIO P aguned; Fredicted probabilities)
be computed with the SPost command fitstat. The same caveats against overstating
the importance of these scalar measures apply here as to the other models we consider
(see also chapter 3). To examine the fit of individual observations, you can estimate the

The variables created by predict are

. desc Prob*

. - - - - . N . . t i
series of binary logits implied by the multinomial logit model and use the established variable mame  eaer display value
. . . . . .. ype  format label variable label

methods of examining the fit of observations to binary logit estimates. This is the same

approach that was recommended in chapter 5 for ordinal models. ProbM fleat %9.0g Prioce==1)
ProbB float %9.0g Pr(occ==2)
ProbC . float %9.0g Pr{occ==3)
ProbW float #9.0g Pr (occ==4)
ProbP fleat ¥9.0g Pr{occ==5)

6.6 Interpretation

. summarize Prob*

Although the MNLM is a mathematically simple extension of the binary model, interpre- Variable Obs Mean  Std. Dev. Min Max

tation is made difficult by the many possible comparisons. Even in our simple example _ _

with five outcomes, we have many possible comparisons: M|P, B|P, C|P, W|P, M|W, iiggg‘ 22; 'ggigzié izgggzg '8010737 -3281506

B|W, C\W, M|C, B|C, and M|B. Tt is tedious to write all the comparisons, let alone to ProbC 337 .24926B2 1161309 :og;ggig '?ggféég

interpret each of them for each of the independent variables. Thus the key to interpre- i Probi 337 -1216617 .0452844 0083857  .2300068
ProbP 337 .3323442  .2870992  .0001935  .9597512

tation is to avoid being overwhelmed by the many comparisons. Most of the methods
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Using predict to compare mlogit and ologit

An interesting way to illustrate how predictions can be plotted is to compare predictions
from ordered logit and multinomial logit when the models are applied to the same
data. Recall from chapter 3 that the range of the predicted probabilities for middle
categories abruptly ended, whereas predictions for the end categories had a more gradual
distribution. To illustrate this point, the example in chapter 5 is estimated using ologit
and mlogit, with predicted probabilities computed for each case;

. use http://www.stata-press.com/data/1f2/crdwarn2, clear
{77 & 82 General Social Survey)

. 610git warm yr89 male white age ed prst, nolog
{output omitted )

. predict SDologit Dologit Acleogit SAologit
(cption p assumed; predicted probabilities)

. label var Dologit "ologit-D"

. mlogit. warm yr8% male white age ed prst, nolog
{output omitted )

. predict SDmlogit Dmlogit Amlogit SAmlegit

(option p assumed; predicted probabilities)

. label var Dmlogit "mleogit-D"

We can plot the predicted probabilities of disagreeing in the two models with the com-
mand dotplot Delogit Dmlogit, ylabel(0(.25).75), which leads to

olo'giit,mD.‘ SO e mlegitsD T

Although the two sets of predictions have a correlation of .92 (computed by the command
correlate Dologit Dmlogit), the abrupt truncation of the distribution for the ordered
logit model strikes us as substantively unrealistic.
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6.6.3 Predicted probabilities and discrete change with prvalue

Predicted probabilities for individuals with specified characteristics can be computed
with prvalue. For example, we might compute the probabilities of each occupational
outcome to comtpare nonwhites and whites who are average on education and experience:

. use htip://www.stata-press.com/data/1f2/nonocc2, clear
(1982 General Social Survey)

-« mlogit occ white ed exper, baseoutcome(5) nolog
{output omitted ) '
" . quietly prvalue, x(white=0) rest(mean) save
. prvalue, x(white=1) rest(mean) diff
‘mlogit: Change in Predictions for occ
Confidence intervals by delta method
Current Saved Change  95% CI for Change
Pr{y=Meniallx): 0.0860 0.2168 -0.1309 [-0.3058, 0.0439] .
Pr{y=BlueColix): 0.1862 0.1363 0.0498 [-0.0897, 0.1893]
Pri{y=Craft|x): G.2730 0.4387 -0.1597 {-0.3686, 0,0491] .
Pr{y=WhiteCol|x): 0.1674 0.0877 0.0797 [-0.0477, 0.2071]
Pr(y=Prof|x): 0.2814 0.1204 0.1611 { 0.0277, 0.2944]

white ed exper

Current= 1 13.094955 20.501484
Saved= ¢ 13.094955 20.501484
Diff= 1 0 [¢]

This example also shows how to use prvalue to compute differences between two sets of
probabilities. Our first call of prvalue is done quietly, but we save the results. The
second call uses the diff option, and the output compares the results for the first and
second set of values computed. By using prvalue with the save and diff options, we
obtain confidence intervals for the discrete changes. The predicted difference between
blacks and whites in the probability of having professional jobs is the only case in'which
the 95% confidence interval does not include zero.

6.6.4 Tables of predicted probabilities with prtab

If you want predicted probabilities for all combinations of a set of categorical inde-
pendent variables, prtab is useful. For example, we might want to know how white
and nonwhite respondents differ in their probability of having a menial job by years of
education:

(Continued on next page)
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. label def lwhite O NonWhite 1 White

. label wval white lwhite

. prtab ed white, novarlbl ocutcome{1} ]

mlogit: Predicted probabilities of outcome 1 (Menial) for occ

white N
ed | NonWhite 'White .
3 0.2847 0.1218
6 0.2087 0.1384
7 0.2988 0.1417
8 0.2963 0.1431
k4 0.2906 0.1417
1¢ 0.2814 0.1366
11 0.2675 0.12865
12 0.2476 0.1104
13 ¢.2199 0.0883
14 0.1832 0.06832
15 0.1393 0.0401
16 0.0944 0.0228
17 0.0569 0.6120
18 0.031¢ 0.0060
i¢e 0.0158 0.06029
20 0.0077 0.0014
white ed exper

x= .91691395 13.094955 20,501484

Tip: outcome() option Here we use the outcome () option to restrict the output to
one outcome category. Without this option, prtab will produce a separate table
for each outcome category.

