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Logistic Regression with Stata 

Chapter 1: Introduction to Logistic Regression with Stata 

We will begin our discussion of binomial logistic regression by comparing it to regular ordinary least squares (OLS) regression. Perhaps the 

most obvious difference between the two is that in OLS regression the dependent variable is continuous and in binomial logistic regression, it is 

binary and coded as 0 and 1. Because the dependent variable is binary, different assumptions are made in logistic regression than are made in 

OLS regression, and we will discuss these assumptions later. Logistic regression is similar to OLS regression in that it is used to determine 

which predictor variables are statistically significant, diagnostics are used to check that the assumptions are valid, a test-statistic is calculated 
that indicates if the overall model is statistically significant, and a coefficient and standard error for each of the predictor variables is calculated. 

To illustrate the difference between OLS and logistic regression, let's see what happens when data with a binary outcome variable is analyzed 

using OLS regression. For the examples in this chapter, we will use a set of data collected by the state of California from 1200 high schools 

measuring academic achievement. Our dependent variable is called hiqual. This variable was created from a continuous variable (api00) using a 

cut-off point of 745. Hence, values of 744 and below were coded as 0 (with a label of "not_high_qual") and values of 745 and above were coded 

as 1 (with a label of "high_qual"). Our predictor variable will be a continuous variable called avg_ed, which is a continuous measure of the 

average education (ranging from 1 to 5) of the parents of the students in the participating high schools. After running the regression, we will 

obtain the fitted values and then graph them against observed variables. 

NOTE:  You will notice that although there are 1200 observations in the data set, only 1158 of them are used in the analysis below.  Cases with 

missing values on any variable used in the analysis have been dropped (listwise deletion).  We will discuss this issue further later on in the 
chapter. 

use http://www.ats.ucla.edu/stat/stata/webbooks/logistic/apilog, clear 
regress hiqual avg_ed 

      Source |       SS       df       MS              Number of obs =    1158 
-------------+------------------------------           F(  1,  1156) = 1136.02 
       Model |  126.023363     1  126.023363           Prob > F      =  0.0000 
    Residual |  128.240023  1156  .110934276           R-squared     =  0.4956 
-------------+------------------------------           Adj R-squared =  0.4952 
       Total |  254.263385  1157  .219760921           Root MSE      =  .33307 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      avg_ed |   .4286426   .0127175    33.70   0.000     .4036906    .4535946 
       _cons |  -.8549049   .0363655   -23.51   0.000    -.9262547   -.7835551 
------------------------------------------------------------------------------ 

predict yhat 

(option xb assumed; fitted values) 
(42 missing values generated) 

twoway scatter yhat hiqual avg_ed, connect(l .) symbol(i O) sort ylabel(0 1) 
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In the graph above, we have plotted the predicted values (called "fitted values" in the legend, the blue line) along with the observed data values 

(the red dots).  Upon inspecting the graph, you will notice that some things that do not make sense. First, there are predicted values that are less 

than zero and others that are greater than +1. Such values are not possible with our outcome variable. Also, the line does a poor job of "fitting" or 
"describing" the data points. Now let's try running the same analysis with a logistic regression. 

logit hiqual avg_ed 
 
Iteration 0:   log likelihood = -730.68708 
Iteration 1:   log likelihood = -414.55532 
Iteration 2:   log likelihood = -364.17926 
Iteration 3:   log likelihood = -354.51979 
Iteration 4:   log likelihood = -353.92042 
Iteration 5:   log likelihood = -353.91719 
 
Logistic regression                               Number of obs   =       1158 
                                                  LR chi2(1)      =     753.54 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -353.91719                       Pseudo R2       =     0.5156 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      avg_ed |   3.909635   .2383083    16.41   0.000     3.442559    4.376711 
       _cons |  -12.30054   .7314646   -16.82   0.000    -13.73418   -10.86689 
------------------------------------------------------------------------------ 
 
predict yhat1 
(option p assumed; Pr(hiqual)) 
(42 missing values generated) 
twoway scatter yhat1 hiqual avg_ed, connect(l i) msymbol(i O) sort ylabel(0 1) 
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As before, we have calculated the predicted probabilities and have graphed them against the observed values.  With the logistic regression, we 

get predicted probabilities that make sense:  no predicted probabilities is less than zero or greater than one.  Also, the logistic regression curve 

does a much better job of "fitting" or "describing" the data points. 

