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Editor’s Introduction

By writing LOG-LINEAR MODELS, David Knoke and Peter J.
Burke have done us all a favor. In most fields of social science research,
the last several years have seen a burgeoning number of articles which
rely on various techniques for the multivariate analysis of categoric, or
nominal level, data. Yet most praciicing soctal scientists have been con-
fused by these new iechniques, since the terminology is generally un-
familiar and seemingly unrelated to the concepis involved in the more
comincenly vwnderstood methods of correlation and regression analysis.
H vou are befuddled by articles which toss around terms such as odds
ratios, marginal and conditional odds, the general log-linear model,
saturated or unsaturated models, effect parameters, and the like, you
have come at last to the right place. Xnoke and Burke begin at the be-
ginning and introduce, define, discuss, and give numerous examples to
clarify the meaning of these terms, and in the process, they render these
mysterious concepts comprehensible to even the most uninitiated novice.

Knoke and Burke discuss the general log-linear model, which makes
no disiinctions between independent and dependent variables, bui is
used to examine relationships among categoric variables by analyzing
expected cell frequencies; they also discuss the logit model, which examines
the relationships between dependent and independent variables by ana-
lyzing the expected odds of a dependent variable as a function of in-
dependent variables. They initiate the discussion by working only with
dichotomous variables and then build to a treatment of polyiomous
variables.



LOG-LINEAR MODELS is replete with substantive examples, most
of which are drawn from political sociology. Extended examples in this
paper include the relationship between voluntary association membership
and voting turnout, controlling for race and education; a causal analysis
of the demographic determinants of civil liberties attitudes among the
United States public; a comparative cross-sectional analysis of the relation-
ship between party identification and vote for President in 1972 and 1976;
an examination of the relationship between party identification and
religion in a panel study between 1956 and 1960; an analysis of the relation-
ship between religion and attitude toward abortion; an examination of
intergenerational occupational mobility; and several additional examples,
Each example illustrates specific uses of log-linear models, such as their
use as causal modelling analogues; their use to conduct time series analyses;
their use to examine simultaneously the effect of several categorical in-
dependent variables on a categorical dependent variable: and so on. The
reader will not only begin to understand the basic concepts involved in
specifying and testing log-linear models but will also develop a good
sense of their wide range of applications because of Knoke and Burke’s
generous use of examples involving many different data sets. Clearly,
the range of applications is even wider, and although the use of log-linear
models has perhaps “caught on” to the greatest extent in Sociology in
recent years, no doubt it will become a more important too! in Political
Science, Economics, Anthropelogy, Mass Communications, and other
fields during the next decade. It may even make well-deserved inroads on
analysis of variance techniques in Psychology and Educational Testing.

Although Knoke and Burke are obvious enthusiasts and hope not only
to explicate log-lincar modelling but to promote it, they do recognize
some of its shortcomings and cover some special problems related to
applications of these modelling techniques to less than tidy substantive
problems. They conclude their presentation with a nice section in which
they examine special problems in applying log-linear models, problems
that anyone who hopes to use them effectively must face.

I fully expect that even though some of the material is difficult and
requires careful study, particularly for the statistical novice, the clarity
with which Knoke and Burke have written this paper will make it widely
accessible. This presentation is among the best pedagogic treatments of
log-tinear models, a very difficult topic to explicate clearly,

—John L. Sullivan, Series Editor

Duriag the past decade a revolution in oos.m:m@unw table analysis has
swept through the social sciences, casting aside most of :»n. older forms
for determining relationships among variables memgm@ at discrete levels,
Through the work of Mosteller, Goodman, Wﬁro? and .cﬁ:mnmn .ﬁr.mmm
new techniques have been given a solid foundation in theoretical statistics.
With the availability of computer programs to perform a:.” necessary
calculations, these new models have increasingly proliferated in substan-
tive applications to social science n_.mam v.aoEmEm. Vet Eﬂ Enﬁwom.m are
sufficiently recent and seemingly so dissimilar to more familiar techniques
that a nontechnical introduction to the topic is émw.wmimm. .

In this paper we shall deal primarily with Emﬁ.mnnw:omﬂ log-linear .annum
for multiway crosstabulations. Although log-lincar B.cmn_m. particularly
in their most general form, often strike people as a ama_awz% new mmﬁm.ov-
ment, a closer study reveals many mmeE.En.m s:& ordinary regression.
Since multiple regression—in which one variable is ﬁmw.mz as the :.SQE.
function of the values of several independent variables—Is a more %.Ea@
known method, we shall draw explicit parallels between it m.sm moma::.amw
modelling. Regression procedures are normally used to @wma_ow numerical
values only on an interval or ratio scale dependent <m~.__m&_n. However,
when the dependent variable is a dichotomy, nomn.n “1” if, mow.. example,
respondents agree and “0” if respondents disagree with a survey item, then
an ordinary regression upon predictor variables nm:.g interpreted as
showing how the probability of a favorable response is affected. In one

i lier draft we thank James A.
THORS' NOTE: For their valuable nbEE.mmuQ on an ear . ;
WME.,,. Lowell Hargens, Elton F. Jackson, William M. Mason, Richard Niemi, Susan R.

Schooler, John L. Sullivan, and Karl Schuessler.
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major version of log-linear models, a dichotomous dependent variable
can be treated analogously to a regression, with the essential difference
that the independent variables affect not the probability but the odds on
the dependent variable (e.g., the ratio of favorable to unfavorable re-
sponses). Other similarities between regression and log-linear models
will be pointed oui as we go along. Some similarities to probit analysis
also may be seen, although we shall not develop them in this paper.

1. RELATIONSHIPS IN CROSSTABULATIONS

We shall present the basic principles of log-linear methods through a
detailed analysis of the relationship beiween voluntary association
membership and voting turnout. The substantive problem comes from
the political sociology of democratic participation. For many years re-
searchers have known that persons belonging to voluntary organizations
are more likely to engage in a variety of political activities such as con-
tacting public officials about comimunity problems, campaigning for
candidates, and voting in elections (Verba and Nie, 1972; Olsen, 1972).
Some question remains whether this association is a spurious consequence
of social status, which is positively correlated with both variables, and
whether blacks and whites differ in their political activism once associa-
tional involvement and social status are controlled (see Thomscn and
Knoke, 1980).

To analyze these hypotheses, we chose data from the 1977 General
Social Survey, a national sample of 1530 noninstitutionalized adults
(18 years and over) conducted annually (now biennially) by the National
Opinion Research Center in Chicago under the direction of James A.
Davis with funding from the National Science Foundation. Voting Turn-
out (V) is the respondent’s report of whether he or she voted in the 1976
election (ineligibles were omitted). Membership in voluntary organiza-
tions (M) is the count of the number of associations in a list of 16 types to
which the respondént belongs, leaving out membership in churches (see
Knoke and Thomson, 1977, for a discussion of how church membership
differs from other types). We contrast those persons belonging to no
organizations with those having one or more memberships. Race (R) is
also a dichotomy, between whites and nonwhites (mostly black). Finally,
education (E) was recoded into three major categories: less than high
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school graduation; high school graduation; some college nxﬁ.nanamo in-
cluding graduation or more. Ultimately we m.rm: analyze relationships in
this full four-way crosstabulation, but iritially we concentrate on the
membership-vote turnout relationship, conceptualizing the latter .,.\mﬁm_u_@
as dependent or contingent upon the @52. ﬂmw.ow examples will :.omﬂ
multicategory variables and the dangers in n@:.mvmam Lo Réﬂ categories.
The traditional way to identify a relationship, or mwmonumﬁo?.aﬂémns
two categoric variables is to calculate percentages within categories of M?m
independent variable and to compare these percentages mnwo%.gmwom €
gories of the independent variable. If the @@Enﬁmmmm differ by a significant
amount {using the usual chi-square test mo.n :Enﬁm.:aosonv between or
among the categories, an association is said to exisi. The form of the
association—monotonic, linear, or nonlinear—depends upon En vmﬁan_s
of percentages within the cells of the table AWQ.EEEP 1977, In ,Hmv_m .
54% of persons with no memberships voted while qm.ﬁu of those belonging
to one or more memberships voted. Voting turnout Enwmm._mm& 21 percent-
age points among those with memberships over those @Eo.cﬁ. Emac.ﬂ.-
ships in voluntary associations. Chi-square for this table is §7.7, Ea._nm:zm
a statistically significant association (p << .001} sﬂénos.ﬁromn <m¢mc_nm.
In order to use log-linear models, we must first reconceptualize the
dependent variable. Instead of a Ecﬁoﬁmoslixﬂd the cell m-.ma.:oﬁou\
is divided by the category total—an om&w.wm the basic F:d o.m the variation
to be explained. We are most meEE.. in everyday _.:,o with .oaam from
horse racing and other forms of gambling. An odds is the ratio _un.msﬁws
the frequency of being in one category and the ?a@:ﬁ.&w.o.m not being HM
that category. Its interpretation is the chance that an .:Emﬁmsm_ selecte
at random will be observed to fall into the category of interest rather than
into another category. For example, in Table 1, the odds that a person
voted in the 1976 presidential election are wwq\hwm =2.03, o_,.m_uoi two-
to-one. (Note that some self-reporied inflation seems ﬁw be going on here,
since the actual turnout was about 55% of the potential voiers, an odds
nly 1.22.
o %r%oaam W;mn calculated is a marginal odds, applying to the total fre-
quencies in one margin of the table without regard to the .omwo_“m of any
other variable. We can also calculate the conditional odds within 5.@ .soa%
of the table, corresponding to the traditional percentages. Oosa:.uozm_
odds are the chances of voting relative to nonvoting given a particular
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c . TABLE 1
rosstabulation of Vote Turnout and Organizational _Sm_s_um.ﬁm_._:o

Membership (M)

One or More None Total
Vote Voted
f,, = -
Turnout 11 689 H«._M =298 .J = 087
(V) : ’
Not Voted f... =232 _
21 *NM = 2564 *M. = 486
T -
otal *.,_ =92 *.M = 5572 F o=1473

limit, and are 1.00 w

_moww_ of organizational membership. For Table 1, the odds on voting are
<vm:wwmo:m :om:w@Erm_,m and 2.97 among members. Thus, the oammw on
re more than 2.5 times greater amon tati u
associ
AMong persons belonging to no group. y Ation members than
EOHMMM:NM H::mﬁ“ HM.. oﬂm m.m the “not voted™ cells had no frequency, the odds
naetined since an integer cannot be meani livi
zero. For this reason, man i i ade ed by
, y analysts in the past routinel
(.5) to each cell entry before i ot Tt
) performing a log-linear analysi i
ability of this practice is i ) vt oo
. questionable, and o i i
such adjustments in this paper. Hr data will not require "
w Mws a :.ma:._osm_. percentage table, two variables are unrelated if the per-
mv_mmmwmwa m.wm __nmwcomﬁ or very close across all leves of the independent vari
. tlarly, 1n an odds table, the variables ar i i .
conditional odds are equal or clo “and honce squal o e
. , se to each other, and hen
marginal odds as well.: Substantiv , % o o the
] .. ely, the chances that a pers
: 0
SO.ME be the same whatever his or her social participation g nvoted
i Mnn%gwmm.wca:%n:w two conditional odds, a single summary statistic
can be formed by dividing the first conditional ; ec T
( : 10g.the 1irst conditional odds by the s d
Ing an odds ratio. The odds ratio i of log leer e
an odds ratio. 18 the workhorse of log-li
0 it behooves us to spend some ti i atares and i
: e time exploring its feat i
pretations. To see what an odds rati ho oroa o
. . atlo does, start wit i
quencies forming the two conditional odds: Wi the orginal fre-

observed odds ration (VM) = Q__\mc\gw\m&

which upon simplification b I
a2 X 2 table: ecomes the familiar crossproduct ratio for

odds ratio (VM) = (fu) (f22)/ (f21) (£12).
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Wote that a traditional measure of association for 2 X 2 tables, Yule's Q,

is a simple function of the odds ratio:

odds H.m.&o —1 Q:v Q,mmv - QGV Qﬁv
Yule’s Q3 = =

odds ratio + 1 (f,) (£5) + (F5) (F,))

While Yule's Q ranges in value from —1.00 to +1.00, with zero indicating
no relationship, odds ratios take only positive values, have no upper
relationship exists (i.e., the two conditional

odds are equal). Odds ratios larger than 1.00 indicate direct covariation

beiween variables, while odds ratios smaller than 1.00 indicaie an inverse
relationship. Of course, “direction™ of covariation is arbitrary when the
variables are measured only at the nominal level since category order can
be changed. In our example, voting and belonging to organizations are
considered “higher” values than not voting or not belonging. Hence, the
observed odds ratio {VM) of 2.53 means a positive relationship, with the
odds on voting among persons belonging to organizations more than
2.5 times greater than the voiing odds among those respondents without

memberships.

2. THE LOG-LINEAR MODEL

A. Sypecifying Models

A model, in the sense we use the term, is a statement of the expected
cell frequencies of a crosstabulation (Fy’s) as functions of parameters repre-
senting characteristics of the categorical variables and their relationships
with each other. The parameters are related to the odds and odds ratios,
discussed above, as we will elaborate shortly. In assessing how well a
model “explains” or fits the data, we are concerned with the exient to
which the frequencies expected under the model {the Fy’s) approximate
the frequencies actually observed (the fy’s). In Chapter 3 we consider how
to evaluate the fit of the model to the data, bui first we must develop some
notation and techniques for generating the expected frequencies.

There are two major approaches to log-linear modelling of contingency
table data. (1) The general log-linear model doss not distinguish between
independent and dependent variables. All variables are ireated alike as
“rgsponse variables™ whose mutual associations are explored. Under the
general log-linear model, the criteria to be analyzed are the expected cell
frequencies, Fy'’s, as a function of all the variables in a model. We will
develop this approach first since it provides a basis for the second. (2) In
the logit model one variable is chosen as the dependent variable. The .
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criterion to be analyzed is the expected odds (£)) (omega) as a function
of the other, independent variables. The logit model is closely analogous
Lo ordinary regression. Elaboration of this approach must awai; expli-

Saturated models. We begin our discussion of models by presenting
one possible model for a 2 X 2 crosstabulation such as in Table 1. This
model is known as a saturated model because all possible effect parameters

¥ .m VM

mu‘c.ndq.‘ ToTyo. _”_”_

stantive meaning in and of itself. The (tau) terms each represent “effects™
which the variables have on the cell frequencies. These effect parameters
are related to the odds and odds ratio discussed above. The +" effects
(one for each of the i levels of V) are present if there is an unequal {non-

is an unequal marginal distribution of cases on the membership variable.
Finally, the )™ effects {one for each of the ij cells of the table) are present
to the extent that turnout and membership are not independent (i.e., are

frequencies of Table | can be represented by the model asshown in Table 2.
Note that in this model (as in all log-linear models) cell frequencies

terms. Aside from the eta term representing an average or baseline cell
frequency, the magnitude of an effect is measured as a departure from
the value of 1.00. Effects of exactly 1.00 have no impact since they leave
the product unchanged. If there were no effects, then each celj frequency

13

TAEBLE 2
Expected Cell Frequencies for Saturated Model

Membership (M)

One or More None
vV M VM
v oM _VM F.oo=NT, 7,7
Vot Voted Fig N7y 7y Th4 127171 72 712
ote
Turnout . VoM VM
Vo M VM = T
V] Not Voted Fop =MTo Ty Toyq Foa M7y Ty Tha

. . ¢
For dichotomous variables, such as Emava_.w?ﬁ.m:a <o.::.m E..:Wﬂ.h \
the tan effect parameters for each variable’s categories are reciprocals:

=i 2]

e

it

T T 1/ . [31
i i fer to the category of the variable
cal subscripts on each tau re .
Hr“mwwﬁﬂﬂm tau value applies. Thus 71 is the effect on MMS nwﬂwmvaom\ MMM
o 1 £1Y n
ing i f voiing turnout (“vo »
f being in the first category o ) W
M.M M_MMMM.M%E oy mmm the effect of being in the second Egmz_w Mmammww hnwm
ints i i 2 and 3 ensure that the p
>}, The constraints in Equations t
M%Mn.w ,WE‘ both levels of the vote and the product of mm«w T mow_ @Mﬂ_ﬁwhuﬂww
of membership each equal 1.00. Similarly, the four 7" have the fo

three constraints so that their joint product is also 1.00:
M
\ﬁ<§n.~=3§uﬂw\m§u :ﬂwmz_H :....ua_ . [4]
i he
Since there are more effect parameters (9) ﬁ.rm:. cell %E@.:n:n_mm @W%n N
turated model could not be estimated E:EQ,E the five oosmw_‘m s
MM c_._mmo:m 1 to 4) described above. These constraints imean that %m.w W mmcn
. Wi
Q,Mn” parameters are independent (one for 1, /“\, M, msww;wm ¥ith four
independent effect parameters and four cells in the table, . urated
odel will perfectly reproduce the observed cell m_dn:n:n:.wm éan&m
M_ rees of freedom remaining. (Degrees of freedom for Smﬂ__io Jnodels
mMM discussed below. In general, the number of taus set MM:i mon?.\na dorer
therefore treat the obs ij
i e degrees of freedom.) We may . 2
MMMMM_ Emﬁa expected Fy’s in a saturated model for any contingency
i
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table. When we specify other models which require fewer effect parameters
than ithe number of cells in the contingency table to estimate the expected
cell frequencies, we pick up degrees of freedom with which to test the
goodness of fit between the modelled data and the observed data.