The table produced by prtab shows the substantial differences between whites and
nonwhites in the probabilities of having menial jobs and how these probabilities are
affected by years of education. However, given the number of categories for ed, plotting
these predicted probabilities with prgen is probably a more useful way to examine the
results.

0.6.5 Graphing predicted probabilities with prgen

Predicted probabilities can be plotted using the same methods considered for the ordinal -
regression model. After fitting the model, we use prgen to compute the predicted
probabilities for whites with average working experience as education increases from 6
years to 20 years:
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- prgen ed, x(white=1) from{6) tu(20) generate(wht) ncases(15)
mlogit: Predicted values as ed varies from 6 to 20.

white ed €xXper
= 1 13.094958 20.501484

Here is what the options specify:

x(white=1) sets white to 1. Because the rest(} option is not included, all other
variables are set to their means by default.

from(6) and to(20) set the minimum and maximum values over which ed is to vary.
'The default is to use the variable’s minimum and maximure values.

ncases(15) indicates that 15 evenly spaced values of ed between 6 and 20 are to be
generated. We chose 15 for the number of values from 6 to 20, inclusive.

gen(wht) specifies the root name for the new variables generated by prgen. For exam-
ple, the variable whtx contains values of ed, the p-variables (e.g., whtp2) contain the
predicted probabilities for each outcome, and the s-variables contain the summed

qeis o
probabilities: 5 }w.;;l A
£ AT FAY VS .
. desc wht* i v} MB“‘-’M oy
2 Y
storage display value //' - P LA
variable name type format label variable label ///
e
whtx float ¥%9.0g Years of educatioh
whtpl float %9.0g pr{Menial)=Pr {1 ‘/i{
whtp2 float ¥%9.0g pr (BlueCol)=Fr(2) «/ \
whtp3 float %9.0g pr{Craft)=Pr(3) +’ 1
whtpd tloat ¥9.0g priWhiteCol)=Pr(4) +~ f
whtpb float ¥9.0g pr{Prof)=Pr(5) i
whts1 float ¥%9.0g priy<=1) ' /
whts2 float %9.0g priy<=2) /
whts3 float ¥9.0g pr{y<=3) 4
whtsd float %9.0g pry<=4) A
whtsb float ¥9.0g pr (y<=5) I

The same thing can be done to compute predicted probabilitiesfor nonwhites:
Pl o - )
- prgen ed, x{white=0) from(8) to(20) generate{hwht) ncases{15)
mlogit: Predicted values as ed varies from € to .

white ed exper
x= 0 13.094955 20.501484

‘Plotting probabilities for one outcome and two groups

The variables nwhtpl and whtpl contain the predicted probabilities of having menial
jobs for nonwhites and whites. Plotting these provides clearer information than the
results of prtab given above:
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. label var whtpl "Whites" _
. label var nwhtpl "Nomwhites! \‘.//
P
. graph twoway connected] whtplinwhtpl nwhex,
xtitle("Years of Edicabion™).. -
ytitle("Pr{Menial Job)")
ylabel(0(.25).50) xlabel(6 8 12 16 20)

v

+ Whites ——&— Nonwhites

Graphing probabilities for all outcomes for one group

Even though nominal outcomes are not ordered, plotting the summed probabilities can

— e & useful way to show predicted probabititiesfor-atl-outcome-categories.- To show this, -

we construct a graph to show how education affects the proballoil'ity of each. occupation for
whites (a similar graph could be plotted for nonwhites). This is fiont? using the roots#
variables created by prgen, which provide the probability of bemg‘ in an outcome lfasi
than or equal to some value. For example, the label for whts3 is pr (y<=3), whicl
indicates that all nominal categories coded as 3 or less are added together. To plot
these probabilities, the first thing we do is change the variable labels to_ the name of .the
highest category in the sum, which makes the graph clearer (as you will see below):

. label var whtsi "Menial"

. label var whts2 "Blue Collar"
. label var whts3 "Craft”

. label var whts4 "White Collar"
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To create the summed plot, we use the following command:

+ graph twoway connected whtsl whts2 whts3 whtsd whtx, ///

> xtitle("Whites: Years of Education") i
> ytitle("Summed Probability") . /7
> xlabel{6(2)20) 147

> ylabel(0(.25)1)

64 of-Edl;qaﬂp

;] —e&— Menial —e— Blue Collar
o| —®— Craft  -—a&— White Collar

The graph plots the four summed probabilities against whtx, where standard options
for graph are used. This graph is not ideal, but before revising it, let’s make sure we
understand what is being plotted. The Iowest line with circles, labeled “Menial” in the
key, plots the probability of having a menial job for a given year of education. This is
the same information as plotted in our prior graph for whites. The next line with small
diamonds, labeled “Blue Collar” in the key, plots the sum of the probability of having
a menial job or a blue-collar job. Thus the area between the line with circles and the
line with diamonds is the probability of having a blue-collar job, and so on.