Terminology 

Now that we have seen an example of a logistic regression analysis, let's spend a little time discussing the vocabulary involved. So let's begin by 

defining the various terms that are frequently encountered, discuss how these terms are related to one another and how they are used to explain 

the results of the logistic regression. Probability is defined as the quantitative expression of the chance that an event will occur. More formally, 

it is the number of times the event "occurs" divided by the number of times the event "could occur". For a simple example, let's consider tossing 
a coin. On average, you get heads once out of every two tosses. Hence, the probability of getting heads is 1/2 or .5. 

Next let's consider the odds. In common parlance, probability and odds are used interchangeably. However, in statistics, probability and odds are 

not the same. The odds of an event happening is defined as the probability that the event occurs divided by the probability that the event does 

not occur. To continue with our coin-tossing example, the probability of getting heads is .5 and the probability of not getting heads (i.e., getting 

tails) is also .5.  Hence, the odds are .5/.5 = 1. Note that the probability of an event happening and its compliment, the probability of the event 

not happening, must sum to 1. Now let's pretend that we alter the coin so that the probability of getting heads is .6. The probability of not getting 

heads is then .4. The odds of getting heads is .6/.4 = 1.5. If we had altered the coin so that the probability of getting heads was .8, then the odds 

of getting heads would have been .8/.2 = 4. As you can see, when the odds equal one, the probability of the event happening is equal to the 

probability of the event not happening. When the odds are greater than one, the probability of the event happening is higher than the probability 

of the event not happening, and when the odds are less than one, the probability of the event happening is less than the probability of the event 
not happening. Also note that odds can be converted back into a probability: probability = odds / (1+odds). 

Now let's consider an odds ratio. As the name suggests, it is the ratio of two odds.  Let's say we have males and females who want to join a 

team.  Let's say that 75% of the women and 60% of men make the team.  So the odds for women are .75/.25 = 3, and for men the odds are .6/.4 = 
1.5.  The odds ratio would be 3/1.5 = 2, meaning that the odds are 2 to 1 that a woman will make the team compared to men. 

Another term that needs some explaining is log odds, also known as logit. Log odds are the natural logarithm of the odds. The coefficients in the 

output of the logistic regression are given in units of log odds. Therefore, the coefficients indicate the amount of change expected in the log odds 

when there is a one unit change in the predictor variable with all of the other variables in the model held constant. In a while we will explain why 
the coefficients are given in log odds. Please be aware that any time a logarithm is discussed in this chapter, we mean the natural log. 

In summary: 

• probability: the number of times the event occurs divided by the number of times the event could occur (possible values range from 0 

to 1) 

• odds: the probability that an event will occur divided by the probability that the event will not occur: probability(success) / 

probability(failure) 
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• odds ratio: the ratio of the odds of success for one group divided by the odds of success for the other group:  ( 

probability(success)A/probability(failure)A ) /  ( probability(success)B/probability(failure)B ) 

• log odds: the natural log of the odds  

The orcalc command (as in odds ratio calculation) can be used to obtain odds ratios. You will have to download the command by typing findit 

orcalc. (see How can I use the findit command to search for programs and get additional help? for more information about using findit). To use 

this command, simply provide the two probabilities to be used (the probability of success for group 1 is given first, then the probability of 

success for group 2). For example, 

orcalc .3 .4 
Odds ratio for group 2 vs group 1 
 
      p2 / (1 - p2)     odds2     0.40 / (1 - 0.40)     0.667 
or = --------------- = ------- = ------------------- = ------- = 1.556 
      p1 / (1 - p1)     odds1     0.30 / (1 - 0.30)     0.429 

At this point we need to pause for a brief discussion regarding the coding of data. Logistic regression not only assumes that the dependent 

variable is dichotomous, it also assumes that it is binary; in other words, coded as 0 and +1. These codes must be numeric (i.e., not string), and it 

is customary for 0 to indicate that the event did not occur and for 1 to indicate that the event did occur. Many statistical packages, including 

Stata, will not perform logistic regression unless the dependent variable coded 0 and 1. Specifically, Stata assumes that all non-zero values of the 

dependent variables are 1. Therefore, if the dependent variable was coded 3 and 4, which would make it a dichotomous variable, Stata would 

regard all of the values as 1. This is hard-coded into Stata; there are no options to over-ride this. If your dependent variable is coded in any way 

other than 0 and 1, you will need to recode it before running the logistic regression. (NOTE: SAS assumes that 0 indicates that the event 

happened; use the descending option on the proc logistic statement to have SAS model the 1's.) By default, Stata predicts the probability of the 
event happening. 