Using the equations in Table 2, we can derive formulae to represent
the tau-effect parameters in terms of the (expected) cell frequencies. In
this way, what the effect parameters represent can be made clearer. To
interpret the effect parameters for the vote-membership association, we
use the expected odds ratio described earlier

I F F, JF
11 722 11 21
QM - expected odds ratio (VM) = = [5]

TJM: wHN m,ww:uwu

which we previously found to be 2.531 (since observed and expecied fre-
quencies are identical in a saturated model). Next, substitute for the four
Fii’s the four equations found in Table 2 and simplify:

V M VM Vv M VM VM VM
Fnfn ey r ey oph T Ty (6]
B VvV M VM Vv M VM, VM VM '
Fa1 Fip M7y 71 75y ) (n Ty Ty Tip ) 21 Ti2

This relationship shows that the odds ratio depends only on the magnitude
and direction of the association between V and M and not on the marginal
distributions of the variables. Using the identities in Equation 4, we can
rewriie this odds ratio in terms of a function of a single two-variable
parameter:

= [..VM ;4
i1 Faa /By Fry=1r] 7

or

VM _ 7
Ty FylFy Fiy)® (8]
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Thus the parameter for the vote-membership covariation is the fourth

root of the crossproduct ratio—the odds ratio—of Em expected frequen-~
cies under the model. In the illustration, this value is 1.261.

N

M
Turning next to the single-variable tau parameters, ni and 7j, and

following the same steps as above, we can arrive at a representation for
those terms. We begin with a product of two conditional odds

11 12

or

v FoF, )P
T = (B Fpy/lyy Foy

similarly

M £ JFF, )R
T o= (Fyy By [, Foypd)™

An alternative representation which yields ?H.m.gm_. insight into :S.Emm::mm
of the tau parameters can ¢m obtained by E:Ew;:_mm gjm two EMoMQBHm o%ﬂﬂ
tions by Qn:m_;m:u:msvb for V and by Aﬁﬁmwﬁ\w:mw: or s
exercise shows that tau coefficients represent the ratio of the number of ex
pected cases in one category to the geometric average of the expected cases
in all categories of the crosstabulation. Thus,

_ 1
;/\ vV (Fj; Fip) (o]
] Y-

' (F,F,F wﬁvx

12 ° 21
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or

%
N Qu: ﬁw.wv

7. =
il - [10]
(Fy; Fy By )

d\a formulations again ensure that the products of the taus for a variable
will equal 1.00. The more that a tau effect departs from 1.00, the farther
.ﬂrmm marginal category falls from having 1/K the sample nmm.om where ¥
is the number of categories for a variable (K = 2 for &nroﬂoamnmv.. In other
words, the single-variable taus reflect the amount of skewness of cases
across the variable’s categories.

Finally, by similar procedures the constant, n, in each equation of the
expected cell frequencies is simply the geometric mean of all the (expected)
cell frequencies. (Geometric means are the n™ root of the product of n

numbers.) Since there are four cells in our 2 X 2 exam
ple table, the value
of 77 15 the fourth root of the product of the four expected cell frequencies.

Because in the saturated model the expected cell frequencies are identical

8 .:._o observed cell frequencies, we can now calculate all parameter
omﬁgmmmm“

= = Yo
7 (1 £15 £y £55)7 = 331.657
1
v 3 _ Aw: HIHMV
T, T 5 = ——% - — = 1366
Ty n
)
._._‘2— _ 1 Q.: ﬁm~v
i T Ty = o = 1.205
qw\m n
4
ﬂ<§ - q.<§ " 1 1 WHH WMM ’
11 22 VM - Vi = o = 1.261.
| T12 21 1t

Using these estimates (without rounding), we can exactly reproduce the
four cell frequencies:

F
F

It

11 = (331.657) (1.366) (1.205) (1.261)
12 = (331.657) (1.366) (1/1.205) (1/1.261)

689
298

It

..~ ;

=
Il

232
254,

(331.657) (1/1.366) (1.205) (1/1.261)
(331.657) (1/1.366) (1/1.205) (1.261)

o]
i

It

A closer look at these estimates is in order before proceeding to non-
saturated models for the 2 X 2 table. The r¥ parameter stands for the
square root gecometric mean of the two counditional odds on voting. In this
case the average conditional odds are somewhat better than even {greater
than 1:1) that a person drawn randomly from the sample will have voted
in 1976. Note that this conditional odds is not the same as the uncon-
ditiona! odds of 2.03 which were calculated from the marginal row totals.
Conditional odds take into account the distributions of cases across the
other variables in the table, while the marginal (unconditional) odds do
not reflect the presence of other factors in the data. The effect of +™ is
greater than 1.00, showing that on average more people belong to at least
one association than do not belong to any organization. Finally, the
™ gtands for the odds of voting given that one belongs to some associa-
tions relative to the odds of voting given that one belongs to no associa-
tions. {Alternatively, this effect and its companion odds ratio cau be
viewed as the odds of belonging to organizations given that one has voted.
Under the general log-linear model, neither variable is considered de-
pendent on the other. Thus, either interpretation is legitimate. Locking
ahead, however, we shali later view voting turnout as an outcome con-
tingent on the other variables.)

Nonsaturated models. A saturated model represents the cellf requencies
of a crosstabulation as a function of effects for the general mean {n), each
variable, and their interrelationships. But a saturated model has no
parsimony since it represents C cells with exactly C effects. The expected
frequencies from a saturaied mode! always perfectly match the observed
frequencies. More parsimonious and simpler models can be constructed
by setting some of the effect parameters to .00, which is analogous in
regression to a priori designating a regression coefficient to equal zero
(i.e., assuming that a particular variable has no effect on the dependent
variable). Such nonsaturated models generally provide expected fre-
quencies more or less discrepant from the observed data. The next section
considers how to evaluate the fit of the model to the data.

Among the several nonsaturated models for the data in Table 1 is one
in which the two-variable parameters have been set to 1.00 (setting one
™ = 1.00 automatically sets the other three to 1.00 because of the con-
straints imposed). This model is one in which voting turnount and organi-
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Mmsw_.sﬁ .Em.s.&owmw%.mn@ assumed unrelated in the sense that is tested
¥ the traditional chi-square test for independence in a two-way table
The expected cell frequencies under this model are: .

= gV M
m: nToT . _”muu

Additional models with other taus set to 1.00 include;

Fj=5 ol (123
Fy=5nn [13]
mu,m = 1 _”m&u_

The five models given in Equations 1 and 11 to 14 are the entire set neces-
sary 8.83 a variety of hypotheses about the relationships among the
two <mw__w_u_om in Table 1. Notice that no model contains a higher order tau
{e.g., T ) E:w_oﬁ also containing the lower order taus embedded in it
Am.m; v and ). This hierarchical feature of log-linear analysis will be
a*mosmwﬂ.u more fully below and procedures permitting the testing of non
r_m_.m_.ng.nm_ models will be described. For the moment roﬁ.ﬁdw we s:._m
not oosma.mw models such as F; = 5 =) "\ ‘ .

. ,Eﬁ.u various general log-linear models we discussed above are presented
in their multiplicative form. We note that by taking natural logarithms of
all E.o terms, the equations can be transformed into linear equations
That is, the equations are linear in their logarithms (Ln; hence, _om-msomﬂv.

whenee the name for this methodolo .
. gy. In Goodman’s n -
tion 1 has the log-linear form: otation, Equa

i T Ty T [1

- V_M VM
Ln(F,) La(n 7 rf vuQ@;%mf;i%v;i&zv

or

= Vv M VM
Cij Z0FA AT [15]

Era.u.n the As (lambdas) are logs of the taus, 8 (theta) is the log of eta, and
Gy is the log of Fy. The nonsaturated models have similar log-linear
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expressions. The log-linear versions arc more analogous to ordinary
regression: The log of the expected cell frequency is an additive function
of a constant plus terms for each variable and their interrelationships.
Since the natural log of 1.00 is zero, the absence of a lambda effect in a
model is equivalent to a value of zero for that parameter, justasin ordinary
regression a variable with no impact has a slope of zero.

The multiplicative and additive logarithmic forms are mathematically
equivalent. The conceptual advantage of the multiplicative version lies
in its closeness to the odds and odds ratio basis underlying the mativation
of the models. Since both versions have gained currency in social science,
the reader should develop some familiarity with working in both systems
of notation.

The statistical significance of the effect paramecters in the saturated
model can most easily be determined when in their log-lincar form (i.e.,
the As). The standard error of the lambdas can be estimated by the equa-
tion (Goodman, 1972b: 1048):

T (/1)
ij
2

C

where C is the number of cells in the contingency table. For large samples,
if the expected value of lambda is zero (i.¢., tau = 1.00), the standardized
A (i.e., A/8)) is approximately normally distributed with zero mean and
unit variance. Hence, as in ordinary regression, a standardized lambda
larger than -=1.96 would be significant at the p = .05 level. Although such
standardization strictly applies only to saturated models, §, is a lower
bound on the parameters of an unsaturated model. For Table I, 8, =.029.
Taking logs of the three taus for the saturated model and dividing by this
standard error gives large standardized values, showing that all three
effects are highly significant.

B. Fitting Marginals

We now introduce a conventional notation {o describé models without
_resorting to the cell frequency equations used in the previous section. First,
we elaborate on the concept of a hierarchical structure. A hierarchy of
models exists whenever a complex multivariate relationship present in
the data necessitates inclusion of less complex interrelationships. For
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example, in the four-variable crosstabulation, if a hierarchical model is
designated which includes the three-way interaction of vote, membership,
and education Aﬂssmv. the equation for that model must also include all
two-variable parameters (+'™, #ME and +VF) as well as the single-variable
effects (', 7™, and ™) and of course the grand mean effect, 7. In a hier-
archical structure, models containing higher order relationships implicitly
include all combinations of Iower order effecis which can be formed out
of the components of the former. Log-linear methods encompass both
hierarchical and nonhierarchical approaches, although the former type
are generally preferred for reasons discussed later in this paper. In fact,
some log-linear estimation methods do not allow the researcher to include
higher order associations while omitting lower order terms which are
nested within them.

The shorter notation for describing models uses letters which stand
for the specific variables in the crosstabulation. It encloses letters of
variables which are hypothesized by the model to be related within curly
braces or pareniheses. Each set of letters within braces indicates a highest
order effect parameter included in the model (i.e., the taus which are not
set equal to 1.00 by hypothesis in the multiplicative or equal to 0 in the
additive version), By virtue of the hierarchical requirement, the set of
letters within braces reveals all the lower order relationships which are
necessarily present. To illusirate, the saturated model for the data in
Table | was written in Equation 1:

Fy=n o o' rj™ [1]
while in the standard notation, its designation is {VM). By putting both
V and M within ihe same pair of braces (the order of the letters is not
important) we specify that the one-variable taus for vote {V} and member-
ship {M} are also present, as is 7. If the model in Equation 11 is hypothe-
sized, the notation is simply {V} {M}. Since the letters for vote and member-
ship do not appear within the same braces, we interpret this as a model
in which V and M are hypothesized to be unrelated to each other, although
the marginal odds for either may differ from 1.00.

To extend this notation to the four-way table crosstabulating race,

education, membership, and votie turnout, the saturated model would be

designated {REMV). If the researcher hypothesizes that this four-way
interaction is not necessary to fit the data but that all three-way inter-
actions are required, the new model would be compactly written {REM]}
{REVHRMVHEMYV). In a greatly simplified model, such as {EV} {EM}
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{R}, we can grasp quickly that nc four- or three-way interactions are

hypothesized, most of the two-way associaiions are absent and for the

race variable only the marginal odds are hypothesized as necessary to fit

the data.

Besides compactiness of expression, the standard notation mo.._wo.ma
linear models communicaies another imporiant wmm..,.zmn of H.rn wwm _wmmwmv.
The variables enclosed in braces designaie msﬂ.ﬁmg.nmA marginal ﬁw m@mc
formed from the full crosstabulation. In omsﬁ.ms:m expected ce M.nm
quencies for the full table under a given ru%.oﬁrnmﬁoa medel, the nxﬁmnh@
frequencies (Fy's) in the designated Emwmmsmmm must oxmnzw mnMW o
corresponding observed frequencies (f;’s) in the sarne set o . Md& a 2.:..u
Procedures used to estimate the expected mamn.cgn_.nm Emmnzm.m hﬁ e
next section) insure that the expected ?n@.:n:n_mw will mgmwﬂ ;M M Mna
served frequencies for the m@mowﬂa anwpwsm_ﬁmu.ﬁmﬁww_dmonﬁ the stan

ion i en called the fitted marginals n . .
zo%ﬁmﬂwmnmwﬁ is implicit m” the traditional chi-square test moM. %QMWQM..
dence in a two-way table such as the V-M owommﬁmss_mcoﬁ of Ta M .
In this test, one requirement of the nx@ooﬁnm cell ?m@ﬁ@ﬁ.ﬁmm is that h mw
sum to the observed row and oo?g.s marginal frequencies. In stan gﬂwm X
log-linear notation, the model .».o_‘ wﬁamwwwmgomw VIl Egmmwma
the single-variable marginal distributions for the vote and for Bmm% a_ Em
“fitted” to the data by the model must exacily equal the row an %w M o
totals observed in the cresstabulation. Ef the an&.ﬁﬁ ﬂ«ﬁ is mﬂ &
the data in Table 1, the following expected frequencies are found:

Membership (M)

One or More None Total
Voted 617.13 369.87 987
Vote
t
Harmeu Not Voted 303.87 182.13 486
921 552 1473

Although the Fy’s of this model &maw.?oa the fy’s, collapsing Q%M_.sﬁwv
across rows and columns yields marginals equal to z.._n a.u._uwagn. a =...
Mote also thai the odds ratio of the w%ﬂaaﬁﬁﬁd&:oﬁﬂ% 18 _..oou ﬂw owo -
formance with the model’s hypothesis that ' = 1.00, meaning the tw

variables are unrelated.
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The “marginals” of a two-way table are clearly the row or column
totals, corresponding to the distribution of cases across the categories
of any variable. In multiway crosstabulations, marginals can refer to two-
variable, three-variable, or larger subtables formed upon collapsing the
larger table according to the pattern hypothesized in the fitted marginal
notation for a model. Even a saturated log-linear model has a fitted
marginal table; it just happens to be equal to the observed table, hence
ihe equivalence of fitted and observed cell frequencies for a saturated
maodel.

We can illustrate some of these ideas with the complete four-way table
of race, education, membership, and vote turnout, whose observed fre-
quencies are shown in Table 3. Suppose we hypothesize that the vote is
separately related to membership, jointly related to race and education
(i.e., a three-variable interaction), and that race, education, and member-
ship are also mutually related. In fitted marginal notation, this model
is (VM} {(VREHREM}. Using a procedure, to be explained shortly, for
estimating the expecied frequencies under this model, we find the fre-
quencies shown in Table 4. We leave it for the reader to verify that if the
appropriate entries of expected Fiy’s are summed to produce the three
marginals fitted by the model the results will exactly equal the same
marginal sums of the abserved frequencies. Note also that lower order
associations nested within the higher order marginals—such as {VR}
{RE} and {EM}—will also agree in both observed and modelled data.