Because what we really want to illustrate are the regions between the curves, this
graph is not as effective as we would Hke. In the graph command below, we use the

rarea plot type to shade the regions between the curves. The syntax for an rarea plot?
is

graph twoway rarea ylvar yZver svar [if ] [in] [, rarea_options |

where ylvor defines the lower boundary and y2var defines the upper boundary of the
region for each x-value given in the variable zvar

Continuing with our example, as the probabilities are bounded between zero and
one, we begin by creating variables that hold these extreme values.

2. Type help twoway rarea for more information.
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It
(=)

., gen zero

. gen one =

Now we are ready to draw the full graph.

. graph twoway (rarea zero whtsl whtx, bc(gsl)) x;
> (rarea whtsl whts2 whtx, bc(gs4)) /
> (rarea whts2 whts3 whtx, bc(gs8}) /i
> (rarea whts3 whts4 whtx, bclgsll)) //5
> (rarea whtad one whtx, bclgsid)), 7 /;/
> ytitle("Summed Probability") ;//
> legend({ order{ 1 2 3 4 5) o \
> label({ 1 "Menial")

> label{ 2 "Blue Collar") label( 3 "Cra:Et"). . /7
> label{4 "White Collar") label(5 "Professional")} ///
> xtitle("Whites: Years of Education") /7
> xlabel{6 & 12 16 20) ylabel(0{.25)1) i/
> plotregion(margin(zero})

P Blue Collar
TS White Collar

Figure 6.1: Whites: years of education.

The changes in the shaded regions in figure 6.1 clearly illustrate how the probability
of selecting any one occupation changes as education increases.

6.6.6 Changes in predicted probabilities

Marginal and discrete change can be used in the same way as in models for ordinal
outcomes. As before, both can be computed using prchange.
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Marginal change is defined as

Priy = - o
wamkm_jzf’r(y:m[x) ﬁklm,J—Zﬁk’ﬂJPr(yszX)
' i=1

As this equation combines all the Br,j178, the value of the marginal change depends
on the levels of all variables in the model. Further, as the value of z, changes, the
sign of the marginal can change. For example, at one point the marginal effect
of education on having a craft occupation could bhe positive, whereas at another
point the marginal effect could be negative.

Discrete change is defined as

APr{y= ' .
—L%Tml—)ﬂxf’r{y:m!x,xk:mE)—Pr(y:m[x,wk:xS)
A .

where the magnitude of the change depends on the levels of all variables and the
size of the change that is being made. The J discrete-change coefficients for a
variable (one for each outcome category) can be summarized by computing the
average of the absolute values of the changes across all the outcome categories,

1<
A=-3
7=1

where the absolute value is taken because the sum of the changes without taking
the absolute value is necessarily zero.

APr(y=j|%)
A-’Ek

il

Computing marginal and discrete change with prchange

Discrete and marginal changes are computed with prchange (the full syntax for which
is provided in chapter 3). For example,

(Continued on next page)
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. mlogit occ white ed exper
(output omitted )

. prchange )
mlogit: Changes in Probabilities for occ
white
) Avgl|Chgl Menial BlueCol Craft WhiteCol
0->1 ,11623582 -.1308b523 .04981729 .15973434 .0T971004
Prof
C->1 .1610615
‘ed :
AvglChgl Menial BlueCol Craft WhitaCol
Min->Max .39242268 -.13017954 .T0077323 .150103%94 -.0p425591
-+1/2 .05855426 —.02B59762 .06331616 , 05247185 .01250796
~+sd/2 .168406567 © -.07129153 .19310513 .14576758 .02064777
MargEfct .05894859 —.02579097 . 06870635 .05287415 01282041
Prof
Min->Max .95680079
-+1/2 .13387768
_—+sd/2 . 37951647
Ma;gEfct .13455107
exper L
Avgl|Chgl Menial BlueCeol Craft WhiteCol
Min->Max .12193559 -—.11536534 .18947365 L03115708 = .09478889
-+1/2 .00233425 -,00226997 .00356567 .00105992 .0016944
—+s5d/2 .03253678 -.03167491 .04966453 01479983 _ .02360726
MargEfct 00233427 -.00226997 . 00356571 .00105992 .00169442
Prof
Min->Max .17889298
-+1/2 .00308132
-+3d/2 .04293236
MargEfct .00308134
Menial BlueCol Craft  WhiteCol Prof

Pr(y%) UYA26606 - 18419114 29441051 16112968 26630062 . .

The first thing to notice is th

white
%= .916914

ed exper
13.095 20.5015
sd(x)= .276423 2.94643 13.95694

¢ output labeled Pr(yix), which is the predicted prob-
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Marginal change with mfx

tTOh:einir?mal chfamgt.a can also be computed .using mfx, where the at () option is used
| ?u}(is .of the independent variables. Like prchange, the mfx command sets all
values of the independent variables to their means by default. Also we must estima?:e

the marginal effects for one outco i i
: me at a time, using the predi. i
to specify the outcome for which we want marginalgeﬁ'ecl‘;' et (outcons (£) option

. mfx, predict{outcome(1))
Marginal effects after mlogit
y = Pr{occ==1) (predict, outcome{1))

.09426806
variable dy/dx Std. Err. z P>lzf [ 95% C.I ] X
whitex| -.
v _?gg:?gf .832;4 -1.4r 0.142 -.305562 .043852 .916914
expor ST .OO B8 -3.75 0.000 -,039262 -.012312 13.095
> 00126 -1.80 0.071 -.004737 .000197 20.5015