Stata's logit and logistic commands 

Stata has two commands for logistic regression, logit and logistic. The main difference between the two is that the former displays the 

coefficients and the latter displays the odds ratios. You can also obtain the odds ratios by using the logit command with the or option. Which 

command you use is a matter of personal preference. Below, we discuss the relationship between the coefficients and the odds ratios and show 

how one can be converted into the other. However, before we discuss some examples of logistic regression, we need to take a moment to review 

some basic math regarding logarithms. In this web book, all logarithms will be natural logs. If log(a)=b then exp(b) = a. For example, log(5) = 

1.6094379 and exp(1.6094379) = 5, where "exp" indicates exponentiation. This is critical, as it is the relationship between the coefficients and 
the odds ratios. 

We have created some small data sets to help illustrate the relationship between the logit coefficients (given in the output of the logit command) 

and the odds ratios (given in the output of the logistic command). We will use the tabulate command to see how the data are distributed. We 
will also obtain the predicted values and graph them against x, as we would in OLS regression. 

clear 
input y x cnt 

             y          x        cnt 
  1. 0 0 10 
  2. 0 1 10 
  3. 1 0 10 
  4. 1 1 10 
  5. end 

expand cnt 
(36 observations created) 

We use the expand command here for ease of data entry. On each line we enter the x and y values, and for the variable cnt, we enter then 

number of times we want that line repeated in the data set.  We use the expandcommand to finish creating the data set. We can see this by using 
the list command. If list command is issued by itself (i.e., with no variables after it), Stata will list all observations for all variables. 

list 
             y          x        cnt 
  1.         0          0         10 
  2.         0          1         10 
  3.         1          0         10 
  4.         1          1         10 
  5.         0          0         10 
  6.         0          0         10 
  7.         0          0         10 
  8.         0          0         10 
  9.         0          0         10 
 10.         0          0         10 
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 11.         0          0         10 
 12.         0          0         10 
 13.         0          0         10 
 14.         0          1         10 
 15.         0          1         10 
 16.         0          1         10 
 17.         0          1         10 
 18.         0          1         10 
 19.         0          1         10 
 20.         0          1         10 
 21.         0          1         10 
 22.         0          1         10 
 23.         1          0         10 
 24.         1          0         10 
 25.         1          0         10 
 26.         1          0         10 
 27.         1          0         10 
 28.         1          0         10 
 29.         1          0         10 
 30.         1          0         10 
 31.         1          0         10 
 32.         1          1         10 
 33.         1          1         10 
 34.         1          1         10 
 35.         1          1         10 
 36.         1          1         10 
 37.         1          1         10 
 38.         1          1         10 
 39.         1          1         10 
 40.         1          1         10 

tabulate y x, col 
           |           x 
         y |         0          1 |     Total 
-----------+----------------------+---------- 
         0 |        10         10 |        20  
           |     50.00      50.00 |     50.00  
-----------+----------------------+---------- 
         1 |        10         10 |        20  
           |     50.00      50.00 |     50.00  
-----------+----------------------+---------- 
     Total |        20         20 |        40  
           |    100.00     100.00 |    100.00  
 

logit y x 
Iteration 0:   log likelihood = -27.725887 
 
Logit estimates                                   Number of obs   =         40 
                                                  LR chi2(1)      =       0.00 
                                                  Prob > chi2     =     1.0000 
Log likelihood = -27.725887                       Pseudo R2       =     0.0000 
 