Generating expected frequencies. At this point we need io explain
how to produce the expected frequencies for a hypothesized model. For
some simple models, such as the two-variable models examined above,
simple formulas exist which permit direct estimates for nonsaturated

- models to be written. But for larger tables and more complex models,

some sort of algorithm is required to obtain the expecied frequencies of
the model. The two usual procedures are the iterative proportional fitting
algorithm (Deming-Stephan algorithm) used by Fay and Goodman’s
ECTA program and the Newton-Raphson algorithm used in Bock’s
MULTIQUAL program. Although the Newton-Raphson procedure is
more general, we shall continue most of our discussion with the simpler
and more frequently used iterative proportional fitiing algorithm.

- The computer implementation of the iterative proportional algorithm
is fairly complicated and will not be presented here (Davis, 1574: 227-231;
Bishop et al., 1975: 57-122; Goodman, 1972b: 1080-1085; Fienberg, 1977:

33-36). The procedure uses the marginal tables fitted by the model to

insure that the expecied frequencies sum across ihe other variables t
SRORIE e VI capedied liequen 1 Yallabies 10

TABLE 3
Crosstabulations of Race, Education, Membership and Vote Turnout

Fois, Ceo,

v&a_bxr\
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Vote Turnout

Race Education Membership Voted Mot Voted
White Less than High Schoo! None 114 122 23¢
White Less than High School One or More 160 mw
White High School Graduate MNone 88 qw
White High Schoo! Graduate One or Maore 208 wm
White College None 58 °
White College Qne or More 264 6
Black Less than High School None 23 31
Black L.ess than High School One or More 22 7
Black High School Graduate MNone 12 7
Black High Schoo! Graduate One or More M._w M
Black College None L
Black College One or More ﬂmﬁhl 10 ™ 3 ¢
TABLE 4
Expected Cell Frequencies for Model ?:sw?‘m I,IHmmgw
Vote Turnout
Race Education Memibership Voted Mot Voted
-
White Less than High School None 116.76 119.23 25,
White Less than High School One or More 147.24 69.77
White High School Graduate None 86.82 73.18
White High School Graduate One or More 209.18 81.82
White College Mone 52.82 23.18
White College One or More 269.18 54.82
Black Less than High School None 25.77 23.23
Black Less than High School One or More 19.23 9.77
Black High School Graduate None 12.27 6.73
Black High School Graduate One pr More 20.73 m.Mu
Black College MNone P .w.mml}is{;iim.!..m
Black College One or More /wwam o E

Ewca&sm obser

odds ratios amoing variables not congtral

/

ved marginal totals. Expected odds and \
ned by the model’s fitted mar-

ginals are all equal to 1.00. = /A4 A Al Auistes L o
The iterative proportional fitting process generates maximum En.nr-
hood estimates (MLE’s) of the expected cell mnnm_amun_.mm for a hierarchical
model. Although an exposition of MLE techniques 1s gwma@ ihe scope
of this book, these procedures produce consistent and mm.,_n_nﬁ statisiical
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estimates, two-criteria-highly desirable on theoretical grounds (see Bishop
et al, £975: 38). Preliminary estimates of the expected cell frequencies
are successively adjusted to fit each of the marginal subtables specified
inn the model. (Typically all cell entries are initially estimated as 1. Since
conversion to final estimates is very rapid, this seldom presents problems.
Later we present analyses where different starting values are used.) Thus,
in the model {VM}{VRE}HREM]} the initial estimates are adjusted first
to fit {VM]}, then to fit {VRE}, and finally to equal the {REM]} observed
frequencies. With each new fit, however, the previous adjustment becomes
somewhat distorted, so the process starts over again with the mosi recent
nm: ommgmﬁmm mmnw cycling ...._._wo_._mr the set results in some m:a?.céama

,E:m MLE m_mcEz..B always converges to as small a mumnwmumun% _ums
tween successive estimates of the expecied frequencies as desired. Alithongh
Davis (1974) gives the rules necessary to carry out the calculations with a
poclet calculator, only the simplest problems can be calculated without
a high-speed computer.

After the program produces the expected frequencies (Fy's) for a given_
model specification, these numbers are entered by the program into the
appropriate formulas to produce the effect parameter estimates (taus
or lambdas) for the variables and their interactions.

C. Anslyzing Odds

Up to now we have dealt only with the general log-linear model. In that
version, all variables are treated equally, as response variables whose
relationships are (o be determined by a muliiplicative or additive function
of the entire set of variables. The criterion to be modelled by the effect
parameters is the expecied cell frequency (Fy). We now turn to the second
major form of log-linear models, a special case of the general version called
the logit model. Logit models are categorical variable anatogs to ordinary
linear regression models for continuous dependent variables. Indeed,
Goodman {1972} called it a “modified regression approach.” In this
model, one variable is taken conceptually as dependent upon variation
induced by the others. The criterion analyzed in this model is the odds of
the expected cell frequencies for the dependent variable. More precisely,
the model we discuss pertains to the log of the odds, called the logit.
(Usually the logit is defined as 1/ 2 the log of the odds. However, Goodman
nas adopted the convention of analyzing the log odds, which we follow
here; see Goodman, 1972: 35.)

w
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To compare the logit model with the general log-linear model, we
consider the three-variable case of voting, voluntary association member-
ship, and race. Voting will be conceptualized as the dependent variable
whose odds are a function of membership and race. Under the log-linear
(saturated) model the expected cell frequency, Fi., is a funciion of various
effect parameters. Thus, _

F.. = dﬂf ﬂ_.S ﬂw. q../.:ea ﬂ.<mﬂ q..?:n \._../.:EW
ijk i ') Tk THj ik 'jk ijk
Now, if we used these expected cell frequencies to form an expected odds on
voting, we have the following:

. vV M R VM VR MR VMR
e T T T Ty Tk T Tk

Foo V.M R _VM VR MR VMR
1 M7y Ty T T25 Tak Tik Tojx

Once common terms on the top and bottom of this equation are cancelled,
we arrive at the simplified expression:

vV _VM VR VMR

m:.w T T Tk Tk
F.. V VM VR VMR °
2jk Ty T3i T2k T2k

Given the further restrictions introduced earlier to achieve identifiability, this
expression simplifies even more to:

F

F

@ @M @ @
2jk

and upon taking logs we get:

F

1jk
Ln —— = 2La(r ) + 2Ln(™) + 200 (7)) ®) + 2La () M)
Foix
or
Hu:.w v VM YR VMR
In = 2X7 + 20777 + 2% + wy.x
Foix ! : !
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where the A’s are natural logs of the taus. Reexpressing this in Goodman’s
{1972) notation we have:

D= B+ M BT BT

We thus see that there is a direct relationship between the effect parameters
of the log-linear model and the parameters of the logit model. Thus
&l (phi) is the log of the (conditional) odds of voting, and the §’s (betas)
correspond to the lambdas, for example, m< =2\Y, PSS = N?.Ss, and so on.

Toillustrate the difference between the logit and the general log-linear
model, we shall analyze the four-variable data. Suppose we hypothesize
that the odds on turning out to vote depend on membership, race, educa-
tion, and the interaction of race and education. Then the logit equation
for this model, using Goodman’s notation, is:

= B+ B+ B+ B+ B [16]

where ®" is the log of the expected odds on the vote turnout and each 8
is an arithmetic average of logits for the vote across all levels of the par-
ticular independent variable or interaction denoted by the superscript.
Consistent with the restrictions on the equivalent log-linear model, the
B’s for each factor influencing V sum to zero. For example, since education
has three categories, 81" + By~ + BYF =

An important aspect of the logit model which is not evident from
Equation 16 is that the three-way interaction among all independent
variables {REMJ} is present as arc all lesser included marginals {RE},
{RMJ, {EM}, {R}, {E}, {M}. Terms for these factors do not appear in the
logit equation for the expected odds on voting but these marginals must
be fitted when estimating the expected frequencies on which the odds
are based. The marginal table in which all independent variables interact
must be included in any logit model even if the factor is not statistically
significant (by criteria to be discussed in the next section). This inclusion
1s a major difference in the estimating procedure of the logit and the
general log-linear models and the reasoning for it is as follows. Using the
fitted marginals notation (explained above) for the four-variable case
we can compare the following two models: {(VMER} and {V}{MER}.
The first of these is, of course, the saturated model in which all effects
arc present. The second model is restricted in a very special way. The
following effects are presumed to be zero (absent): {(VM}{VE} {VR} {VME}
{VERHVMR]} {VMER]}, that is, all relationships and interactions in-
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volving voting turnout. And these are the only effects assumed to be
zero in the latter model. If we wish to test whether any of the effects in-
volving V are necessary to model the data accurately, such tests are carried
out by comparison with a baseline model, like {V}{MER}, which includes
only (and all) relationships not involving the dependent variable. This
log-linear procedure is analogous tc regression analysis since the corre-
lations among the independent variables are taken into account even
though these relationships do not explicitly appear in the regression
equation.

Estimation of parameters for Equation 16 begins, as in the general
log-linear model, with fitting the marginals implied by the hypothesis
to obtain the expected frequencies. The fitted marginals {MER}{ERV}
{MV} produce the expected values in Table 4. Note the wide range of
logits, from —-.09 [= L.n (25.77/28.23)] for blacks without high schooling
and no membership to 1.59 [ = Ln (269.18/54.82)] for whites with college
education and some memberships. To obiain the beta values we transform
appropriate taus using the relationship (where Q stands for other variables
affecting V):

gY9=2Lnr"®

since Goodman’s definition of the logit is twice the value of the usual
definition. Table 5 gives the relevant taus and their beta equivalents for
the model in Equation 16.

A log-linear program, such as ECTA, can be used to estimate s for
the logit model in one of two ways. Estimates of the A’s may be obtained as
suggested above (page 25) and these values doubled to obtain the equiva-
lent B’s. Alternatively, the odds of the dependent variable may be read in
directly as observed values in which case the A’s of the additive version of
the general log-linear mode! are then directly equivalent tc the §’s of the
logit model (using Goodman’s notation). Either way, the fit of the model
to the data will be identical.

To show ihat these parameters exactly reproduce the expected odds,
let us write the equation for blacks with high school graduation and some
memberships. The expected odds that these respondents voted in 1976 are
20.73 to 5.27; the logit is 1.37.. The equation for this logit is:

@vwmm = _me. + RMZ + Dwm + mww + mwmmz.
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TABLED
7 and f Parameters for Model Am<_<$ .T\m _n&. .ﬁm_":s“.

Term T 8

n 1.375 .636
VM

Y 0.825 -.385

VR

Tyq 1.037 073
VE

T 0.857 —.309
VE

Tip 1.069 133

FVE
13 1.091 A74
VER

PPy 0.982 —.036
VER

Tynq 0.866 —.288
VER

Tia1 1.176 324

Parameter values reported for Jevel 1 of R (white) and ievel 1 of M (some memberships)

Values for other levels can be obtained b taking reciprocals {for 7) or cilanging sign
¥
{fo mu. -‘

Plugging m.s the appropriate 8 values (note the change in signs when
membership and race are at level 2):

Y = 636 + 385 + .133 - 073 + 288 = 1.37.

1-;.7.@ parameters in the logit model can be interpreted similarly to the
additive coefficients of ordinary regression. Positive values indicate that
the independent variable or interaction raises the odds on the dependent
measure, while negative betas show that the odds are decreased. Thus
rma.:m_m no membership substantially reduces turnout (—.385) while comswu
EE.H raises it slightly (.073). To evaluate a polytomous independent
variable, all the betas must be considered. Being low in education depresses
turnout (-:309) but increasing levels of schooling raises the odds on voting
(.133 for high school graduation and .174 for coliege). Interaction effects
oww“z@m substantively interpreted in more than one way. For example, the
Bt = .324 can be interpreted either as indicating that college education
1mproves voter turnout more for whites than for blacks or that being
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white improves voter turnout more among college-educated than among
less-educated respondents. By itself, this coefficient does not indicate
that college-educated whites have a higher turnout than either college-
educated blacks (although they do) or than less-educated whites (although
that also is true). It indicates only that the log odds for cell 231 is greater
than would be expected from the equivalent model which excludes this

effect; that is,
Py = B+ BTV + B B

This is an important point about interpreting the effect parameters and
it is worth expanding on a bit at this poini. Consider the hypothetical table
of data (Table 6} indicating the relationship between the presence or
absence of A and the presence or absence of B. If we calculate a chi-square
for Table 6 (8.56, df = 1), we would find a significant relationship between
the variables such that those persons who are in category A also tend to
be in category B. But, note that statement compares the observed fre-
quency of 54 persons who are both A and B with an expected frequency
{on the basis of the marginal distributions) for that cell of 38.72. In terms
of simple raw frequencies, persons who are in category A are more likely
to be in category non-B (as is everyone, A or non-A). A more complete
description of the data would say something like: “Although most persons
are in the category non-B, those persons who are A’s are comparatively
less likely to be in this category and more likely to be in the category B.”
In the context of log-linear models, therefore, we must be clear that the
effect parameters indicate differences in relative frequencies and in relative
odds and odds ratios. In the table above, being an A improves one’s
chances of being a B (though they continue to remain low).

TABLE G
The Relationship Between the Presence or Absence of A and B3

A MNon-A Total

B 54 187 241
(38.72) {202.28) (241)

Non-B 187 1072 1259
{202.28) (1056.72) {1259)

Total 241 1269 1500
{241) (1259) (1500)
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3. TESTING FOR FIT

A. How To Evaluate Models Fitted to Data

We have now shown how to conceptualize log-linear models in either
general or logit form and how to designate relationships among variables
using both the equations and fitted-marginals notations. We also indicated
other sources for discussions of how expected frequencies can be obtained,
either with direct formulas or through iterative proportional fitting com-
puter algorithms. We are now ready to discuss how to determine whether
a hypothesized model fits the observed data reasonably well. For example,
Equations 1 and 11 to 14 are five distinct models applying to the two-way
crosstabulation in Table 1, vet only one of these models can represent
the process by which the observed frequencies were generated. Our ques-~
tion is how to decide which model provides the best fit.

This question is answered by estimating the expected cell frequencies,
Fy’s, for each of the five models and comparing them to the observed
frequencies, f;’s, using either the Pearson chi-square statistic (x>} or the
likelihood-ratio statistic:

L’ =23f; In (&i/ Fy). [17]

1.7 is preferable to x? because (1) the expected frequencies are estimated by
maximum likelihood methods and (2) 1.” can be partitioned uniquely for
more powerful tests of conditional independence in multiway tables.
L’ follows the chi-square distribution with degrees of freedom (df) equal
to the number of tau parameters set equal to 1.00 (no effect on expected
cell frequencies). (See Davis, 1974, for a detailed discussion of determining
degrees of freedom in multivariable log-linear models.) The larger the
L? relative to the available df, the more the expected frequencies depart
from the actual cell entries. Hence, we conclude for large L? that the
hypothesized model does not fit the data well and should be rejected as
an inadequate representation of the relationships among the variables,
Note that this testing strategy is the opposite of the one usually taught
in conjunction with traditional chi-square tests of independence in two-
way tables and thus might cause some confusion about the decision-
making procedure. In the usual chi-square test of independence, we seek
to refect the null hypothesis of no association between the variables; hence,
we hope to find a large x° value relative to df. But in trying to find the
best-fitting log-linear or logit model to describe a crosstabulation, we
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hope to accepi the hypothesized model; hence, we want to find a low L*
value relative to df,

One further caution about statistical testing: An acceptable log-linear
model is one whose expected cell frequencies do not significantly differ
from the observed data. As a result, the analyst has a difficult choice to
make with respect to the level of Type I error (alpha) she or he is willing
to choose. Typically in trying to generalize sample results to a population,
we set alpha very small—such as p = .05 or .01-—not wishing to conclude
that a relationship exists unless strong evidence is mustered that the null
hypothesis is wrong.

But the strategy of finding the “best” fitting model impels greater
interest in Type II error (beta), over which less control is possible. We
want to identify the one model which contains all the true relationships,
but if Type I error has a high probability we are likely to omit effects from
the model which exist in the population. Type I errors can be reduced
by either increasing the sample size (often infeasible, especially with
secondary data sets) or by increasing the chances of Type I error. The
second alternative poses the dilemma of potentially including relationships
in the model which should not be included since they reflect only sampling
variation, Probably the most frequent soluiion to this problem is the
decision to accept a model as fitting the data if the probabitity of a Type 1
error lies between about .10 and .35. At higher probability levels, the
model may involve “too good a fit,” that is, include unnecessary param-
eters (Bishop et al., 1975: 324).