(*) dy/dx is for discrete change of dummy variable from 0 to 1

T .

th};eizsflstzh?s 51,1;3 for the Menial category (occ==1). Estimates for exper and ed match
e ;Ir;le e;l ?’[:rgf}fcg rows of the prchange output above. Meanwhile, for the

white, the discrete change from 0 to 1] i :
A A is presented, which also matches
prchange. An advantage of mfx i
: ‘ : ! ge of mfx is that standard
or the effects are also provided; a disadvantage is that mfx can take a long tifrféotri

produce results after mlogit, especially i i
bt e git, especially if the number of observations and independent

6.6.7 Plotting discrete changes with prchange and mlogview

gniefgifzgsétzawitglniTninal }cl)utcomes is the many coeflicients that need to be considered:
) riable times the number of outcome categori i :
out alf this information, discr i e Dt et you sort
, ete-change coefficients can b i
) ' : : e plotted using our pr
mlogview. After fitting the model with mlogit and computing discreteg cha‘ngpe(s)%?tmh

abilities at the values set by x() and rest(). Marginal change is lisied in the rows
MargEfct. For variables that are not binary, discrete change is reported over the range
of the variable (reported as Min->Max), for changes of one unit centered on the base val-
ues (reported as —+1/ 2), and for changes of one ctandard deviation centered on the base
values (reported as -+sd/2). If the uncentered option is used, the changes begin at the
value specified by x() or rest () and increase one unit or one standard deviation from
there. For binary variables, the discrete change from 0 to 1 is the only appropriate quan-
tity and is the only quantity that is presented. Looking at the results for white above,
we can see that for someone who is average in edncation and experience, the predicted
probability of having a professional job is .16 higher for whites than nonwhites. The
average change is listed in the column Avg|Chgl. For example, for white, A = 0.12, the
average absolute change in the probability of various occupational categories for being
white as opposed to nonwhite is .12.

prchange, executing mlogview opens the following dialog box:

(Continued on next page)
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Dialog boxes are easier to use than to explain. So, as we describe various features, the
best advice is to generate the dialog box shown above and experiment.

Selecting variables If you click and hold a button, you can select a variable to be
plotted. The same variable can be plotted more than once, for example, showing
the effects of different amounts of change.

Selecting the amount of change The radio buttons allow you to select the type of
discrete-change coeflicient to plot for each selected variable: +1 selects coefficients
for a change of one unit; +5D selects coefficients for a change of one standard
deviation 07/ Twelects changes from 0-to 1) andPorrt-Plot-is self-explanatory:

Making a plot Even though there are more options to explain, you should try plotting

your selections by clicking on DC Plot, which produces a graph. The command

mlcgview works by generating the syntax for the command mlogplot, which ac-
tually draws the plot. In the Results window, you will see the mlogplot command
that was used to generate your graph (full details on mlogplot are given in sec-
tion 6.6.9). If there is an error in the options you select, the error message will
appear in the Results window.

On the assumption that everything has worked, we generate the following graph:
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— . : i : ‘ : -

white-Q/1 C M : B W P
ed BC M W P
exper - L
-6 12 08 04 0 o4 08 a2 18

Change in Predicted Probabilty for oce

The graph immediately shows how a unit increase in each variable affects the probability
of each outcome. Although it appears that the effects of being white are the largest,
changes of one unit in education and (especially) experience are often too small to be
as informative. It would make more sense to look at the effects of a standard deviation
change in these variables. To do this, we return to the dialog box and click on the radio
button +SD. Before we see what this does, let’s consider several otier options that can
be used. ' )

Adding labels The box Note allows you to enter text that will be placed at the top
of the graph. Clicking the box for Use variable labels replaces the names of the
variables on the left axis with the variable labels associated with each variable.
When you do this, you may find that the labels are too long. If so, you can use
the label variable command to change them.

Tick marks The values for the tick marks are determined by specifying the minimum
and maximum values to plot and the wumber of tick marks. For example, we
could specify a plot from —.2 to .4 with seven tick marks. This will lead to labels
every .1 units.

Using some of the features discussed above, our dialog box would look like this:

og:’(
o
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Clicking on DC Plot produces the following graph:

White Worker-0/1 CM B W P
Yrs of Education-std B C M | W - - P .
Yrs of Experience-std BM i VP _ B
[ R e T - S 4

Change in Predicted Probabilty for occ

You can see that the effects of education are largest and that those of experience are
smallest. Or, each coefficient can be interpreted individually, such as the following:

The effects of a standard deviation change in education are largest, with
an increase of more than .35 in the probability of having a professional
occupation.

The effects of race are also substantial, with average blacks being less likely
to enter blue-collar, white-collar, or professional jobs than average whites.
Expected chianges due to a standard deviation change in experience are much
smaller and show that experience increases the probabilities of more highly
skilled occupations.

In using these graphs, remember that different values for discrete change are obtained
at different levels of the variables, which are specified with the x() and rest () options

for prchange. .

Value labels with mlogview The value [ab&ls for the different catégories of the de-
pendent variables must begin with different letters because the plots generated
with mlogview use the first letter of the value label.