------------------------------------------------------------------------------ 
           y |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           x |          0   .6324555     0.00   1.000     -1.23959     1.23959 
       _cons |          0   .4472136     0.00   1.000    -.8765225    .8765225 
------------------------------------------------------------------------------ 

logit y x, or 
Iteration 0:   log likelihood = -27.725887 
 
Logit estimates                                   Number of obs   =         40 
                                                  LR chi2(1)      =       0.00 
                                                  Prob > chi2     =     1.0000 
Log likelihood = -27.725887                       Pseudo R2       =     0.0000 
 
------------------------------------------------------------------------------ 
           y | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           x |          1   .6324555     0.00   1.000     .2895029    3.454197 
------------------------------------------------------------------------------ 

logistic y x 
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Logit estimates                                   Number of obs   =         40 
                                                  LR chi2(1)      =       0.00 
                                                  Prob > chi2     =     1.0000 
Log likelihood = -27.725887                       Pseudo R2       =     0.0000 
 
------------------------------------------------------------------------------ 
           y | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           x |          1   .6324555     0.00   1.000     .2895029    3.454197 
------------------------------------------------------------------------------ 

In this example, we compared the output from the logit and the logistic commands. Later in this chapter, we will use probabilities to assist with 

the interpretation of the findings. Many people find probabilities easier to understand than odds ratios. You will notice that the information at the 

top of the two outputs is the same. Wald test values (called z) and the p-values are the same, as are the log likelihood and the standard 

error.  However, the logit command gives coefficients and their confidence intervals, while the logistic command give odds ratios and their 

confidence intervals. You will also notice that the logistic command does not give any information regarding the constant, because it does not 

make much sense to talk about a constant with odds ratios. (The constant (_cons) is displayed with the coefficients because you would use both 

of the values to write out the equation for the logistic regression model.) Let's start with the output regarding the variable x. The output from 

the logit command indicates that the coefficient of x is 0. This means that with a one unit change in x, you would predict a 0 unit change in y. To 
transform the coefficient into an odds ratio, take the exponential of the coefficient: 

display exp(0) 
1 

This yields 1, which is the odds ratio. An odds ratio of 1 means that there is no effect of x on y. Looking at the z test statistic, we see that it is not 

statistically significant, and the confidence interval of the coefficient includes 0. Note that when there is no effect, the confidence interval of the 
odds ratio will include 1. 

Next, let us try an example where the cell counts are not equal. 

clear 
input y x cnt 

             y          x        cnt 
  1. 0 0 20 
  2. 0 1 20 
  3. 1 0 10 
  4. 1 1 10 
  5. end 

expand cnt 
(56 observations created) 

tabulate y x, col 
           |           x 
         y |         0          1 |     Total 
-----------+----------------------+---------- 
         0 |        20         20 |        40  
           |     66.67      66.67 |     66.67  
-----------+----------------------+---------- 
         1 |        10         10 |        20  
           |     33.33      33.33 |     33.33  
-----------+----------------------+---------- 
     Total |        30         30 |        60  
           |    100.00     100.00 |    100.00  
 

logit y x 
Iteration 0:   log likelihood =  -38.19085 
 
Logit estimates                                   Number of obs   =         60 
                                                  LR chi2(1)      =       0.00 
                                                  Prob > chi2     =     1.0000 
Log likelihood =  -38.19085                       Pseudo R2       =     0.0000 
 
------------------------------------------------------------------------------ 
           y |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           x |   1.70e-15   .5477226     0.00   1.000    -1.073516    1.073516 
       _cons |  -.6931472   .3872983    -1.79   0.074    -1.452238    .0659436 
------------------------------------------------------------------------------ 

logistic y x 
Logit estimates                                   Number of obs   =         60 
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                                                  LR chi2(1)      =       0.00 
                                                  Prob > chi2     =     1.0000 
Log likelihood =  -38.19085                       Pseudo R2       =     0.0000 
 
------------------------------------------------------------------------------ 
           y | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           x |          1   .5477226     0.00   1.000     .3418045    2.925649 
------------------------------------------------------------------------------ 

In this example, we see that the coefficient of x is again 0 (1.70e-15 is approximately 0, with rounding error) and hence, the odds ratio is 1. 

Again, we conclude that x has no statistically significant effect on y. However, in this example, the constant is not 0. The constant is the odds of 

y = 1 when x = 0. The constant (also called the intercept) is the predicted log odds when all of the variables in the model are held equal to 0. 