To illustrate the model-testing process, we will evaluate each of Em
five models for the two-way data in Table 1. The results are shown in
Table 7. All except one of these models have L* values too large to be
acceptable. Only the saturated mode! 1, which fits the data perfectly but
uses all the degrees of freedom, tells the story. Notice that to evaluate a
saturated model, we must compare its fit to that obtained by a non-
saturated model omitting the full interaction term (i.e., compare model 1
to model 11). This intermodel comparison strategy is explored in the
next section.

B. Comparisons of Different Models of the Same Data

Hypotheses can be understood as explicit comparisons between alter-
native models fitted to the same data. The five models for the vote-by-
membership crosstabulation (Equations 1 and 11 to 14) can be compared
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TABLE 7
Comparisons Among Models for Data in Table 1
Effect Parameters Likelihood
Fitted i
Ratic
. A" i Vi
iodel M

odel arginals n Ty 74 T41 L? c.f. 3

1 {vm} 33166 1.37 083 080 000 0O -
11 {v}{m} 33525 143 o077 100 66.78 1 <.001
12 {v} 346.30 143 1.00* 1.00* 160.22 2 <.001
13 {m} 356.51 1.00* 1,29  1.00* 240.63 2 <.001
14 {} 368.25 1.00* 1.00* 1.00* 334.07 3 <ol

*Set to 1.00 by hypothesis.

two at a time to test several hypotheses about effects present in the data.
These hypotheses are not independent of each other, however, Because
there are only four independent parameters, yet 10 possible comparisons
(hypotheses) among the five models, it is clear that the comparisons
overlap. For example, the results of comparing Equation 11 with 12
(a test of M) is obviously not Emmﬁm:&msﬂ of the results of comparing
Equation 13 with 14 (also a test of 7, though in this case the effects of V
are not controlled). While many hypotheses are possible, we will consider
two fundamenta!l questions which couid be answered with the L* values
in Table 7.

Independence hypothesis. The most usual and plausible question to
ask of the data in Table I is whether the vote turnout and organizational
membership are independent. The traditional chi-square test could show
that the two are not independent, as the second line in Table 7 shows. But
in a formal test of the independence hypothesis, we are in fact comparing
the results of model I with model 11. The difference between these two
models, mm can be seen in contrasting Equations 1 and 11, is the presence
of the 73 in the former but not the latter. If the two Boam_m give different
L%s, it can only be because the tau parameter for the two-variable associa-
tion reflects a significant covariation of these variables. Substantively, the
odds ratio which compares the odds on voting turnout among non-
members to the turnout odds among members must differ significanily
from 1.00 (the “no effect” value of tau in the multiplicative version of the
general log-linear model).

The test of the difference between the two models substracts the L
values and compares it to the difference in degrees of freedom. This
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difference in 1.7 is also distributed approximately as a chi-square variable
with df equal to the difference in df’s between the two models. For the
particular example, Table 7 shows AL = (66.78 - 0.00) = 66.78 and Adf =
(1 - 0) = 1, Lighly significant at less than .001. Thus, we reject the null
hypothesis and conclude that vote turnout and membership are signifi-
cantly related in the population from which this sample was drawn,
(Practically, we should deflate the L’ value by one-third to take into
account the non-random sampling design employed by the General Social
Survey [see Stephan and McCarthy, 1958]. However, since our analyses
are merely illustrative, we conveniently ignore this modification. The
substantive conclusions would remain unchanged in this insiance.)

Equal marginal distributions hypothesis. These two hypotheses can be
easily handled within the log-linear framework, although their substantive
value for this particular example is nil. Compare mn_cm:osm 1t and 12.
Their difference is the hypothesized absence of the ™ parameter in the
latter. The term’s value is a function of the odds on not belonging to any
voluntary association relative to belonging. To the degree that non-
members are in the minority, the observed marginal odds will depart from
1:1, hence the 7 term will be less than 1.00. Whether this departure is
significant depends on the difference between the likelihood ratio test
statistics for the two models differing only in the presence and absence
of this parameter. Since AL? = 93.44 for Adf = I, we readily conclude that
the marginals are not equally split on the membership variable. A similar
decision for the equal-marginal distribution hypothesis on voting turnout
can be calculated.

The two types of hypotheses tested above are simple hypotheses about
the effects of single parameters. More complex hypotheses could be
tested in which entire groups of parameters are compared simultanéously
between two models. For example, by comparing model 14 to myodel 11,
we can test both marginal inequalities at once. (What decision would
we reach?) But the more frequent application of incremental testing is to
determine whether specific parameters are required to provide acceptable
fits of the model to the observed data.

C. More Complex Models: Polytomous Variables

We have already looked brietly at the four-way table of vote, member-
ship, education, and race using equations with the voting logit as a function
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of the other three. A closer look at several additional features of this

multiway analysis is warranted. Consider mnm_” \%a aﬂ:m:os moH. a mmﬂﬁwmﬁma

general log-linear model: : : B Ay
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Incidentally, this mam_.wo_do-_oo_c:m equation underscores the advantage
of the fitted-marginal notation; the same model can be represented com-
pactly by { VMER}.

Mote that, in contrast to the two-variable Equation !, several param-
eters are present to represent possible interactions among three and four
variables. Such interaction terms may be concepiualized as conditional !
relationships: The magnitude of the odds ratio between any pair is con-
tingent upon the level of the third or fourth variables. For example,
dﬂmx can mean that the association between educational level and member-
ship varies with respondents’ race, or that racial differences in education
vary with membership level, or that membership rates by race are con-
tingent on education. Which interpretaiion a researcher chooses to em- :
phasize in the substantive example depends on the theoretical questions
motivating the research.

From a statistical viewpoint, an interaction effect is a function of a
ratio of odds ratios. When the odds ratio between a pair of variables at |
the first level of a third variable differs from the odds ratio at another level ;
of the third variable, then this “odds ratio ratio™ will depart from 1.00. :
However, if the odds ratio of the two variables is constant across cate- ;
gories of a third variable, then the tau parameter for the interaction will ,‘
equal 1.00. As with other effects, restrictions are placed on three-variable _
taus; for example:

F
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VMER
ﬂcw ﬁt /:2
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VMR _ VMR _ VMR _ VMR . VMR
T 111 Ti22 212 T Tam M
R R | ,,
VMR VMR VMR VMR ~ :
T2 Ti21 Tat1 T232

[19]

That is, when all three variables are dichotomies, only one independent
value of the effect parameter will be calculated and either that value or its
reciprocal will apply to alt eight combinations of the three dichotomies.

/

MH 1o R G

Mhiﬁ.)ﬂ);.j H/O

/an e
/ .a@,
RUCTIR St

33

A further complication in model 18 arises from the inclusion of a
variable, education, which is a polytomous variable (a trichotomy). Recall
that tau parameters for dichotomous variables were functions of one
numerical value: either that value or its reciprocal. But a trichotomy has
two degrees of freedom and hence two unique effects {or thetr reciprocals)
must be calculated.

The three 7¢ parameters might be estimated several different ways,
depending upon which of the three categories was chosen as the “baseline”
from which to measure the odds. For example, one odds could contrast
respondents in the first category (less than high school) with those in
category two (high school grad). A second odds would relate the first
category to the third (college). Both odds are independent of each other.
But the third odds, contrasting categories two and three, could be derived
from the other two odds. The ratio of the first odds to the second odds
yields the odds on being college educated relative to being less than high
school educated. Thus, there are only two independent odds which can
be estimated with three categories. More generally, given K categories,
K-1 different parameters or their reciprocals need be calculated.

In deciding which odds to calculate for estimates of the taus in Equation
18, we take advantage of the fact noted in Chapter 2 Section A that tau
parameters represent the ratio of the number of cases expected in one
category of a variable to the geometric average of the number expected
in all categories. Thus the three ri’s can be computed as:

E 18
g} 222 iji1 -0
AN @, R F )P 1201
) (Fii1 Fijo1 Figan)
1/8
g | 222 Fin a1
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The 7 (pi) notation indicates multiplication of terms. Note that each tau
is the reciprocal of the product of the other two, insuring that the joint
product equals 1.00:

S [23]

Just as with the saturated model 1 for the two-way table, the saturated
model 18 for the four-way table can give rise to simpler nonsaturated
models by setting some of the tau parameters-a priori equal to 1.00 (no
effect). Even with just four variables and hierarchical models, a very large
number of models can be evaluated. Table B presents summaries for
some of these models, using the fitted-marginal notation. Making the
substantive assumption that voting turnout, V, is the variable whose
patiern we are interested in explaining as a function of the other three
variables, each model fits the {MER]} marginal table among these three.
This is the procedure for logits that we outlined earlier in Chapter 2.
The other fitted marginals, then, all involve V with one or more of the
independent variables. In the next section we will discuss hypothesis
testing to identify the besi-fitting model of these data, but first we take
up the matter of determining degrees of freedom in multivariable cross-
tabulations.

To compute the degrees of freed om associated with a model, the number
of categories of each variable must be known. In a four-way table with
categories I, J, K, and L, respectively, the total degrees of freedom avail-
able are the total number of cells in the table less one or (I)(H(K)(L)~ 1.
In the example (M)(E}(R)(V) ~ 1=(2)(3)(2)(2) - 1 =23 degrees of freedom
available. A saturated model, of course, always has no available df since
all conceivable parameters are free to vary in fitting the data precisely.
As the number of parameters to be estimated from the data are reduced
(by setting the corresponding taus equal to 1.00, hence the betas equal
to 0) df's for testing the model are increased by the equivalent number.

Therefore, to determine df for any given model, we need only consider
the variables included in each effect required for the model, count the
number of categories in each, subtract one from each number, and multiply
the _moﬁ. For example, take model 28, fitting marginal tables {MER} {MV}
{EV}. For the first subtable, membership and race both have two cate-
gories, education has three, so the number used is (2-1) (2-1) (3-1) = 2 df
to fit this subtable. Since vote is a dichotomy, {(MV} uses up (2-1) (2-1)=1
df, while { EV } requires (3-1) {2-1) = 2 df. But remember that within higher
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TABLE 8
Some Models for Data in Table 3
Model Fitted Marginals L2 d.f. p
24 {mer} {v} 104.23 11 .00
25 {MER} {Mv] 37.44 10 00
26 {MER} {EV} 51.82 9 .00
27 {MER} {RV} 102.21 10 .00
28 {meER} {mv} {EV] 10.96 8 20
29 {MER} {MmVv} {RV} 36.74 9 .00
30 {meR} {ev} {RV} 51,11 8 .00
31 {mMER} {Mmv]} {ev }{rv]} 10.66 7 a5
32 {MER} {MEV]} {RV} 7.83 5 A7
33 {mER} {mRV} {EV} 10.06 6 a2
34 {MERT} {ERV } {mVv} 4.76 5 45
35 {mer} {meVv }HERV) 2.07 3 >>.50

order relationships are nested the lower order relationships, in this case
{ME}, {MR},{ER}, {M}, {V},{E}, and {R}, which consume 2, 1,2, 1, 1,2
and 1 additional df, respectively. Hence, 15 df"s are used up in fitting this
model. Since the total available is 23, the remaining df’s for testing the
model are 8. As a check, we can also calculate the df’s for the marginal
tables nor fitted by the model. {RF Yhas | df, {MEV } has 2, MRV }has 1,
{ERV }has 2, and {MERYV } has 2 which add up to the 8 degrees of freedom
for testing the model. As expected, the two sets of df sum to 23 for the
four-variable example.

3. More Complex Hypotheses

Many hypotheses about the effects of membership, education, and race
on voting turnout might be examined using models such as those presented
in Table 8. In substantive research, a data analyst’s choice of models to
investigate will typically be guided by theory and previous empirical
findings. In the absence of explicit a priori hypotheses about the relation-
ships among variables, one can still design a strategy model testing to
locate the best fit to the observed data. Two general approaches seem
most prevalent. One approach starts with the saturated model and begins
successively deleting the higher order interaction terms wntil the fit of
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the model to the data becomes unacceptable by whatever probability
standards the analyst has adopted. The second approach starts with the
simplest model, such as one which fits only the one-variable marginal
tables, and successively adds increasingly complex interaction terms until
an acceptable fii is obtained which cannct be significantly improved by
adding further terms. Ideally, both approaches converge upon the same
hypothesized model as the best explanation of the observed relationships
among variables. Our personal preference lies with the second approach,
since it treats more parsimonious models as the starting point. Adding
more complex relationships to simpler ones clearly reveals the hier-
archical siructure of the estimation methods we used for log-linear models.

Since we have already designated voting turnout as the dependent vari-
able in the four-variable cross tabulation, a useful beginning model is one in
which none of the independent variables has a significant relationship with
the dependent measure. If this model provides an acceptable fit, no addi-
tional tests will be required. The model for tesiing this hypothesis has the
general form of two fitted marginal tables:

{ all independent variables}{the dependent variable }

or, in the specific example, {MER}{V}.

The fit of this model is tested against the alternative in which the de-
pendent variable is allowed to interact with all the independent variables.
This alternative, of course, is the saturated model, or {MERWV} in the
example. If the difference in L? relative to the difference in df is significant,
we conclude that one or more independent variables (or their interactions)
significantly affects the dependent variable and must be included in the
final model we select.

For the four-variable table, the relevant comparison is between mode!l
24 in Table 8 and the saturated model (not shown, since it has no df and
L’ = 0.0). Since the difference between these two models is AL? = 104.23
for only Adf = 11, we must reject model 24 and conclude that voting is
indeed related to one or more independent variables.

The next set of models to be examined each add a single bivariate
relationship involving voting turnout. Models 25, 26, and 27 are compared
to model 24 to decide whether membership, education, and race, respec-
tively, have significant effects on turnout. As before, the statistical criterion
is whether the decrease in L? relative to the loss of degrees of freedom in
estimating the additional parameters is significant (at & = .05 in this case).
Even if none of these models fits the four-variable table at an acceptable
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level, we can still determine whether specific two-variable effecis must be
included in subsequent models.

Both {MV} and {EV} substantially reduce the L* relative to their cost
in degrees of freedom to fit these additional effects, although neither
model 25 nor 26 yields an acceptable overall fit to the data. We conclude
that turnout is significantly related to membership and to education in the
four-way crosstabulation. However, the addition of {RV] to model 24
reduces L* by 2.02 for one df, not a significant improvement in fit. We
conclude that voling turnout is unrelated to race,

The search for the best-fitting model continues with models 28, 29,
and 30, cach of which includes two of the three possible bivariate relation-
ships involving the turnout variable. The amount of improvement in fit
relative to df for these models is determined by comparisons to the pre-
ceding three models which contained only one bivariate marginal table.

As we should expect, neither model 29 nor model 30, both of which
include the {RV } marginal table, significantly improves the fits obtained
with models 25 and 26, respectively. Clearly, we will not find a significant
impact of race on turnout. However, model 28 when compared to both
models 25 and 26 shows a substantial drop in L.? relative to df. Thus, even
with one bivariate relationship held constant, the other bivariate effect is
signficant, More important, model 28 gives an excellent overall {it to the
full four-way table. Substantively, this model indicates,that membership
and education each affect turnout, net of the effects of each other. Our
only remaining question is whether additional, higher order interaction
terms must be included as well. Note that model 31, when compared to
model 28, once again demonstrates that race is unrelated to turnout.

Given three independent variables, three trivariate interaction terms
can be formed that involve voting turnout. Models 32, 33, and 34 each
contzin one of these interaction terms plus the two-variable marginal
not subsumed within the interaction (to insure the hierarchical structure
is preserved). The appropriate tests are conducted by comparing the
amount of improvement in fit of each model relative to model 31. Although
all three models provide acceptab!le fits to the data, neither the {MEV} nor
the {MRV} interaction significantly improves ihe fit over the more parsi-
monious model 31 (nor are they superior to the even simpler model 28,
for that matter). Model 34, however, which tests the {ERV} interaction,
is more problematic. Compared to model 31, AL® = 5.90 for Adf = 2. This
difference is significant at the .06 probability level.