6.6.8 0Odds ratios using listcoef and mlogview

Discrete change does little to illuminate the dynamics among the outcomes. For exam-
ple, a decrease in education increases the probability of both blue-collar and craft jobs,
but how does it affect the odds of a person choosing a craft job relative to a blue-coliar
job? To deal with these issues, odds ratios {also referred to as factor change coefficients)
can be used. Holding other variables constant, the factor change in the odds of outcome
M Versus outcome n as zp increases by 0 equals

Qm|'n (X, T + 5)

= pPrem|nd
ghnhl(xamk)

6.6.8 Odds ratios using listcoef and mlogview 261

I'f‘ the amount of change is.§ = 1, the odds ratio can be interpreted as follows:

For a unit change in zy, the odds of m versus n are expected to change by
a_factor of exp(fr.minlshiolding all other variables constant. .

If the amount of change is § = 5, , then the odds ratio can be interpreted as follows:

For a standard deviation change in z;, the odds of m versus n are expected
to change by a factor of exp (Bk,m|n * 8x), holding all other variables constant.

Listing odds ratios with fistcoef

The difficulty in interpreting odds ratios for the MNLM is that, to understand the effect
of a variable, you need to examine the coefficients for comparisons among all pairs of
outcomes. The standard output from mlogit includes only J — 1 comparisons with the
base category. Although you could estimate coefficients for all possible comparisons
by rerunning mlogit with different base categories (e.g., mlogit occ white ed exper,
baseoutcome(3)}, using listcoef is much simpler. For example, to examine the effects

f , b
of race, type v

. y /
. listcoeffwhite, help&
mlogit (N=337): Factor Change in the Odds of occ
Variable: white (=d=.27642268)

Odds comparing
Alternative 1
to Alternative 2 b z P>|z} e"b e bStdX
Menial -~BlueCol -1.23650 -1.707 0.088 0.2904 0.7105
Menial -Craft -0.47234 -0.782 0.434 0.6235 §$.8776
Menial -WhiteCol -1.57139 -1.741 G.082 ¢.2078 0.6477
Menial ~Prof g -2.350 (.019 0.1696 0.6123
BlueCol -Menial 1.707 0.088 3.4438 1.4075
BlueCol -Craft 1.208 0.227 2.1472 1.2362
BlueCel -WhiteCol -0.369 0.720 0.7154 0.9116
BlueCol -Prof -0.673 0.501 0.5840 0.8619
Craft -Menial 0.782 0.434 - 1.6037 1.1395
Craft ~BlueCol -1.208 0227 0. 4857 0.8098
Craft -WhiteCol -1.343 $.179 $.3332 0.7380
Craft ~Prof -2.011 0.044 0.2720 0.65738
WhiteCcl-Menial 1.741 0.082 4.8133 1.5440
WhiteCol-BlueCol 0.35% 0.720 1,3978 1.0970
WhiteCol-Craft 1.343  0.179 3.0013 1.36560
[:B,' ~Prof -0.233 0.8t5 0.8}6;} 0.9455
m 2.350 0.019 <5.8962> 1.6331
Prof -BlueCol T 0.673 0.501 1.7122 i1.1603
Prof -Craft 1.30198 2.011 0.044 3.6765 1.4332
Prof ~WhiteCol 0.20292 0.233 0.815 1.2280 1.0577

b = raw coefficient
z = z-score for test of b=0
P>|z| = p-value for z-test
e’b = exp(b) = factor change in odds for unit increase in X
e"b5tdX = exp(b*SD of X) = change in odds for SD increase in X
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The odds ratios of interest are in the column labeled e™b, }\'or exa:mple, the f)dds ratio
for the effect of race on having a professional versus a menial job is.5.90, which can be
interpreted as follows:

The odds of haVin.g a professional occupation relative to a menial occ'upation V
are 5.90 times greater for whites than for blacks, holding education and
experience constant. , @

Remember: the gt, 1t, and pvalue options control which comparisons are printed
by listcoef. See pages 233-234 for more details.

Plotting odds ratios

However, examining all the coefficients for even a single variable witl}‘only five depender'lt'
categories is complicated. An odds-ratio plot makes it easy to quickly .see patterns in
results for even a complex MNLM (see Long 1997, chapter 6 for full details). To explain

how to interpret an odds ratio plot, we begin with some hypothetical outppt from a ’

MNLM with three outcomes and three independent variables:

Logit coefficient for:

Comparison 1 T Ty
B|A Bria —0.693  0.693 0.347
exp(Bpa) 0.500  2.000 1.414
P 0.04 0.01 042
CTA Boia 0,347 —0-347  0.693
P 0.21 0.04 0.37
C!B Bo|B 1.040 —1.040 0.346
exp(fcB) 2.828  0.354 1.414
P 0.02 0.03 021

These coefficients were constructed to have some fixed relationships among categories
and variables: ‘

e The effects of 1 and 2, on B | A {which you can read as B versus A) are equal
but of opposite size, The effect of z3 is hall as large.

o The effects of x; and z3 on C | A are half as large (and in opposi‘.ue'directiOI.ls) as
the effects on B | A, whereas the effect of 3 is in the same direction but twice as
large.
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In'the.: odds-ratio plot, the independent variables are each represented on a separate
row, and the horizontal axis indicates the relative magnitude of the 73 coefficients asso-

ciated with each outcome. Here is the plot, where the letters cortespond to the outcome
categories: ’ :

Factor Change Scale Relative to Category A

5 63 79 1 1.26 1.59 2

x1 B A C

x2 C A

x3 A B C
—69 46 23 0 23 46 69

Logit Coefficient Scale Relative to Category A

‘The plot reveals much information, whick we now summarize.