Now, let's look at an example where the odds ratio is not 1. 

clear 
input y x cnt 

             y          x        cnt 
  1. 0 0 10 
  2. 0 1 10 
  3. 1 0 10 
  4. 1 1 40 
  5. end 

expand cnt 
(66 observations created) 

tabulate y x, col 
           |           x 
         y |         0          1 |     Total 
-----------+----------------------+---------- 
         0 |        10         10 |        20  
           |     50.00      20.00 |     28.57  
-----------+----------------------+---------- 
         1 |        10         40 |        50  
           |     50.00      80.00 |     71.43  
-----------+----------------------+---------- 
     Total |        20         50 |        70  
           |    100.00     100.00 |    100.00  

logit y x 
Iteration 0:   log likelihood = -41.878871 
Iteration 1:   log likelihood = -38.937828 
Iteration 2:   log likelihood = -38.883067 
Iteration 3:   log likelihood = -38.883065 
 
Logit estimates                                   Number of obs   =         70 
                                                  LR chi2(1)      =       5.99 
                                                  Prob > chi2     =     0.0144 
Log likelihood = -38.883065                       Pseudo R2       =     0.0715 
 
------------------------------------------------------------------------------ 
           y |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           x |   1.386294   .5700877     2.43   0.015      .268943    2.503646 
       _cons |  -1.12e-15   .4472136    -0.00   1.000    -.8765225    .8765225 
------------------------------------------------------------------------------ 

logistic y x 
Logit estimates                                   Number of obs   =         70 
                                                  LR chi2(1)      =       5.99 
                                                  Prob > chi2     =     0.0144 
Log likelihood = -38.883065                       Pseudo R2       =     0.0715 
 
------------------------------------------------------------------------------ 
           y | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           x |          4   2.280351     2.43   0.015     1.308581    12.22699 
------------------------------------------------------------------------------ 

Here we see that the odds ratio is 4, or more precisely, 4 to 1. In other words, the odds for the group coded as 1 are four times that as the odds for 
the group coded as 0. 
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A single dichotomous predictor 

Let's use again the data from our first example. Our predictor variable will be a dichotomous variable, yr_rnd, indicating if the school is on a 
year-round calendar (coded as 1) or not (coded as 0). First, let's tabulate and then graph the variables to get an idea of what the data look like. 

use http://www.ats.ucla.edu/stat/stata/webbooks/logistic/apilog, clear 
tab2 hiqual yr_rnd 

-> tabulation of hiqual by yr_rnd   
 
Hi Quality | 
School, Hi |   Year Round School 
    vs Not | not_yrrnd      yrrnd |     Total 
-----------+----------------------+---------- 
  not high |       613        196 |       809  
      high |       371         20 |       391  
-----------+----------------------+---------- 
     Total |       984        216 |      1200  
 

scatter hiqual yr_rnd, jitter(6) 

 

Because both of our variables are dichotomous, we have used the jitter option so that the points are not exactly one on top of the other. Now let's 
look at the logistic regression. 

logit hiqual yr_rnd 
Iteration 0:   log likelihood = -757.42622 
Iteration 1:   log likelihood =  -721.1619 
Iteration 2:   log likelihood = -718.68705 
Iteration 3:   log likelihood = -718.62629 
Iteration 4:   log likelihood = -718.62623 
 
Logit estimates                                   Number of obs   =       1200 
                                                  LR chi2(1)      =      77.60 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -718.62623                       Pseudo R2       =     0.0512 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      yr_rnd |   -1.78022   .2437799    -7.30   0.000    -2.258019    -1.30242 
       _cons |  -.5021629    .065778    -7.63   0.000    -.6310853   -.3732405 
------------------------------------------------------------------------------ 
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While we will briefly discuss the outputs from the logit and logistic commands, please see our Annotated Output pages for a more complete 

treatment. Let's start at the top of the output. The meaning of the iteration log will be discussed later. Next, you will notice that the overall model 

is statistically significant (chi-square = 77.60, p = .00). This means that the model that includes yr_rnd fits the data statistically significantly 

better than the model without it (i.e., a model with only the constant). We will not try to interpret the meaning of the "pseudo R-squared" here 

except to say that emphasis should be put on the term "pseudo" and to note that some authors (including Hosmer and Lemeshow, 2000) discount 

the usefulness of this statistic. The log likelihood of the fitted model is -718.62623. The likelihood is the probability of observing a given set of 

observations, given the value of the parameters. The number -718.62623 in and of itself does not have much meaning; rather, it is used in a 

calculation to determine if a reduced model fits significantly better than the full model and for comparisons to other models. 