We may well wish to conclude that this interaction of education and
race on turnout is essential to represent the relationships generating the
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data. But if we adhere strictly to statistical critieria and try to avoid Typel
error, we will reject model 34 as not significantly better than either model
31 or model 28 and hence accept the hypothesis of no interaction effects.
We seem to have encountered a gray area in which our conclusions may
be influenced as much by the substantive aims which motivate the research
as by strict statistical reasoning. Our own preference, in the absence of a
confirmatory analysis with another sample and in the absence of any
compelling theoretical argument for expecting that particular three-
variable interaction, would be to choose the more parsimonious model
28, (MER} {MV}{EV}. That model gives a satisfactory fit to the full
crossiabulation without resort to a complex three-variable interaction.
It also omits the race-turnout effect which is known to be trivial, but which
would have to be included in model 34 because it is subsumed in hier-
archical relation to the {ERV] term. Perhaps a replication of this analysis
on another data set from the General Social Survey would help resolve
the question.

E. An Anslog to Multiple R? for Large Samples

In our experience, using the L tests of model significance works reason-
ably well as a guide to locating imporiant effects in crosstabulations when
the sample size is no greater than that for most national surveys (about
1500 cases). However, at times analysts will be interested in studying much
larger data sets, such as census reports on the entire national population.
The problem in judging best-fitting models is that L? is proportional to
M. Hence, with potential samples in the hundreds of thousands or millions,
virtually the only model which will be found to fit the data is the saturated
model, even when some of the higher order interactions are very small,

To overcome this problem for large samples, analysis may approach
model selection with an analog to the coefficient of determination (R?)
for multiple regression. A “baseline” model is selected whose 1.* will serve
as a standard against which to judge the improvement in fit obtained
by S..Ssm more complex alternative models, The baseline L? indicates
the amount of variability in the data not due to factors already included
in the model. When the proportion of the baseline L? accounted for by the
alternative model is high (say, 90% or more), the alternative may be judged
to provide a satisfactory fit to the data even though strict statistical tests

4]
TABLE 8
Crosstabulation of Oscupation, Sex, and Race, 1970 {thousands)
CGecupation White Men White Women Black Men  Black Women

Professional and

Managertal 13,185 5,268 425 379
Clerical and Sales 5,865 11,687 436 712
Crafts 8,985 207 606 25
Operatives, Leborers,

and Service Workers 13,343 8,739 2,623 2,187
Farmers and Farm

taborers 2,267 378 191 18

SOURCE: Current Population Reports Series P-23 No. 37, 1971. “5ocial and Eco-
nomic Characteristics of the Population in Metropolitan and Nonmetropolitan Areas.”™
Table 14, pp. 60-62.

indicate significant departure from expected frequencies under the alter-
native model. The R* analog is:

QLN baseline model) - QLN alternative model)
QLN baseline model)

[24]

To illustrate the usefulness of this technique, we analyze data from
a census report on the occupational distribution (J) of sex (S) and race (R)
groups in 1970, as shown in Table 9 where the cell frequencies are thou-
sands of persons. In choosing a baseline model our preference is to fit a
model consisting of only one-way variable distributions, in this case
{J3{S}{R}. The baseline L* = 30,905 for 13 df. Several two-variable alter-
native models reduce the L*; {JR}{SR} hasand L= 15,431; {JS} {SR} has
anL?=9,562; and {JS} {JR} has an 1.2 = 3,706. These three models account
for 50%, 69%, and 88%, respectively, of the baseline model variation.
While substantial, no percentage is so large as to suggest that any of the
three models accounts for the complete patiern of observed frequencies.
However, when the full set of two-way marginals is fitted, {JS}HJIR}{SR},
its L = 1,846 (for df =4), which captures 94% of the variation in the baseline
model. Substantively, the mode! shows that occupations are differently
distributed by sex and by race, but that sex differences are similar within
race and race differences are similar within sex. {SR} means that the sex
ratio differs between the races. The proportion of variation explained i
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large enough to conclude that this model provides an acceptable fit to the
data and that the interaction implied by the saturated model accounts for
only 6% of the baseline model variation and that is small enough to ignore
(though it is statistically significant).

4. APPLICATIONS TO SUBSTANTIVE PROBLEMS

The potential uses of log-linear models are virtually limitless, Any cross-
tabulation can be analyzed using the basic techniques outlined in the
preceding sections. In this section we touch upon a half-dozen applications
which have fairly general appeal. Although each topic could be presented
in greater detail than the present format permits, we hope our brief dis-
cussions convey the wide range of possibilities which readers may wish
to pursue on their own.

A. Causal Models for Log-Linesr Models

In describing how log-linear techniques may be adapted to test models
of causal relationships among categoric variables, we shall assume the
reader’s familiarity with recursive causal models (those that include no
*loops” or reciprocal effects between variables) in both their equation and
path-diagram conventions. Basic expositions are available in Duncan
(1966, 1975a) and Asher (1976). Goodman’s (1973a, 1973b, 1979) efforts to
draw a parallel between path analysis and a log-linear causal modelling
have met with some success. The analogy breaks down however in (1) the
inability of the log-linear version to assign single values to causal paths
when polytomous variables are involved and {2) the calculation of the
magnitude of effects along indirect paths between variables. Still, the
causal analogy is sufficiently appealing to allow a tempered use of the
method whenever a well-reasoned hypothesis can take advantage of uni-
directional causal sequences among the variables.

The key to 2 causal model of relationships among variables is a diagram
of recursive effects. In a causal diagram such as Figure 1, variables posited
as causal antecedents of others are placed to the left of consequent vari-
ables. Single-headed arrows point from cause to effect. Variables among
which no causal ordering can be posited are joined by curved two-headed
arrows and must appear only on the left side of the diagram. Our causal
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AGE
> CIVIL
EDUCATION > LIBERTIES
ATTITUDE
REGION

Figure 1: Causal Model Diagram

mode! was motivated by several assumptions: that nmmmo:a.o:ﬂm. ages
(indexing their generation) and regional woomao.z were ?ﬁozom_. deter-
minants of the amount of formal schooling received; :S.ﬂ .oac.om:_o? by
exposing people to democratic values and norms of ﬁo:to.ﬂ tolerance,
induces support for civil liberties; and, that both mn.:wnm.:ozﬂ mmn.ﬂ.cam
and regional culture have independent mﬂmc.nsgm on .mu::_ liberties cn_.:&m
apart from education. We made no a priori mmmcaﬁ:.owm ..ﬂ:ucc.ﬁ possible
interaction effects of the three antecedent causes of civil hiberties prefer-
ences, but our analysis will be open to testing for their presence. .
The causal model was tested on daia from the 1977 Qm:ﬁ.m_.woﬁm_
Survey. For purposes of this illustration all ma.::. measures were .&5#03-
mized (though see Bishop et al., 1975, for a discussion Om.ﬁoﬁoa:m_ prob-
lems in dealing with such collapsed tables). Age was split at age 39 and
under. Region was split between the South (including border states) m.sg
the rest of the United States. Education was divided cﬁénon.gom& s...:r
high school or less and those with at lcast some oozmmo. Finally, 9.<:
liberties attitude was operationalized as agreement or disagreement with
one of the items used in Stouffer’s (1955) classic study of ﬁo_mqmsﬁw” “Should
an admitted Communist be allowed to deliver a speech in your com-
munity?” ; .
The causal analysis of the data in Table 10 a&n_..m ?on._ the usual logit
model (which is more akin to regression analysis with a single dependent
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TABLE 106
Crosstabulation of Age, Region, Education, and Civil Liberties

Communist Speaker
—— T TR
Age

Region Education AHow Mot Allow

Young South No College 72 71
Young South : Coilege 55 22
Young Non-South Mo Coltege 161 g2
Yaung Non-South College 157 25
Old South No College 65 162
Old South College 23 23
Old Non-South MNe College 197 214
Old Nan-South College 107 32

NOTE: Age dichotomized at 39 years and under, 40 vears and older. Education dichot-

omized at 12 vears or less, 13 vears or maore. South is all states in Census South and
Border States,

variable and several independent variables). Causal modelling must take
into account the temporal ordering among the four variables, fitting a
succession of models to various “collapsed” tables consiructed from the

- full table in a specific manner. We proceed in a series of independent steps,

the results of each of which can be put together at the end. :

Starting at the left in the diagram, we first form the two-way table of
age by region and fit a series of log-linear models to determine whether
these two “predetermined” measures are related to each other. Since
{AHR} has L2 = 03 for df = 1, we conclude that the two variables are in-
dependent and should not be connected inthe diagram by a double-headed
curved arrow. The odds on being young are roughly the same both in the
South and outside the South.

The next step in finding the best-fitting causal explanation is to analyze
the three-way subtable formed from the two predetermined variables and
the first dependent variable in the sequence, education. Even though the
age and region variables were found in the previous step to be independent,
the logit model we are estimating requires that the marginal table for all
causal antecedents be automatically fitted. Hence, analyses of the causal
structure of the age-region-education subtable must include the {AR}
marginal table. The only models to be tested are those involving the
relationship of education with the two antecedents, as shown in Table 11,
Both the age-education and region-education associations are significant
and required to fit the data, but the three-way interaction is not essential.
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TABLE 11
Models Fitted to Three-Way Crosstabulation of Age, Region,
.and Education Formed by Collapsing Data in Table 10
Fitted Marginals L2 ¢ B
{ar}{E} 61.00 3 .00
{AR} {RE} 51.71 2 .00
{ArR} {aE} 10,58 2 .01
{AR}(RE} {aE} 0.76 ] .38

The model for this step is thus {AR}MRE}{AE} and has L2 = .76 with

= 1.
a Finally, the third step in the analysis sequence treats the o%& liberties
attitude as the dependent measure, fitting the three-way marginal {ARE}
in the process of identifying the best logit model to explain the observed
frequencies in the full four-way table. Table 12 shows the results H,woz.._ the
series of possible models. Once again we see that all three two-variable
effects on the civil liberties item are necessary but that adding any three-
way interactions would not significantly improve the already wxoa:mdm
fit provided by {ARE}{RS}{AS} {ES}. This model has 1.2 = 2.92 with df = 4.

At this point we cumulate the results of the above analyses. .ﬂ.o recur-
sive causal model which best represents the data in Table 10 is the sum
of the models for the successive two-, three-, and four-way crosstabu-
lations. This model fits the marginal tables {A}{R} AR} {RL} {AE}{RS}
{AS}{ES} and has L* = (.03 + .76 + 292) =371 withdf=(1+1+4)=6,
Parameter estimates for the causal effects are the beta coefficients from
the logit model described earlier. These are shown in ﬁmmsﬂ 2 with the
final causal diagram. Since the entire system is composed of m._mrogaocm
variables, the single betas for each partial relationship may be interpreted
as effects of the independent variables on the odds (logged) of the de-
pendent variables. Thus we can see that older persons tend tc have lower
education, while those living outside the South have a greater n&ﬁﬂoo.ﬁa
some college experience. The odds on holding a tolerant civil liberties
attitude are raised by college education and living outside the South but
are lower among older persons. Unlike path coefficients for systems of
quantitative variables, we cannot legitimately muliiply .::w mmﬂrm.rmfzm
age or region to attitude via education to estimate the size of the indirect
causal effects. But by noting the signs of these compound paths, we can
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AGE
/ 37
_ - 41 .54 CiVIL
EDUCATION : > LIBERTIES
\ +.40 ATTITUDE
REGION

Figure 2: Final Causal Model

TABLE 12
Models Fitied o Fou r-Way Crosstabulation of Age, Region,
Education, and Civil Liberties Attitude in Table 10

Fitted Marginals L2 d.f. p
{ARE1 {s] 200.48

{ARE}{RS} 149.57 M .Nm
{ARE }{as} 138.48 6 .oo
{AaRe}{ES} 87.75 6 .oc
{ARE }{Rs} {as} 84.72 5 .oc
{ARE} {Rs}{es} 44.74 5 .oo
{ARE } {Aas}{ES} 48.69 5 .
{ARe} {Rs}{as}{Es)} 2.92 4 V.M“

see that ::w. indirect effects of the two predetermined variables operate i
the mm.Em.a:no:os as do the direct causal paths. We can also WOB E.s
the magnitudes of the betas for direct effects (since both are in the mﬁm:% M
w.on,E of odds ratios) to judge the relative importance of the causes mmcww-
:o:.wmm somewhat greater direct impact on civil liberties m::c.a th
do cither of the other two variables. © rhan
Our om:mmw exploration of these variables uncovered no interaction
terms which were significant. Had such marginal tables been required
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to fit the data, their representation in the causal diagram could have
taken one of two forms: (1) the letter symbols of the two (or more) inter-.
acting causes could be placed inside a circle, with an arrow drawa from
the circle to the dependent variable involved in the interaction, or (2) inter-
action can be depicted by drawing an arrow from one of the independent
variables to the midpoint of the arrow connecting the other independent
variable to the dependent symbol. If many interactions are present, use
of the first convention should result in a less cluttered-looking diagram.
While we emphasized causal analysis involving dichotomous variables,
nothing in theory prevents extension to polytomous variables, However,
with three or more categories, three or more beta coefficients are produced
and their representation in diagrams can becoeme cumbersome. At this
point the analogy to path analysis with standardized regression coefficients
begins to break down and perhaps this accounts for the resiriction to
dichotomous variable models in practice.

B. Analyzing Change Over Time

As the social sciences mature, the availability of time series data on
individuals increases. The capacity to study individual change in social
behavior with log-linear methods has not been fully explored, but several
basic techniques have been established. In this section we will touch upon
applications to two forms of survey data: (1) the comparative cross-section
study in which two or more survey replications are conducted but not
necessarily with the same set of respondents and (2) the panel survey, in
which the same individuals are reinterviewed on the same items at iwo or
more points in time. Much work on methods of analysis for quantitative
measures is generalizable to the discrete variable case.

Comparative cross-sections. When the same set of items are measured
by surveys conducted at two poinis in time, a fundamental question is,
“Do these variables covary to the same extent across time?” With quanti-
tative measures we might atternpt {o answer this question by looking at
the size of the correlations, regressions, or variance-covariance matrices,
perhaps using methods developed by Joreskog (1970). When categoric
measures are involved, the effort to answer the question takes the form of
comparing the odds or odds ratios from the different surveys and fitting a
single log-linear model to frequencies from all data sets. The unique
feature from a comparative cross-sections analysis is the explicit intro-
duction of a variable for time (T). To the extent that T is associated with



one of the substantive variables, the marginal distribution of that variable
has changed over time. To the degree that T interacts with two or more
substantive variables, the magnitude of the association between these
variables has changed significantly,

Our illustration of the comparative cross section analysis uses General

vote (V), and time (T) is shown, The distributions reflect the well-known
defection of Democrats in 1972 to Nixon, with 197¢ restoring the more
typical pattern of partisans voting overwhelmingly for their party’s candi-
date and Independents roughly evenly split.

out the three-variable mteraction, and comparing the results to the satu-
rated model, which fits the data perfectly. The model {TP} {(TV}HPV} has
L2 = 1.88 with df = 2, Hence, the best-fitting log-linear model need not

include the Interaction effect, TPV, thus E&ommsm no significant change

Table 13. Expected frequencies for the {TPHTVHPV} model are given
in Table 13. The two bivariate relationships, TP and TV, have substantive
interpretations. ‘They indicate that it is the marginal distributions of the
vote choice and of party identification (within categories of the other
variables) which change between times of measurement.

Two-wave panels. When respondents are reinterviewed with the same
items at a later pointin time, the surveyisa two-wave panel. Qurdiscussion
in this section will be confined to the analysis of change in one variable
between the two observation periods, although we realize some of the

On this latter topic, the reader is advised to consult articles by Goodman
(1973, 1979) and Duncan ( 1980). Our analysis focuses on so-called
“square tables” (in which the number of categories in the row and column
variables is the same, i.e., a K X K table), which is typical not only of
patel data but also such substantive problems as occupational mobility
and comparisons of Spouses’ responses.
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TABLE 13
Crosstabulation of Party Identification,
Presidential Vote Choice, and Time

Observed {Expectad)
Prasidential Vote Choice

Time Party ldentification Democrat Repablican

1972 Democrat 290 (295.27}) 136 (130.73)
1972 Independent 98 (92.15) 198 (203.85)
1972 Republican 13 {13587 250 {249.43)
1976 Democrat 380 (374.73) 67 (72.27)
1976 Independent 123 {128.85) 130 {124.15)
1976 Republican 28 (28.43) 227 (227.57)

When first- and second-time measures of the same variable are cross-
tabulated in a square K X K table, one obvious statistical test to perform
is the test for independence. Yet this test is really uninformative since we
typically expect most individuals to remain in their initial staies {cate-
gories), particularly if the time between observations is fairly short. Thus,
to learn that there is an association between the measures at two points
in time does not tell us much about the nature of the changes which do
occur. There are three models which can be fitted to the data and which
yield greater insights into the patiern of changes over time, It is these which
we shall discuss. These models can be used to test the hypotheses of mar-
ginal homogeneity, symmetry, and quasi-symmetry, or Hwmu, Hs, and
Hgs for short. Below we give explicit meanings to these hypotheses and
show how L? values to test these models can be derived directly or in-
directly from various log-linear specifications.