Sign of coefficients

If a letter is to the right of another letter, increases in the independent variable
make the outcome to the right more likely. Thus relative to outcome A, an increase
in 21 makes it more likely that we will observe outcome € and less likety that we will
observe outcome B. This corresponds to the positive sign of the Bh,c1a coefficient and
the negative sign of the 01,214 coefficient. The signs of these coefficients are reversed
for x2, and accordingly, the odds-ratio plot for 3 is & mirror image of that for z;.

Magnitude of effects

The distance between a pair of letters indicates the magnitude of the effect. For
both 21 and 2y, the distance between A and B is twice the distance between A and «,
which reflects that /3 B|A 18 twice as large as Beya for both variables. For xs, the distance
between A and B is half the distance between A and C, reflecting that Ba,cia is twice
as large as (33 p|4.

The additive relationship

The additive relationships among coefficients shown in (6.1) are also fully reflected
in this graph. For any of the independent variables, Beya = Bpja+ Beye. Accordingly,
the distance from A to C is the sum of the distances from A to B and B to .
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The base category

The additive scale on the bottom axis measures the value of the Brmins- The
multiplicative scale on the top axis measures the exp (ﬁk,m]n) s. The As are stacked
on top of one another because the plot uses A as its base category for graphing the
coefficients. The choice of base category is arbitrary. We could have used alternative B

instead. If we had, the rows of the graph would be shifted to the left or right so that _

the Bs lined up. Doing this leads to the following graph:

Factor Change Scale Relative to Category B

35 5 71 1 141 2 2.83
x1 B A c
x2 C A B
x3 A B C
1.0 —89 35 0 35 69 1.02

Logit Coefficient Scale Relative to Category B

Creating odds-ratio plots

These graphs can be created using mlogview after running mlogit. Using our ex-
ample and after changing a few options, we obtain this dialog box:
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Clickirig on OR Plot gives

Factor Ghange Scale Relative to Category Prof

06 a1 19 33 $ 58 1 173
white~0/1 M C B WP
ed-std B M C W P
exper-std M CN
575 22 185 i Z55 0 55

Logit Ceefiicient Scale Relative to Category Prof

Several things are immediately apparent. The effect of experience is the smallest, al-
though increases in experience make it more likely that one will be in & craft, white-
collar, or professional occupation relative to a menial or blue-collar one. We also see
that education has the largest effect; as expected, increases in education increase the
odds of having a professional job relative to any other type.

Adding significance levels

The current graph does not, reflect statistical significance. This is added by drawing
a line befween categories for which there is not a significant coefficient. The lack of
statistical significance is shown by a connecting line, suggesting that those two outcomes
are “tied together”. You can add the significance level to the plot with the Connect if
box on the dialog box. For example, if we enter .1 in this box and uncheck the “pack
odds ratio plot” box, we obtain

(Continued on next page)



266 Chapter 6 Models for nominal outcomes with case-specific data

/
Factor Change Scale Relative to Category Prof
.06 11 19 .33 , .58 1 1.73
white M\Cifép
0/ .
ed B w

St Cost \Ikc o ' P
exper M (}J
Std Coef ‘

275 22 —1.65 1A ~55 0 55
Logit Coefficient Scale Relative to Category Prof

To make the connecting lines clear, vertical spacing is added to the graph. This vertical

spacing has no meaning and is used only to make the lines clearer. The graph shows that
race orders occupations from menial to craft to blue collar to white collar to professional,

but the connecting lines show that none of the adjacent categories are significantly .

differentiated by race. Being white increases the odds of being a craft worker relative to
having a menial job, but the effect is not significant. However, being white significantly
increases the odds of being a blue-collar worker, a white-collar worker, or a professional,
relative to having a menial job. The effects of ed and exper can be interpreted similarly.

Adding discrete change

I chapter 4, we emphasized that whereas the factor change in the odds is constant

acToss the levels of all variables, the discrete clmnge getslarger-orsmaller at different
values of the variables. For example, if the odds increase by a factor of 10 but the
current odds are 1 in 10,000, the substantive impact is small. But if the current odds
were 1 in 5, the impact is large. Information on the discrete change in probability can
be incorporated in the odds-ratio graph by making the size of the letter proportional
to the discrete change in the odds (specifically, the area of the letter is proporéional to

" the size of the discrete change). This can easily be added to our graph. First, after
estimating the MNLM, run prchange at the levels of the variables that you want. Then
enter mlogview to open the dialog box. Set any of the options, and then click the
OR+DC Plot button:
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Factor Change Scale Relative to Category Prof
.qs .}1 '1.9 33 .58 ] 1 1.73
white M ‘

on : w
ed w
Std Coef M P
exper : '
Std Coef % ﬁ

~2.75 22 165 1 -55 o 55
Logit Coefficient Scale Relative to Category Prof

With a little practice, you can quickly create and interpret these graphs.