The coefficient for yr_rnd is -1.78. This indicates that a decrease of 1.78 is expected in the log odds of hiqual with a one-unit increase 

in yr_rnd (in other words, for students in a year-round school compared to those who are not). This coefficient is also statistically significant, 

with a Wald test value (z) of -7.30. Because the Wald test is statistically significant, the confidence interval for the coefficient does not include 
0. As before, the coefficient can be converted into an odds ratio by exponentiating it: 

display exp(-1.78022) 
.16860105 

You can obtain the odds ratio from Stata either by issuing the logistic command or by using the or option with the logit command. 

logistic hiqual yr_rnd 
Logit estimates                                   Number of obs   =       1200 
                                                  LR chi2(1)      =      77.60 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -718.62623                       Pseudo R2       =     0.0512 
 
------------------------------------------------------------------------------ 
      hiqual | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      yr_rnd |   .1686011   .0411016    -7.30   0.000     .1045574    .2718732 
------------------------------------------------------------------------------ 

logit hiqual yr_rnd, or 
Iteration 0:   log likelihood = -757.42622 
Iteration 1:   log likelihood =  -721.1619 
Iteration 2:   log likelihood = -718.68705 
Iteration 3:   log likelihood = -718.62629 
Iteration 4:   log likelihood = -718.62623 
 
Logit estimates                                   Number of obs   =       1200 
                                                  LR chi2(1)      =      77.60 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -718.62623                       Pseudo R2       =     0.0512 
 
------------------------------------------------------------------------------ 
      hiqual | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      yr_rnd |   .1686011   .0411016    -7.30   0.000     .1045574    .2718732 
------------------------------------------------------------------------------ 

You will notice that the only difference between these two outputs is that the logit command includes an iteration log at the top. Our point here 

is that you can use more than one method to get this information, and which one you use is up to you. The odds ratio is interpreted as a .1686011 

change in the odds ratio when there is a one-unit change in yr_rnd. Notice that a .1686011 change is actually a decrease (because odds ratios 

less than 1 indicate a decrease; you can't have a negative odds ratio). In other words, as you go from a non-year-round school to a year-round 
school, the ratio of the odds becomes smaller. 

In the previous example, we used a dichotomous independent variable. Traditionally, when researchers and data analysts analyze the relationship 

between two dichotomous variables, they often think of a chi-square test. Let's take a moment to look at the relationship between logistic 

regression and chi-square. Chi-square is actually a special case of logistic regression. In a chi-square analysis, both variables must be categorical, 

and neither variable is an independent or dependent variable (that distinction is not made). In logistic regression, while the dependent variable 

must be dichotomous, the independent variable can be dichotomous or continuous. Also, logistic regression is not limited to only one 
independent variable. 

A single continuous predictor 

Now let's consider a model with a single continuous predictor. For this example we will be using a variable called avg_ed. This is a measure of 

the education achievements of the parents of the children in the schools that participated in the study. Let's start off by summarizing and 

graphing this variable. 



 

10 

 

summarize avg_ed 
    Variable |     Obs        Mean   Std. Dev.       Min        Max 
-------------+----------------------------------------------------- 
      avg_ed |    1158    2.753964   .7699517          1          5 

scatter hiqual avg_ed 

 
logit hiqual avg_ed 

Iteration 0:   log likelihood = -730.68708 
Iteration 1:   log likelihood = -414.55532 
Iteration 2:   log likelihood = -364.17926 
Iteration 3:   log likelihood = -354.51979 
Iteration 4:   log likelihood = -353.92042 
Iteration 5:   log likelihood = -353.91719 
 