Marginal homogeneity is easiest to state. A square table has homo-
geneous marginals if the corresponding row and column marginal distri-
butions are equal; that is, if £, = f;. Unfortunately, we cannof write a
simple log-linear model for the expected values of the internal cells of
the table for this model. Instead we must approach marginal homogeneity
in a round-about way, taking maeﬁ.:ﬂwm@ of the fact that there is a known
relationship among the three hypotheses: Hmu, Hs, and Hgs. Before
looking at this relationship, let us first present the other hypotheses of
symmetry and quasi-symmetry.

Symmetry is said to exist when the patiern of changes between cate-
gories is exactly balanced. In terms of a square table, if f;; = f; for i # j (for



50

all off-diagonal‘cells), then a table has a symmetrical pattern. “Folding”
the .:..Em along the diagonal would show identical frequencies ? the ocﬁ.mu
muo.s%wm cells. For example, in mobility studies in which father’s occu-
u.@mnmos 1s crosstabulated with son’s occupation, a symmetric table would
indicate not only equal amounts of upward and dewnward mobility, but
upcm_. patterns of such as well. Note that symmetrical tables must &m.ﬁ_m%
marginal homogeneity since rows and columns having identical entries
must have .E@saomw sums. But marginal homogeneity does not imply
mf.:sanﬂ.é since identical sums can be reached in numerous different ways.
Maximum likelihood estimates of the expected cell frequencies, F;
under _::w symmetry hypothesis for a square table are easily owammzmm ww
averaging the two appropriate observed frequencies:

Fy= Fi=(f+ )/ 2 P . [25]

Since the diagonal cells are not involved in the hypothesis, the degrees
of freedom are equal to half the number of off-diagonal cells (cell entries
m.co<m the diagonal are not independent of those below the diagonal, and
the diagonal cells are ignored): df = k (k-1) /2. The likelihood qmmo. chi-
square test statistic takes the form

2
L™ =2 37 f; Ln(f,/F;) [26]
i#j
which expresses the summation only for the off-diagonal cells.

An .mzo_.sm:ﬁ (but identical) representation of the symmetry hy-
ﬁoﬁ.ﬁ.ﬁm through a log-linear model proceeds as follows. First, remove
the diagonal cells from consideration. Split the remaining cells u::o two
groups, an upper triangular matrix and a lower triangular matrix. “Flip”
the upper triangular matrix over on its side so that it, too, becomes a
lower triangular matrix which conforms to the nom.wnmﬁonamum row and
column entries of the original lower triangular matrix. Putting these two
together we thus obtain a three-dimensional array from the original two-
way crosstabulation. For this let ¥ represent the first (row) measure, J
the second (column) measure, and M the two parts of the partition an:
naa.w .5.@ three-way table into a log-linear analysis in which the n..:mmmz u
entries in the upper right of each partition are represented as ..mq:ﬂ:wmm
zeros.” That is, the models to be fitted will place zeros in these cells for
expected values. (In terms of actually programming an algorithm such as
ECTA, structural zeros are designated by a table of “starting values™ in

‘which 0 eniries force the iterations continually to keep zeros present in
those cells.)
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Finally, to generate the expected cell frequencies which exhibit sym-
metry, the marginals fitted to this three-way data are {IJ}. Note the ab-
sence of any term involving M, the third variable created by splitting the
original X X K table into two triangular parts. As before, the L? value
obtained from comparing observed and expected frequencies should be
evaluaied against K(K-1)/2 df.

To illustrate the test for symmetry we examine data from the 1956-1960
Survey Research Center’s panel study of the U.S, electorate. Specifically,
we examine the 202 Catholic voters who reported a party identification
for both elections. Previous analysis of these data showed a noticeable
shift among Catholic voters away from the Republican and toward the
Democratic party, presumably as a result of John Kennedy’s candidacy
(Knoke, 1976). The top panel of Table 14 indeed shows this change in the
two marginals with both Independent and Republican categories de-
clining between 1956 and 1960. When the symmetry model is fitted to the
six internal off-diagonal cells, the expected frequencies are those shown
in the lower pancl of Table 14. For this hypothesis, L’ = 20.99, with df = 3,
which means we must reject the hypothesis that shifis in each direction
tended to cancel each other. :

Pursuing this example a bit, we first test whether the changes lie pre-
dominantly in one direction (toward Demecratic or toward Republican)
using the McNemar-like (see McNemar, 1962: 52ff) test statistic

3= (b -e)j(b+o) {27}

where b is the sum of the observed frequencies on one side of the diagonal
and c is the sum on the other side. Since X* = 15.7 for df = 1, we conclude
that there is a significant tendency for net change to occur predominantly
in one direction. Inspection of the table shows that to be in a Democratic
direction.

The question then arises as to whether a modified form of symmetry
holds in the table. That is, aside from the fact that there are fewer cases
above than below the diagonal in Table 14, is the pattern of cases above
and below the diagonal the same. The patierns are said to be the same if the
odds ratios among the cells above the diagonals are identical with the
odds ratios below the diagonal, even though absclute frequencies are
not identical. This modified symmetry hypothesis fits the marginals
{i{M} to the three-way data involving the structural zeros, thereby pre-
serving the total frequencies in each triangular part {(which was not the
case in true symmetiry) but allowing the marginal distributions to vary
freely. Table 15 presents both the observed frequencies and those expected
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) TABLE 14
Party identification of Catholics in 1956-1960 SRC Panel

1960 Party Identification
BPemocrat Independent

Republican

1956 Pariy
fdentification

Total

A. Observed Data

Democrat 100 4
Independent 19 10 i 105
Republican 11 9 MM 55
Total 130 43 9 mmm
;/

8. Symmetry Model
Demaocrat 100

11.

Independent 115 30 5 6 117.5
Republican 6 7.5 mw.m 49
..._|0Hm_ adﬂ.m 49 35 5 Mwwm

SOURCE: Knoke, 1974,

:wao_. ::.w modified Ssymmeiry hypothesis for the three-dimension displa
I.” for .n.r_m model .mm 4.36 with df = 2, 5o including the extra wmﬁmao_qu Wu.
mﬁ ?.m (i.e., w:os;:m change to occur predominantly in one direction)
significantly improved the fit, reducing the 1.2 by 16.63. This model
ports .::.. hypothesis that although the magnitude .Eq .ﬁrm shift HM M:ﬂ
w%im Is not the same, the pattern of the shifts is the same. That is, m:wowmr
EMH cM.MMMM: of change is unequal, there is Symmetry conditional on

O:mm_-mw.ﬁmﬁ:w in a square table means that the condition of symmetry

MSM:@G of the mmmﬁswxow.&. marginal homogeneity. Hence, the difference
Wm ween :g.m tesis for quasi-symmetry and Symmetry is a tesi for marginal

omogeneity. We have already seen how to test for symmetry. We turn
‘ROW Lo the test for quasi-symrnetry.

53

TABLE 15
Three-Dimensional Display of Data in Table 14

Shift Toward Republican

Shift Toward Democrat
{Above Diagonal)

{Below Diagonal)

1956 Paity 1960 Party 1960 Party
Identification Dem. ind. Toial Rep. ind. Total
A. Observed Frequencies
Independent 19 — 19 5] - 6
1 Q 20 1 4 5

Repubtican/Democrat
Total 30 9 39 7

B. Expected Frequencies Under Modified Symmetry

Independent 17.94 — 1794 5.06 — 5.06
Republican/Democrat 936 11.70 21.06 2.64 3.30 5.94
Total 2730 11.70 39.00 7.70 3.30 1100

To specify a log-linear model for quasi-symmetry, we “flip™ the entire
K X K table over on its main diagonal, entering both this rotated table
and the original table as a full three-dimensional array. Then the marginals
fitted to the expanded data are {IJ}{{M}{JM} using our earlier notation of
letting I represent the first (row) measure, J represent the second (column)
measure, and M represent the two parts of the partition. The procedure is
thus much like that in testing for symmetry except that the full table is
used rather than the two triangular parts, The model that is fitied to the
expanded data is also like the symmetry model though with the addition
that the row -and column totals are allowed to be different (through the
inclusion of the {IM} and {IM} terms).

Since the first table is a duplicate of the second, the expected frequencies
in both tables will duplicate each other, although in transposed order.
Consequently, the L? must be divided in half, as should the df to obtain
correct values for the test. Table 16 displays the expected frequencies for
the quasi-symmetry hypothesis. An excellent fit is obtained, with £.2 = 12
and df equal to (K ~ I) (K - 2)/2 = 1. Thus we conclude thai the panel data
approach symmetry, given unequal marginals in the two years. We are
now (finally) in a position to test the hypothesis of marginal homogeneity.
With the creation of the expected frequencies for the symmetry and guasi-
symmeiry models, we can obtain the L? for the hypothesis of marginal
homogeneity by subtraction. The difference in L? between symmetiry and
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TABLE 186
Expected Frequencies Under the Quasi-Symmetry Mode!

1956 Party 1960 Party idemtification

ldentification Democrat Independent Republican Totat
Democrat 100.00 3.73 1.28 105
Independent 19.28 30.00 5.72 55
Republican 10.72 9.28 22.00 42
Total 130 43 29 202

quasi-symmetry modeis is 20.87 and the difference in dfis 2. It is, thercfore,
reascnable to conclude that the marginal distribution of Catholic voter
party identification differs significantly between 1956 and 1960.

Generalizations of marginal homogeneity, symmetry, and quasi-
symmetry to three-dimensional data are possible (Bishop et al., 1975:
299-309). One of the more intriguing substantive applications was Hauser
et al.’s (1975a, 1974b) demonstration that intergenerational occupational
mobility in the United States has remained essentially constant despite
marginal changes in the distribution of occupations between respondents
and their fathers. Their method was to fit three-way log-linear models
to two or more occupational mobility crosstabulations in which the parent-
mw%q association, {PS}, was hypothesized to be time-invariant (that is,
T = 1.00). Data from five large studies of U.S. men confirmed this hy-
pothesis. The growing literature on log-linear applications to mohbility
includes recent articles by Hauser (1978), Goodman (1979d), and Duncan
(1979),

Markov chain models. A special hypothesis which may be applied to
categoric panel data of three or more waves is the test for a first-order
Markov process, or a Markov chain analysis. Although we cover only the
time stationarity hypothesis in Markov chains (explained below) as a
natural extension of the previous section on two-wave panel data to the
situation of three or more waves, the reader may, nevertheless, find this
section dense without some prior elementary knowledge of Markov
chains (see, e.g., Markus, 1979). When multiwave panel data are organized
as square contingency tables with the starting state (response at time t)
in the rows and the ending state (response at time t + 1) in the columns,
the transition matrix (containing the probabilities that persons in any
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given state at time t will be in some particular statc at time t + 1) can be
estimated by forming the proportions within rows, that is

Py = i/ f..

With data from at least three time points, there are two seis of transition
probabilities: those from time 1 to time 2 and those from time 2 to time 3.
Our first question of the data asks whether these two sets of transition
probabilities are equal, that is, they have not changed over time (time
stationarity hypothesis). If this hypothesis is supporied by the data, it is
possible to ask what will be the ultimate distribution of observations
among categories after a long period of time. The question can be answered
merely by raising the constant transition matrix to successively higher
powers. Since the long-run marginal distribution is independent of the
initial vector in a first-order stationary homogeneous Markov process,
we speak of the flow of population among the states as ahistorical: The
probability of a person’s movement between states over time depends
only upon the transition matrix (which is constant) and the state occupied
immediately before the transition. it does not depend upon more tem-
porally antecedent conditions.

To test for the time stationarity of the transition probabilities in a
Markov chain, we require at minimum three observations on each indi-
vidual, preferably at equally spaced intervals. Two crosstabulations are
formed and stacked into a single three-way table. These matrices have
the states occupied at the earlier observation period (F) in the rows and
the states occupied at the next later observation time (5) in the columns
with levels of the stack {T) corresponding to transition period. The cells
of the table contain the observed frequencies. The log-linear model corre-
sponding to the time stationarity of transition probabilities hypothesis
(that ending state is a function of starting state but not of time) is:

- F S T _ES _FT
Fik =w i 75 Te Tij Tik - [28]

In other words, the model {FS}{FT} should provide an acceptable fit to
the data if the stationarity hypothesis is correct. The {FT} term in the
model has the same function as the requirement that the transition proba-
bilities sum to 1.000 in each row (it makes the distribution of cases across
starting states irrelevant to the model). But, given the starting staie, F, the
ending state, S, is independent of the time of transition, T, hence the
i term is not included in the model.
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TABLE 17
Two One-Step Transition Matrices for Male Geographic Mobility

Origin Destination Ragion
Region MNortheast Maorth-Central Sauth West Total (N, }
i-

A. 1944-1857

MNartheast 9645 .0087 0122 G145 1.000 (3437

Morth-Central 0048 9575 D120 0257 1.000 (4160)

South 0114 0255 .9494 0136 1.000 {4110}

West .0082 291 0157 9475 1.000 {1341}
B. 1951-1953

Northeast 9803 0047 .0091 .0059 1.000 {3393)

Morth-Central 00322 9750 .0082 .0147 1.000 (4157}

South Q057 0134 9701 G107 1.000 (4015)

West 0013 0088 0067 .89831 1.000 {1483)

SOURCE: Spiterman, 1972,

Spilerman (1972) reported data from a study in 1958 which collected
retrospective reports from males on their geographic movements for the
previous 20 years. Two transition matrices from this study are shown in
Table 17. Clearly, in the seven-year intervals covered by each wave, most
men stayed in their initial regions, despite the great dislocations of World
War H. But the observed values on the main diagonal are lower in the
first matrix, suggesting that the geographic mobility process may not
have remained constant over the full period. When the model in Equation
mm is fitted to the frequency crosstabulations corresponding to Table 17,
L® = 116.45, df = 12. This significant departure from the model suggests
that there is some nonstationarity in the transition probabilities over time.
Of course, with more than 26,000 cases involved, finding an acceptable
fit for anything less than the saturated model is difficult. If a plausible
.ém,mmznn model” for evaluating the fit for a large sample is the set of three
one-way marginals, {F}HSHT]}, which has 1? = 60,174 for df = 24, then the
mﬁmﬁoqﬁi@ hypothesis fares well, accounting for well over 999 of the
variation in the two matrices. Our inclination is to reach the latter con-
clusion for that reason. For more advanced topics on Markov chains with
categoric data, see Bishop et al. (1975: 257-279).
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Age, period, and cohort models. In the study of social change, replicated
cross-section studies have often been used to study the attitade and be-
havior patterns of cohorts of persons born at approximately the same
historical time. Membership in a cohort is determined by the age of the
respondent at the date (period) in which the survey was conducied. Thus,
the three possible sources of variation (age, period, and cohort) in any
dependent variables are not independent of each other:

Cohort = Period - Age. [29]

Any attempt to analyze dependent variables using all three “demo-

_graphic” attributes as independent variables would result in an unidenti-

fied model whose effect parameters could not be uniquely estimated
(Mason et al., 1973). The identification problem arises with categoric
crosstabulations of data by age, period, and cohort just as it does with
quantitative variables (Fienberg and Mason, 1979).

Recognition of the linear dependency between the three demographic
variables has stimulated work to overcome the limitations of the identifi-
cation problem. All such work begins by assuming additivity in the model
such that all age effects are constant across periods and cohorts, that
cohort effects are constant across age and period, and that period effects
are constant across age and cohort. However, even with this assumption,
identification problems remain. Recently, Fienberg and Mason (1979)
proposed a logit model of the additive relationship between a dependent
variable and age, period, and cohort measures which solved the technical
problems of identification and estimation. A technical exposition of their
solution is sufficiently complicated to prevent its full presentation here.
However, a brief, nontechnical sketch of the approach suggests the protean
nature of log-linear methodology for embracing the fundamental problems
of social change.

Table 18 gives one possible display of some age-period-cohort data
(from Smith, 1979), emphasizing age and period aspects. Entries on the
same diagonal are in the same cohort. Note that the younger (8-11) and
older (1-4) cohorts have missing observations for certain periods since
their members had either not achieved age 15 or had exceeded age 49
(the age range covered) during the periods of time covered in the study.