©6.6.9  Using mlogplot*

The dialog box mlogview does not actually draw the plots but only sends the options you
select to mlogplot, which creates the graph. Once you click a plot button in nlogview
the. necessary mlogplot command, including options, appears in the Results windowa
’_I‘hls Is done because mlogview invokes a dialog box and so cannot be used effectivel;}
in a do-file. But once you create a plot using the dialog box you can copy the generated
mlogplot command from the Results window and paste it into a do-file. This should
be clear by looking at the following screenshot:

{Continued on next page)
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. global mnlcatnm = "B ¢ A"
. global mnldeprm "depvar"

-+ mlogplot, matrix std{uun) vars(xl x2 z3) packed

creafe the following plot:

Factor Change Scale Relative to Category A
5 63 79 1 1.26 1.59 2
x1 B A C
x2 C A
% X3 A B
[ - : . s L . . s
/fl ~.69 —-.46 -.23 0 .23 A6 .69
/j‘, Logit Coefficient Scale Relative to Category A :

S

e

-0356500 - L8027 1.8 O.048 . 00029 .
-1, 51833 1.849356 -6.23  0.000 ~15.143 -7.893659

use nOINLEEZ
mlogit ooe: white 2d exper, basecalzgoni{l)

_Options for using matrices with miogplot

mlagiew

R ExETa
s

qui prchange

matrix indicates that the coefficients to be plotied are contained in matrices.

S

m%gggggg white ed exper, std(0ss) p{.1) min(-2.75) max(.55) ar ntics(?)

vars (varlist) contains the names of the variables to be plotted. This list must constain.
names from mnlname, which will be described next, but does not need to be in the

same order as in mnlname. The list can contain the same name more than once and
can select a subset of the names from mnlname. '

Years of education
Yeats of work e

The dialog box with selected options appears in the upper left of the screen. A.ftlelr ze
clicked on the OR Plot button, the graph in the upper right appeared along with the
following command in the Results window:

- Global macros and matrices used by miogplot

mnlname is a string containing the names of the variables corresponding to the columns

R —— of the matrix mnlbeta. For example, global mniname = "x1 x2 x3".
. mlegplot white ed exper, std{0ss) p(.1) min(-2.75) max(.558) or ntics(7)

mnlbeta is a maftrix with the Bs, where element (4,7) is the coefficient Bj4p- That is,
rows ¢ are for different contrasts; columns § are for variables. For example, matrix
mnlbeta = (-~.693, .693, .347 \ .347, -.347, .693). As constant terms are
not plotted, they are noi included in mnlbeta,

If you enter this command from the Command window or run it fl"OII.l a do—ﬁle,lthe same
graph will be generated. The full syntax for mlogplot is described in appendix A.

6.6.10 Plotting estimates from matrices with mlogplot* mnlsd is a vector with the standard deviations for the variables listed in mnlname. For

example, matrix mnlsd = (1, 2, 4). If you do not want to view standardized

You can also use mlogplot to construct odds-ratio plots (but not discrete-change plots) coefficients, this matrix can be made all 1s.

using coefficients that are to be contained in matrices. ‘For example, you can pl%)t
coefficients from published papers or generate examples like _thosea we used above. d:i)
do this, you must construct matrices containing the information to“m.a plotteq an.dha
the option matrix to the command. The easiest way to see how this is done is with an
example, followed by details on each matrix. The commands

mnlcatnm is a string with labels for the outcome categories with each label separated
by a space. For example, global mnlcatnm = "B C A". The first label corresponds

to the first row of mnlbeta, the second to the second, and so on. The label for the
base category is last.

. matrix mnlbeta = (-.693, .693, .347 .347, -.347, .693 b
. matrix mnlsé = (1, 2, 4)

. global nnlname = "x1 x2 x3"
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Example

Suppose that you want to compare the logit coefficients estimated from t.wo groups, Sl.lch
as whites and nonwhites from the example used in this chapter. We begin by estimating
the logit coefficients for whites:

. use Attp://www.stata-press.com/data/1f2/nomocc?, clear

(1982 General Social Survey)
. miogit occ ed exper if white==1, base(5) nolog
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Next we compute coefficients for nonwhites:

- mlogit occ ed exper if white==0, base(5) nolog

i i isti i Number of obs = 309
Multinomial logistic regression B 2e8) = et
Prob > chi2 = 0.0000
= 0.1660
Log likelihood = -388.21313 Pseundo R2
ace Coef. Std. Err. z P>zl [95% Conf. Intervall
Henied -1.085005 -.5764973
ed -.8307514 .1297238 -6.40  ¢.000 . oniy
exper -.0338038 .0192045 -1.76 0.078 -.071444 i3 Sones
_cons 10.34842 1.779603 5.82 0.000 6.860465 .
1 -
Fluete ed ~-.9225522 .1085452 -8.50 0.000 -1.1356297 .70983;2
exper -.031449 .0150766 -2.08 0.037 —-. 0609987 _igoégggg
_cons 12,27337 1.507683 8.14 0.000 9.3183868 .
alt )
o ed -.6876114 . 0952882 -7.22 0.000 -.8743729 oégzggi
expser -.00025689% .0131021 -0.02 ©0.984 -.0269385 .1 il
_cons $.017976 1.36333 6.51 0.000 6.3468927 i1,
WhiteCol B
ed -.4196403 . 0956209 -4.,39  0.000 -. 6070539 .323?223
exper .0008478 .0147558 0.06 0.984 -.0280731 % ko
cons 4,972973 1.421146 .3.BG_ 0.00C 2.187578 .75