Logit estimates                                   Number of obs   =       1158 
                                                  LR chi2(1)      =     753.54 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -353.91719                       Pseudo R2       =     0.5156 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      avg_ed |   3.909635   .2383083    16.41   0.000     3.442559    4.376711 
       _cons |  -12.30054   .7314646   -16.82   0.000    -13.73418   -10.86689 
------------------------------------------------------------------------------ 

logistic hiqual avg_ed 
Logit estimates                                   Number of obs   =       1158 
                                                  LR chi2(1)      =     753.54 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -353.91719                       Pseudo R2       =     0.5156 
 
------------------------------------------------------------------------------ 
      hiqual | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      avg_ed |   49.88075     11.887    16.41   0.000     31.26688    79.57586 
------------------------------------------------------------------------------ 

Looking at the output from the logit command, we see that the LR-chi-squared is very high and is clearly statistically significant. This means 

that the model that we specified, namely avg_ed predicting hiqual, is significantly better than the model with only the constant (i.e., just the 

dependent variable). The coefficient for avg_ed is 3.91, meaning that we expect an increase of 3.91 in the log odds of hiqual with every one-

unit increase avg_ed. The value of the Wald statistic indicates that the coefficient is significantly different from 0. However, it is not obvious 

what a 3.91 increase in the log odds of hiqual really means. Therefore, let's look at the output from thelogistic command. This tells us that the 

odds ratio is 49.88. This is the amount of change expected in the odds ratio when there is a one unit change in the predictor variable with all of 
the other variables in the model held constant. 
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If we graph hiqual and avg_ed, you see that, like the graphs with the made-up data at the beginning of this chapter, it is not terribly informative. 

If you tried to draw a straight line through the points as you would in OLS regression, the line would not do a good job of describing the data. 

One possible solution to this problem is to transform the values of the dependent variable into predicted probabilities, as we did when we 

predicted yhat1in the example at the beginning of this chapter. If we graph the predicted probabilities of hiqual against avg_ed, (a variable we 

will call yhatc) we see that a line curved somewhat like an S is formed. This s-shaped curve resembles some statistical distributions and can be 

used to generate a type of regression equation and its statistical tests. To get from the straight line seen in OLS to the s-shaped curve in logistic 

regression, we need to do some mathematical transformations. When looking at these formulas, it becomes clear why we need to talk about 

probabilities, natural logs and exponentials when talking about logistic regression. 

predict yhatc 
(option p assumed; Pr(hiqual)) 
(42 missing values generated) 

scatter yhatc avg_ed 

 

Both a dichotomous and a continuous predictor 

Now let's try an example with both a dichotomous and a continuous independent variable. 

logit hiqual yr_rnd avg_ed 
Iteration 0:   log likelihood = -730.68708 
Iteration 1:   log likelihood = -412.99872 
Iteration 2:   log likelihood = -360.19162 
Iteration 3:   log likelihood = -349.04893 
Iteration 4:   log likelihood = -348.22245 
Iteration 5:   log likelihood = -348.21614 
Iteration 6:   log likelihood = -348.21614 
 
Logit estimates                                   Number of obs   =       1158 
                                                  LR chi2(2)      =     764.94 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -348.21614                       Pseudo R2       =     0.5234 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      yr_rnd |  -1.091301   .3425414    -3.19   0.001    -1.762669   -.4199316 
      avg_ed |   3.864344   .2410931    16.03   0.000      3.39181    4.336878 
       _cons |  -12.05094   .7397089   -16.29   0.000    -13.50074   -10.60113 
------------------------------------------------------------------------------ 
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Interpreting the output from this logistic regression is not much different from the previous ones. The LR-chi-square is very high and is 

statistically significant. This means that the model that we specified is significantly better at predicting hiqual than a model without the 

predictors yr_rnd and avg_ed. The coefficient for yr_rnd is -1.09 and means that we would expect a 1.09 unit decrease in the log odds 

of hiqual for every one-unit increase inyr_rnd, holding all other variables constant in the model. The coefficient for avg_ed is 3.86 and means 

that we would expect a 3.86 unit increase in the log odds of hiqual with every one-unit increase in avg_ed, with all other variables held 
constant. Both of these coefficients are significantly different from 0 according the Wald test. 