To estimate expected frequencies for a table like Table 18, from which
parameters for the three demographic variables (age, period and cohort’
can be derived, an identification specification (Feinberg and Mason, 1979

16) must be imposed (in addition to the assumption of additivity in th
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TABLE 18
Age-Period-Cohort Crosstabulation of Homicide Frequencies per 100,000

Period
1952- 1967- i862. 1968- 1971-
Age Group 1956 1961 1967 1971 1876 Cohost

1. 1519 6.2 86

15.1 /3.; 11

2. 20-24 10

3. 25.29
4. 30.34
5. 35-39
6. 40-44

7. 45-49

Cohort 1 2 3 4 5

SOURCE: Smith, 1979.

model discussed earlier). That is, a restriction must be placed on one or
more parameters to reduce the number of independent estimates which
must ﬂm obtained. Examples include restrictions such that the effect of
being in one age category is some particular constant (#i* = ¢), or that the
effect of being in one cohort is equal to the effect of being in a second
cohort (r7 = 75). A single such restriction is sufficient to achieve identifi-
m._uEQ so that all the parameters in the model can be estimated. The log-
linear model {APCHADHPDHCID}—where A is age, P is period, C is
nor.o_..r and D is the dependent variable—can be used to estimate the
desired expected cell. frequencies by iterative proportional fitting. A brief
outline of the procedure follows.

We begin by creating a new arrangement of the data in Table 18. (We
ﬁmﬁw. waama the implied other half of the data: the frequency of non-
ro::.&anm ‘per 100,000, While we realize that the assumption of 100,000
cases per cell is unrealistic, this assumption does not influence the odds
of a homicide which is the ultimate object of investigation.) This new
arrangement is termed an unfolded table, and it comnsists of a four dimen-
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stonal arrangement of Age X Period X Homicide. Because of space limi-
tations, we have represented only a portion of the complete table in Table
19, but the general format can readily be seen, Each subtable is an age
by period representation for a single cohort; all remaining cells in the
subtable are siructural zeros. For these data we have added an identifi-
cation specification such that the effect of being age 40 to 44 is equal to
the effect of being age 45 to 49, This is represented in the unfolded table
by combining these two age groups (i.e., adding together the row for 40-44
and the row for 45-49).

The next siep is to estimate the expecied cell frequencies for the
unfolded table as represented in Table 19, using the log-linear model
{APCHAHMHPHMHCH}—where A is age, P is period, C is cohori, and H
is the dependent variable: homicide. Failure of the model to fit the data
is an indication that there are nonadditive effects of age, period, and
cohort, for example, that the age effects vary across periods or ¢cohorts.

The expected frequencies for the data of Table 18 under the model
{APCHAHHPHHCH } were estimated and are given in Tabie 20. Table 21
provides gooduess-of-fit data for this model and for other comparative
models (on the simplified assumption of 100,000 cases in each cell of the
original table). Relatively speaking, the additive model of age, period,
and cohort effects (Modetl 8) reduces the L’ from model 1 (no age, period,
or cohort effects) by over 99%, indicating less than 1% of the variation
as being the result of nonadditive effects of age, period, and cohort. It is
also clear that the separate effects of age, period, and cohort overlap
extensively. For example, whole cohort effects by themselves reduce the L’
by 63%, cohort effects net of age and period account for only 6%.

To investigate the nature of the additive age, peried, and cohort effects,
effect parameters were calculated as follows using the expected odds of a
homicide calculated by dividing the expected frequencies of homicides
(Table 20) by the expected frequencies of nonhomicides (per 100,000).
'The procedure is not straightforward, and to understand it we first repre-
sent the odds ({2 or omega) in a cell as a function of effect parameters
giving rise to the expected frequencies. Consider, for example, the expected
odds for age group 6 (40-44), period 1, (1952-1956), which is part of cohort
2 as given in Equation 30.

APC _AH PH _CH A P C _H

q. = Fei2i MT612 Tt 711 721 76 7172 71 30
6127 B APC _AH PH CH A P C H [30]
6122 7612 T62 12722 76 T1 T2 T2



1972-
1976

99992.6

1967-

1871
99993.7
99880.4

No
Period
1962-
1966

992929

899990.9

1957-

1961
99991.2
99988.4

1952-

1956
99980.2
90887.6

Homicide

7.4

1972-
1976

TABLE 18
Partial Representation of the Four-Dimensional Array for Age-Period-Cohort and Homicide
1967
1971
6.3
98

Yes
Period
1962-
1966

7.1

1957-
1961

8.8

10.6

1952-

1956
10,
124

Age
15-19
20-24
25-29
30-34
3b-32
40.49
15-19
20-24
25-29
30-34
35-39
40-49

4
5

*Structural zero denoted by (—),

Cohort
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TABLE 20
Expected Frequencies for the Age-Period Cohort Data of Table 18,
Under the Model {APC} {AH} {PH} {CH)

Period
1952- 1957- 1962- 1967- 1972-
Age Group 1956 1261 1965 1971 1976 Cohort
1. 15-19 6.89 7.40 8.81 14.31 ~_ 17.10 11
2. 20-24 10
3. 25.29 9
4. 30-34 8
5. 35-39 7
6. 40-44 6
7. 4549
Cohort 1 2 3 4 5
TABLE 21
Models Fitted t¢ Four-Way Crosstabulation of Age,
Period, Cohort, and Homicide

Model Fitted Marginals L2 d.£.

1 {arc}{H} 69.12 29

2 {APC } {AH} 29.42 24

3 {APC }H{PH} 44.16 25

4 {apc }{cH} 25.74 20

5 {apc} {an} {pH} 4.46 20

8 {aPc}{AH} {CcH} 3.12 15

7 {apc}{PH} {CH} 20.95 18

8 {apc }HaH} {PH} {cH} 0.30 12
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Since all tau parameters not having to do with homicide (H) are the same
in the numerator and the denominator they may be cancelled. Those tau
parameters which do have to do with homicide in the numerator are the
reciprocals of those in the denominator (cf. Equations 2 and 3), hence the
whole ratio reduces to four products having to do with the age effect on
homicide, the period effect on homicide, the cohort effect on homicide,
and the marginal distribution of homicides:

2 2 2 .2
Q12 HQMH:V ?WJ ?mwv Qwv . [31)

If we now construct the same ratio for age group 7, period 2, cohort 2, we
Au2 pH2 cn2 B2 . )
#mé bdmwu Q.T:v Aﬂupv Q‘va AJV.m.Emz%uoo:m:co::mmmmﬁoow;

these two ratios (that is, the ratio of the expected odds for ¢ell 6,1,2 to the
expected odds for cell 7,2,2), we arrive at the following:

2 2 2 2

AH PH CH H

mem _ Tﬂmm ) C.:v Q‘NHV Q.mv
9]

- [32]
2 2 2 2
2w e e @

Two terms in the numerator of Equation 32 are identical with two terms in
the denominator and may be cancelled. With the identification restriction
that the effect for age group 6 is equal to the effect for age group 7, this
ratio further reduces to the square of the ratio of the effect for period 1
to the effect for period 2. Other ratios of expected odds yield similar ratios
for the effects of period 2 relative to period 3, period 3 relative to 4, and
so on. Finally, with the restriction that the product of the effects for all 5
periods must be unity (see Equation 23), we can sclve for the magnitude
of each of the effect parameters. In similar manner the effect parameters
can now be calculated for age and cohort as well using both the ratios
of expected odds from Table 20 and the carlier calculated effects for period.
It might be wondered, since there are many cells in the table which could
be used to calculate a ratio for say age group 4 to age group 5, which one
should be used. The answer is that any of them may since they will all
yield the same result (Feinberg and Mason, 1979: 14-15).

Table 22 presents the effect parameters for the additive age, period,
cohort model. Briefly, it can be seen that period effects are decreasing
over time, contrary to first impressions of Table 18, Age effects start low,

63

TABLE 22
Tau Parameters for the Model {APC) {AH] {PH} (CH}

Age Period Cohort

q..“/._I 0.701 ﬁ_wﬂ 1.232 ..ﬂ“u‘”._ 0.547
ﬂmde 1.028 .wm“._ 1.073 qmﬂ 0.612
5 1.105 ! 0.945 ror 0.677
T 1.100 o 0.964 Tor! 0.771
ﬂM._I 1.094 qmﬂI 0.831 qmﬂ 0.888
q.m.,,__._ 1.034 ‘N.M“.._ 1.619
q..m.P_I 1.034 ﬂ%“._ 1.163
.__.M‘_I 1.300

CH o
ﬂmmﬂ 1.690

GH 1.651
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peak in the 30-34 age category, and then diminish. Cohort effects, on _mrn
other hand, start very small and monotonically increase for each successive
cohort save the last.

5. SPECIAL TECHKIQUES WITH LOG-LINEAR MOBDELS

Crosstabulations of social data sometime produce strange S.Enm ér_.n.r
cannot be subjected to log-linear analysis without some special modifi-
cations. This section considers a few of the more common problems
which may arise.

A. What To Do Aboui Zere Celis

The appearance of zeros in one or more cells can be a problem, since
odds, odds ratios, and logits are undefined with zeros in the denominator.
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Observed zero frequencies arise from two situations. Sampling zeros occur
in finite samples, particularly when several variables are crosstabulated,
due to the small probabilities for some categories (e.g., southern Jewish
peanut farmers). The zero entry does not mean that such cases do not
exist in the population, only that none fell into the sample. One virtue
of log-linear models is that they can provide empirical estimates of the
population frequencies despite the absence of empirical instances in the
sample. The fitted model can generate nonzero expected frequencies
(Fi's) despite observed zero frequencies (fs). Still, “too many” sampling
zeros in the body of a table may create a problem where a marginal table
to be fitted in the model contains zero cells. Two basic alternatives are
possible: (I) add a small value to every cell in the body of the table, in-
cluding those with nonzero frequencies. A value of .5 is often suggested
(Goodman, 1970: 229). (This is a conservative procedure which will tend
to underestimate effect parameters and their significance.) Or (2) arbi-
trarily define zero divided by zero to be zero (Fienberg, 1977: 109). In this
second alternative, if any entry in a marginal table to be fitted in the model
is zero, all entries giving rise to this zero will necessarily remain zero during
iteration. An unlikely but possible third alternative would be to increase
the sample size sufficiently to remove all zero cells.

The second situation producing observed zeros in the logical or fixed
zero cell, Even if the entire population is available, certain classifications
have no empirical referents. A logical zero may arise from a sampling
design (omitting certain strata), an ordinal sequence of events (e.g., in an
age by family status crosstabulation, cells for grandparents under the age
of 25 will be empty), or a definitional inconsistency (e.g., no female can
have a prostatectomy).
to define.such cells as “struc-

K requencies of such cells. Tn the previous section
“'ofi Two-wave panels we saw how log-linear models could be fitted to
incomplete tables by fixing the structural zero cells in the starting values
of the iteration procedure. The identical process is followed in testing
the hypothesis of quasi-independence in a table with one or more structural
zeros. Quasi-independence is a form of independence or nonassociation
between variables when considering only that portion of the table con-
taining nonzero entries. For example, in a two-way table, the quasi-
independence model fits the log-linear equation

IWG ,.”H.,
w:. =nToT me_.

0 oBb wmm not

e
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among that set of cells not designanted as logical zeros. The likelihood
ratio chi-square is tested against a modified degree of freedom. I the
table has I rows, J columns, and Z siructural zero cells, the df's are (1-1)
J-n - Z,

Table 23 illustrates the guasi-independence model with data on the
sex-by-surgery crosstabulation. Certain types of operations are logically
impossible for one of the sexes. The second panel shows the expected
frequencies for the independence model when these logical zeros are
ignored, while the third panel shows the expected frequencies when the
logical cells are constrained to zero fixed values.

The standard independence model, which treats the empty cells as
sampling zeros, estimates absurd values for female prostrate operations
and male gynecological surgery. A poor fit is found with L’ = 622.52, df =
13. When the quasi-independence model is fitted, not only are the iwo
logical zero cells constrained but also the expected valtues of the remaining
cells are much closer to the observed values, although the model still fails
to adequately represent the data (L*> = 93.57, df = 11). Clearly, surgical
operations are differentially performed on males and females, leaving
aside logically impossible procedures.

B. Fixing Start Values

Procedures for handling structural zero frequencies in incompleie
tables involve setting the start values for the Tterative Proportional Fitting
algorithm to zero in the appropriate cells. In other Em.ﬁsnnmu we may
wish to constrain certain cells io the observed frequencies, estimating
various log-linear models on the remaining cells. Again, mE."r .Bcaﬁm
require setting some values in the ECTA starting table to a priori <m._zmww
before beginning the iterative fitting. A case in point concerns the muwim,m
of intergenerational occupational mobility, for example, data obtained
from Blau and Duncan’s (1967) classic study and shown in Table 24.
It is clear from the second panel that the usual model of independence
between rows and columns does not fit at all well. The five main diagonal
cells are grossly underestimated, reflecting a tendency of many men to
remain in the broad category of origin. (This model 1.2 = 830.98, df = mo”v

An alternative model, first proposed by Goodman (1965), is quasi-
perfect mobility. In this model the main diagonal malom are mw& to
their observed values, and the off-diagonal entries are estimated as in a
model of quasi-independence. Procedurally, the main diagonal values are
entered and treated as structural zeros; the marginal tables {P} {8}, are
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TABLE 23
Crosstabulation of Sex and Surgical Operation (ien thousands)
Quasi-
Surgical Observed Valuss Independence Hy Independence H,
b . —_— e
Operation Miale Female Male - Female Male Female

Neurosurgery 18 20 16.2 21.8 19.9 18.1
O_ug:m__ﬁo_ow(. 33 44 32.7 44 .3 40.3 36.7
Odo}m:o_mm.,_\:o_om,x 175 85 112.3 151.8 138.3 125.7
Vascular-Cardiac 59 38 41,2 55.8 50.8 46.2
Thoracic i6 12 11.9 16.1 14.7 13.3
Abdominal 139 142 1195 16186 147.2 133.8
Urological 86 45 55.7 75.3 63.6 62.4
Prostatectomy 27 — 11.8 15.5 27.0 —

Breast 2 36 16.2 21.8 19.9 18.1
Gynecological — 383 16829 220.2 — 383.0
Orthopedic 135 129 112.3 151.8 138.3 125.7
Plastic 55 53 45.9 52,1 56.6 51.4
Oral-Dental 26 30 23.8 32.2 29.3 26.7
Biopsy 39 74 48.1 65.0 59,2 53.8
Total 810 1,095 810 1,095 810 1,095

SOURCE: Ranofsky, 197s.

fitied; df’s are reduced by five because the diagonal values have been fixed.
The main diagonal values are then reinserted in the display (Table 24 C),
Quasi-perfect mobility remarkably improves the fit, as the third panel of
Table 24 shows. The 1.2 is now 255.14, a reduction of 575.84 at the cost of
only five degrees of freedom.

A further improvement in fit can be achieved by dividing the 20 non-
diagonal cells into two sets of ten, corresponding to men with upward
and downward mobility relative to their fathers’ occupations. Each of
these triangular subtables can be tested for quasi-independence by
methods used in the previous section. For example, in testing the down-
wardly mobile half of the table, we assume structural zeros along the
main diagonal and in the lower triangular section of the table. The ex-
pected frequencies are shown in the fourth panel of Table 24. The upwardly
mobile subset yields L? = 28.97 for df = 3, while the downwardly mobile
subset has 1.2 = 3.63, also for df = 3. The combined 1.2 = 32.60, df = 6 indj-
cates that while the model still differs from the data significantly, a re-
markable improvement over the original standard independence model
has been made, even with the large sample size (3396 tens of thousands,
Le.. 33,960,000).
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TABLE 24
Intergenerational Occupational Mobility of White American Men
(ten thousands)

Sons' Occupations

i i Operaiives
Fathers” Professional Cierical B
Occupations & Managerial 8 Sales Craftsmean & Laborers Farmers
A. Observed Frequencies
4
Prof. & Manag. 152 66 33 MM .
Cierical-Sales 20 169 72 o s
Craftsmen 138 125 184 o -
Ops. & Labor. 143 161 209 o
Farmers 98 146 207 371
B. Expected Frequencies, Standard Independence Model
Prof. & Manag. 63.4 56.9 61.0 dmmm MMN
Clerical-Sales 1121 100.6 108.0 ._..u Am.w
Craftsmen 134.9 121.1 130.0 191. qo.a
Ops. & Labor. 1957 175.7 188.5 2781 mo.m
Farmers 2259 202.8 217.6 320.9 .
C. Expected Frequencies, Quasi-Perfect Mobitity Model
Prof. & Manag. 162 38.1 41.9 ._MWM mwww
Clerical-Sales 93.9 159 105.4 wm.m dO.A
Craftsmen 125.7 120.4 184 185. dk.._
Ops. & Labor. 171.3 164.1 180.6 378 Mmm.
Farmers 183.1 175.4 193.1 270.3
D. Expected Frequencies, Modified Quasi-Perfect Model
Prof. & Manag. 152 66.0 33.8 MWM MM
Clerical-Sales 201.0 1659 71.2 .D :.o
Craftsmen 122.9 140.1 184 168, a.___.o
Ops. & Labor. 1247 142.1 246.3 wwm m,
Farmaers 131.5 149.8 259.7 371.0 22

SOURCE: Blau and Duncan, 1967; 496.