‘Multinomial logistic regression ‘Number of cbs = 28
: LR chi2(8) = 17.79
Prob > chi2 = 0.0228
Log likelihood = -32,779416 Pseudo R2 = 4.2135
oce Ceef.  Std. Err. z P>|z]| [85% Conf. Intervai]
Menial
ed -.7012628 .3331146 -2.11  0.035 -1.354165  -,0483701
exper -.1108415 .0741488 -1.49 0.135 ~.2561705 .0344876
_cons 12.3277r9  6.053743 2.04 0.042 .4626714 24.19291
ElueCol
ed -.560695 .3283292 -1.71 0.088 -1.204208 .0828185
exper ~.0261099 . 0682348 -0.38 0.702 -.1598477 .1078279
_cons 8.063397  6.008358 1.34 0.180 -3.712768 18.83956
Craft 7
ed -.882502 .3359805 -2.63 . 0.009 -1.541012 -,2239924
exper ~.1597929 0744172 -2.15  0.032 -.306648 -.0139378
.cons 16.21925  6.059753 2.68 0.007 4.,342356 28.09615
WhiteCol
ed -.5311514 . 369815 -1.44 0.1i51 -1.2BB976 .1936728
exper -.0520881 . 0838987 -0.62 0.535 -.2165227 .1123464
_cons 7.821371  6.805367 1.15  0.260 -5.516904 21.16865

(occ==Prof is the base outcome)

. matrix mnlbeta

The two sets of coeflicients for ed are placed in mnibeta;

= (-.B8307514, -.9225522, —-.6876114, -.4196403 \

(occ==Prof is the base outcome)

—.7012628, -.560695 , -.882502 , -.B311514)

Rows of the matrix correspond $o the variables (ie., ed for whites and ed for nonwhites)
since this was the easiest way to enter the coefficients. For mlogplot, the columns must
correspond to variables, so we transpose the matrix:

. matrix mnlbeta = mnlbeta“

We assign names to the columns using mnlname and to the rows using mnlcatnm {(where
the last element is the name of the reference outcome):

- global mnlname = "White NonWhite"
. global mnlcatnm = "Menial BlueCol Craft WhiteCol Prof"

We named the coefficients for ed for whites, White, and the coefficients for ed for

nonwhites, NonWhite, as this will make the plot clearer. Next we compute the standard
deviation of ed:
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. summarize ed
Variable ! Obs Mean 8§td. Dev. Min Max

ed | 337 13.09496 2.946427 3 20

and enter the information into mnlsd:
. matrix mnlsd = (2.946427,2.946427)

The same value is entered twice because we want to use the overall standard deviation
in education for both groups. To create the plot, we use the command

. mlegplot, vars(Wipite NonWhite) packed

or matrix std{ss) .
note{"Racial Differences in Effects of Education™)

which leads to
Racial Differences in Effects of Education

Factor Change Scale Relative to Category Prof

07 4 16 26 4 64 1
White—std B M C W P
- ) .

NonWhite—std C M | BW | ; | . P
o7 207 A8l 136 —o _45 0

Logit Coefficient Scale Relative to Category Prof

Given the limitations of our dataset (e.g., there were only 28 Cases-in the logit for
nonwhitesand-our-simple-model;-these-results—do-notrepresent. serious. Tesearch on.

racial differences in occupational outcomes, but they show the flexibility of the mlogplot

command.

6.7 Multinomial probit model with IIA

The multinomial probit regression command mprobit is the normal error cou_nte_rpart
to the multinomial logit model fitted by mlogit in the same way that probit is the
normal counterpart to logit. However, mprobit uses a normahzaiflon that can ohscure
this fact. To understand this point, we need to consider how logl_t a‘nd prohit -n_lodels
can be motivated as discrete-choice models in which a person maximizes her utility.

Let u;m be the utility that person i receives from alternative m. ’Ijhe' utility is
assumed to be determined by a linear combination of observed charactenstlcs x; and

random error 5;,: .
Uim = XiFy, + Sim
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Since the utility associated with each alternative m is partly determined by chance
through =, the model is also called a random utility model (RUM). A person chooses
alternative j if the utility associated with that alternative is larger than that for any
other alternative. Accordingly, the probability of alternative m being chosen is

Pr(y; = m) = Pr(uin > uy; for all j # m)

The choice that a person makes under these assumptions will not change if the
utility associated with each alternative changes by some fixed amount, say, §. That is,
if ugm > s, then wus, + 6 > uij + 0. Thus the choice is based on the difference in the
utilities between alternatives. We can incorporate this idea into the model by taking the
difference in the utilities for two alternatives. To illustrate this, assume that there are
three alternatives. We can consider the utility of each alternative relative to some base
alternative. It does not matter which alternative is chosen as the base, so we assume
that each utility is compared with alternative 1. Accordingly, we have

Uiy — Uy =0
Uiz — U = X; (B — By) + (g2 — 241)
Uiy — Uil =X (By — B1) + (€3 — €41)

If we define v}, = u;pm — w1, Eim = Eim — £41 and Brs = By — By, the model can be
written as: :

* o __ . *
U = Xzﬁml + €50

[ %
Uiz = Kifg &3

The specific form of the model depends on the distribution of the error terms. As-
suming that the es have an extreme value distribution with mean 0 and variance 72 /6
leads to the MNLM that we discussed with respect to mlogit. Assuming that the es have
a normal distribution leads to a probit-type model. To understand the model fitted by
mprobit and how it relates to the usual binary probit model, we need to pay careful at-
tention to the assumed variance of the errors. The binary probit model fitted by probit
makes the usual assumption that Var(s;) = 1/2, so Var{e}) =Var(e;) + Var(e;) = 1.
Since we assume that the errors are uncorrelated, Cov{e;,€1) = 0. Using: our earlier
example for labor force participation, we can fit the binary probit model:

(Continued on next page)