C. Amnalyzing Ordered Data

All the models we have considered to this point make no mmngﬁﬁwwbm
about the order of the variable categories. The L2 tests for fit are insensitive
to the order in which categories occur; it remains unchanged upon permu-
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TABLE 25

Crosstabulation of Age, Religion, and Church Attendance

Church Atiendance

Odds

Religion Age Low Medium High Medium:Low High:Low
A. Observed Frequencies
Non-Catholic Young 322 124 141 0.39 044
MNon-Catholic Oid 250 152 194 0.61 0.78
Catholic Young 88 45 106 0.51 1.20
Catholic Old 28 24 119 0.86 425
8. Expected Frequencies
Non-Catholic Young 329.06 127,90 13005 0.3% 0.40
Non-Catholic Old 242,95 148.10  204.95 0.61 0.84
Catholic Young 80.95 41,10 116.95 0.51 1.44
Catholic Old 35.05 27.90 108.05 .80 3.08
Expected Qdds Ratios Observed Odds Ratios
Non-Catholic Young i 1 1 1 1 i
Mon-Catholic  Old 1 1.66 2.10 1 1.56 1.77
Cathoiic Young 1 1.31 3.60 i 1.31 273
Catholic Otd 1 2.05 7.70 1 221 966

tation of rows and columns. If the researcher is interested in testing whether
one of the variables in a table in fact has ordinal properties, log-linear
models may be modified to provide such tests. Simon (1974) shows how an
iterative procedure can estimate expected cell frequencies in a two-way
table in which the column categories are assigned scores (for example,
1,2, 3, 4for a four-category variable). Fienberg (1975: 52-5 8) also discusses
this procedure and how it may be generalized to three or more dimensions
and include quadratic or higher order components as well as ordinal
properties for more than one variable.

In our illustration, we follow a technique described by Duncan {1979)
in which a trichotomous dependent variable in a three-way table is scaled.
Table 25 gives the observed frequencies for the 1972 General Social Survey
crosstabulation of age, religion, and church attendance, as well as the
odds and odds ratios for the fitted model {ARHACHRC} (L2 = 7.25, df = ).
if the four-by-three table of expected odds ratios at the botiom of Table 25
is used as a set of starting values in fitting modet {AR}C}, it will exactly
reproduce the expected frequencies generated by the model {AR}AC)
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{RC}. However, there is no gain in df, since from the six df’s associated with
the first model we must subtract the four df’s used to calculate the expected
odds ratios (although six odds ratios are shown, two are nwa:d@m:ﬁ prove
this to yourself). The reason that using the expected odds ratio as mﬁma.bm
values in fitting the model {AR} {C} will reproduce EE.w mmvmoﬂma mwnacm.:o_g
generated by the model {ARHACHRC] is that the iterative proportional
fitting alogorithm does not change the odds ratios given in .zan starting
values except for those involved in the anm_sm_m. being fit. By using
start values which incorporate the desired odds ratios for ﬁ.:o (AC) and
(RC) relationships and then {itting the Bo.an_ {ARMC} SEG.W does not
alter the built-in (AC) and (RC) relationships, we end up with a model

i ACHCR}. .
oﬂzﬁw WMMM HM%WMW Wﬂowwacwﬁ however, in other ways. Wﬁ:ﬁ. H.rmﬂ trylng
to reproduce the normal unconstrained (AC) (RC) H..a_mconm?ﬁm as sug-
gested above, these relationships could be o.owm:mswa to a particular
form (linear, quadratic, linear in the logarithmic scale, and 50 on) through
appropriate choice of starting values to Sman.ﬁ odds of this form. .

For example, suppose that instead of four independent odds ratios we
design a set of starting values with the form:

1 1 1

1 c c?

1 y y?

1 cy c? <m

where there are now only two parameters to be nmﬁamﬁ.ﬂ.ﬂ and a.rn odds of
medium:low and high:low attendance to age mma. H.a:m:us s:.: be con-
strained to linearity in the logarithmic scale. OEEE:.@ wﬁ.zonomn values
for ¢ and v is a tedious trial and error process of inserting different values
in the starting table until the 1.2 for one pair reaches a minimum. (Duncan,
1979, shows how the Simon technique for a two-way table may be cw.oa
to identify upper and lower bounds on the values of ¢ and y with which

to begin the search.)
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For ihe data in Table 20 we found the following starting values for
odds ratios gave the lowest .7 = 14.62, df = 4:

i i 1

1} 1.47 2.16
i 1.94 3.76
1 2.85 8.13

where ¢ = 1.47 and y = 1.94. These expected odds ratios under the linear
constraints model can be compared with the observed values in Table 25.
A fairly consistent overestimate is obvious in all but two cases. Figure 3
gives an idea of the difference between the observed and the fitted odds
ratios for the lincar constraints model. These ratios are calculated on the
independent variables within categories of church attendance. The linear
constraints fitted by the starting values require the two lines to be paraliel.
Duncan (1979) shows how this requirement can be relaxed to retain
linearity while permitting the lines to diverge (i.e., have different slopes).

D. Collapsing Polytomous Variables

Frequently analysts of crosstabulations collapse the categories of
polytomous variables prior to analysis either to simplify the interpretation
or to avoid the problems of sampling zeros noted above. Yet, too often
such collapsing is done on an ad hoc basis, combining categories adjacent
to each other or with small marginal frequencies. A method for testing
the collapsibility of a polytomous variable in the crosstabulation context
was developed by Duncan (1975) and is illustrated here with the three-way
data in Table 26. The dependent variable was agreement or disagreement
with an item asking whether a woman should be allowed to have a legal
abortion because she was t0o poor to support more children. The odds
of favorable to unfavorable response differ noticeably between some of
the four religious groups, although relatively litile change occurred over
the six years. Fitting various three-way logit models to the data confirms
this perception, with the fitted marginals {RY}{RA} being adequate to

_.E
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Figure 3: (bserved and Fxpected Log Ratios

represent the data (L2 = 1.89, df = 4). In contrast, the logit model in which
abortion attitude depends on neither independent variable, (RY}HAL fits
the data extremely poorly (L2 = 130.16, df = 6). o
The question we can ask next is whether the mo;?oﬁomw@ religion
variable is collapsible into three or fewer categories, Eo&:.oEm a model
intermediate between the two above which gives a parsimonious account-
ing of the data. To set up the test, the religion variable is replaced by four
dichotomous variables—Protestant (P), Catholic (C), Jew (J), and .@:5—.
(O)—which are effect coded as shown in Table 27. This Eomnazwo is thus
similar to the use of dummy variables in regression analysis. Structural
zeros are specified in the starting table for those ooBE:mcos.m of the
dichotomous variables which are illogical (i.e., respondent occupies more
than one religious category). The corresponding models to the two investi-
gated above are {YPCJOHA} and {YPCIOHPCIOA}L But We can now
test a variety of intermediate models, in which some of the religious vari-
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TABLE 26
Crasstabuiation of Abortion Attitude by Religion and Time

1972 Atiitude 1978 Attitude Odds on Favorable
Religion Favor Cppose Favar Oppose 1972 1878
Protestant 460 498 424 &01 92 .85
Catholic 147 240 151 225 61 67
Jewy 41 10 23 8 4.10 3.83
Other 65 17 a8 30 3.82 293

ables but not others are allowed to affect abortion attitude. The results
of these analyses are shown in Table 28. Each of the intermediate models
(2-11 in the table) shows the results of collapsing various categories of the
religion variable. For example, model {YPCJ O} {CA} has only an effect
for being Catholic or non-Catholic on attitudes toward abortion. The
other religious categories are by implication collapsed together and have
no separate effects. The best fitting model, 11, has separate effects for
being Catholic or non-Catholic and for being Protestant or non-Protes-
tant. The categories of Jewish and Other have no separate effects and
are implicitly grouped or collapsed together. The result is a religious
trichotomy. The expected frequencies under this model are also shown in
Table 27. The odds on a favorable response are identical in both vyears:
.89 for Protestanis, .64 for Catholics, and 3.44 for Jews and Others.

E. Nonhierarchical Models

We have indicated in a number of places that we were restricting our-
selves to a consideration of hierarchical models, and indeed we believe
that this restriction makes sense in most applications, for reasons we
shall point out. It was the case, however, when Goodman first started
presenting his work on log-linear models, which included this

to hierarchical models, many people reacted by feeling that w
straining; they wanted to investi
only because they believed they
hierarchical models in not a ch

characteristic of the Iterative P

restriction

as too con-
gate nonhierarchical modeils (probably

could not). Actually, the restriction to
aracteristic of log-linear models, but a
roportional Fitting algorithm for esti-
mating the expected frequencies in the log-linear models. Other algo-
rithms—such as the Newton-Raphson algorithm which is incorporated
into Bock and Yates program MULTIQUAL or Haberman’s program
FREQ, for example—do not have this restriction.

TABLE 27

Effect Coding and Expected Frequencies for Collapsing
Religion in Table 26

Dichotomous Religion Variables

1872 Atiitude

1978 Adttitude

. .ﬁ
Protestant Catholic Jew Other Favor Against  Favor Againg
1 1 1 1 - - - -
1 1 1 0 - - - -
1 1 0 1 - - - -
1 1 0 0 - - - -
1 0 1 1 - - -
1 0 i 0 - - - -
i — —
d N m 0 449.75 508.256 434.26 490.74
J — — —
0 1 1 1 — 3 - -
0 1 1 0 - - -
1 — -
o “ w 0 151,15 23585 146.85 229.15
O J— -
1 - _
0 0 H 0 36.52 1148  22.47 6.53
o m 0 1 63.55 1845 9145  26.56
o —_— m— -_—
0 0 o 0 —
TABLE 28 -
Log-Linear Models for Collapsibitity of Religion in Table
2 d.f. p
Model Fitted Marginals L
8 .00
1 {ypcJo} {A} aogw : 0
2 {vpPcio} {PA} Gm.wd ° o
3 {vrecio} {CA} mw.ow S o
4 {vrclo} {JA} 9 .»w ’ o
] {vpcJo} {OA} 56. ’ : i
6 {vPCcJO} {PA} {JA} ms.oa ) P
7 {vrcao} {4a} {ca} 88.0 : o
8 {vpcio} {oa} {rPal mm.Mw_ ’ 00
9 {¥vpcJo} {0A} {CA} 37. : 00
10 {vrcio} {0A} {4A} Am.mw : Lo
il {vrcJo} {cA} {PA} 2.3 : 2%
12 {vpPcJO} {PCIOA} 1.89
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Why does the restriction to hierarchical models make sense in most
applications? To see the answer let us consider again the four-variable
crosstabulation we discussed when we first introduced the idea of hier-
archical models: Vote Turnout (V), Education (E). Race (R), and Volun-
tary Association Memberships (M). Ignoring education for the moment,
let us consider the model {VMR}. If this model fit the data, it would indi-

cate that the effect of membership on voter turnout varied by race. The
full hierarchical model would be:

F. =n7’ MR, YM VR MR VMR
g T T Tik T Tk

Now let us consider a nonhierarchical alternative to this model as follows:

F.. uq:,.< MR oM MR 7V MR
ijk i ') 'k i ik tijk

In this nonhierarchical alternative we have left out the vote X race term.
Actually, such a model does not leave out the term, rather it assumes that
the effect is nonexistent (i.e., that the value of the tau parameter is 1.00).
Since an interaction effect involving all three terms is present in the model,
however, and since our earlier interpretation of this effect as indicating
that the membership-voter turnout relationship varied by race is not the
only interpretation, we must look carefully to see what our nonhier-
archical model implies. First, consider another valid interpretation of
the three way effect: that the relationship between race and voter turnout
varies by voluntary association membership. In our nonhierarchical
model, however, we assume that there is no relationship between race and
voter turnout. For this to be the case, and for there to be a significant
three-way effect, it must be the case that the race-turnout relationship
among those with no memberships is equal in magnitude but opposite in
direction to the same relationship among those with one or more voluntary
association memberships, and together these two partial relationships
exactly cancel each other out. Is this a reasonable a priori assumption?
In most situations the answer is obviously no, and it is for this reason that
in most sitnations nonhierarchical models do not make sense,

In some situations, however, nonhierarchical models do make sense,
and for illustrative purposes we consider one briefly. For this example
we reconsider our data illustrating comparative cross-section analysis
{page 47). We were looking there at the question of whether the relationship
between party (P) and presidential vote (V) varied over time (T between
1972 and 1976) and we concluded that it did not since the model {TP}
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TABLE 29 . i
Tau Parameters for the Hierarchical and Nonhierarcnica
Version of {TPH{TV} {PV}

Model
 Moes e —
[ —

Hierarchical Nonhierarchical

(1.00)
0.99
=
) 152
P 1.54 .
.ﬂl .
: 2
P 112 1.1
T
. 6
v 0.76 0.7
- 1.00
TP 1.1
.
1
™ 1.05 1.05
T
12 i
™ 0.81 08
T
1 .
PV 2.44 2.
T
11 i
PV 1.08 1.0 ]
2 1.88 2.09
L , X
df 2 o
P

(TVHPV} adequately fit the data. This hierarchical model may be written

out in full as
T p ¥V TP TV PV
Fak =075 T Te Ty Tik Tiko
1 ; 1
e the analysis draws on two nﬁommtmnoﬁo_gm_. samples of A:NWM wom
R e size. one can make the a priori mmw:EEEJ that the va o
:ﬁ.mma. ] is. has no effect. Incorporating this assumption,
7T is unity, that is, rpora
following nonhierarchical model was estima
P VvV TP TV PV
Fae =07 T Ty ik Uik
i i i lis of
Table 29 presents the results of this analysis compared with the Rwﬂ s
the earlier analysis. As can be seen, the effect parameters change very
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and the value of L2 changes very little. There is an increase of one degree
of freedom since one fewer parameter is being estimated.

6. CONCLUSIONS

This introduction to log-linear models for contingency table analysis
just scratches the surface of potential adaptations and applications. The
place of these methods in the social sciences becomes more secure with
each passing year.

Two rival techniques for the systematic quantitative analysis of cross-
tabulations have come into prominence and deserve a brief comment in
conclusion. Davis (1975) proposed a system of linear flow graphs and
corresponding equations (d-systems). Closely related to ordinary least-
squares regression, d-systems analysis was designed explicitly for causal
modelling of small systems of categoric variables. The effects of antecedent
causes on dependent variables are expressed in terms of changes in pro-
portions (hence, d for difference) rather than odds. Davis argued that
his approach copes with interactions in a parallel fashion but has certain
advantages over log-linear models in depicting causal transmittance
through intervening variables,

The second technique, which has gained greater popularity with polit-
ical scientists than among sociologists, is the minimum logit chi-square
method developed by Grizzle et al. (1969; see also Kritzer, 1978). The
dependent variable to be explained is the probability of a particular

response (outcome). Main effects and interactions are specified in a modet
through manipulation of a design matrix of effect-coded dummy variables.
This process enables the researcher to construct and estimate nonhier-
archical models. While the G-S-K approach has an advantage over log-
linear methods in the greater familiarity of most users with probability
interpretations of categoric data, the handling of zero (empty) cells appears
more problematic.

The choice of data analysis techniques ultimately should be based upon
the substantive formulation of research problems, rather than an arbitrary
injunction that single method should be invoked for ali contingencies.
If the present exposition has moved the reader toward a betier grasp of
one particular method, we have achieved our aim. ,

i
i
i
i
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