Tools to assist with interpretation 

In OLS regression, the R-square statistic indicates the proportion of the variability in the dependent variable that is accounted for by the model 

(i.e., all of the independent variables in the model). Unfortunately, creating a statistic to provide the same information for a logistic regression 

model has proved to be very difficult. Many people have tried, but no approach has been widely accepted by researchers or statisticians. The 

output from thelogit and logistic commands give a statistic called "pseudo-R-square", and the emphasis is on the term "pseudo". This statistic 

should be used only to give the most general idea as to the proportion of variance that is being accounted for. The fitstat command gives a 

listing of various pseudo-R-squares. You can download fitstat over the internet (see How can I use the findit command to search for programs 
and get additional help? for more information about using findit). 

fitstat 
Measures of Fit for logistic of hiqual 
 
Log-Lik Intercept Only:     -730.687     Log-Lik Full Model:         -353.917 
D(1156):                     707.834     LR(1):                       753.540 
                                         Prob > LR:                     0.000 
McFadden's R2:                 0.516     McFadden's Adj R2:             0.513 
Maximum Likelihood R2:         0.478     Cragg & Uhler's R2:            0.667 
McKelvey and Zavoina's R2:     0.734     Efron's R2:                    0.580 
Variance of y*:               12.351     Variance of error:             3.290 
Count R2:                      0.871     Adj Count R2:                  0.605 
AIC:                           0.615     AIC*n:                       711.834 
BIC:                       -7447.109     BIC":                       -746.485 

As you can see from the output, some statistics indicate that the model fit is relatively good, while others indicate that it is not so good. The 

values are so different because they are measuring different things. We will not discuss the items in this output; rather, our point is to let you 

know that there is little agreement regarding an R-square statistic in logistic regression, and that different approaches lead to very different 
conclusions. If you use an R-square statistic at all, use it with great care. 

Next, we will describe some tools that can used to help you better understand the logistic regressions that you have run. These commands are 

part of an .ado package called spost9_ado (see How can I use the findit command to search for programs and get additional help? for more 

information about using findit). (If you are using Stata 8, you want to get the spost .ado for that version.) The listcoef command gives you the 

logistic regression coefficients, the z-statistic from the Wald test and its p-value, the odds ratio, the standardized odds ratio and the standard 

deviation of x (i.e., the independent variables). We have included the help option so that the explanation of each column in the output is 

provided at the bottom. Two particularly useful columns are e^b, which gives the odds ratios and e^bStdX, which gives the change in the odds 

for a one standard deviation increase in x (i.e., yr_rnd and avg_ed). 

listcoef, help 
 
logit (N=1158): Factor Change in Odds  
 
  Odds of: high vs not_high 
 
---------------------------------------------------------------------- 
      hiqual |      b         z     P>|z|    e^b    e^bStdX      SDofX 
-------------+-------------------------------------------------------- 
      yr_rnd |  -1.09130   -3.186   0.001   0.3358   0.6592     0.3819 
      avg_ed |   3.86434   16.028   0.000  47.6720  19.5966     0.7700 
---------------------------------------------------------------------- 
       b = raw coefficient 
       z = z-score for test of b=0 
   P>|z| = p-value for z-test 
     e^b = exp(b) = factor change in odds for unit increase in X 
 e^bStdX = exp(b*SD of X) = change in odds for SD increase in X 
   SDofX = standard deviation of X 

The prtab command computes a table of predicted values for specified values of the independent variables listed in the model. Other 

independent variables are held constant at their mean by default. 

prtab yr_rnd 
logit: Predicted probabilities of positive outcome for hiqual 
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---------------------- 
Year      | 
Round     | 
School    | Prediction 
----------+----------- 
not_yrrnd |     0.1964 
    yrrnd |     0.0759 
---------------------- 
 
       yr_rnd     avg_ed 
x=  .17702936  2.7539637 

This command gives the predicted probability of being in a high quality school given the different levels of yr_rnd when avg_ed is held 

constant at its mean. Hence, when yr_rnd = 0 and avg_ed = 2.75, the predicted probability of being a high quality school is 0.1964. 

When yr_rnd = 1 and avg_ed = 2.75, the predicted probability of being a high quality school is 0.0759. Clearly, there is a much higher 

probability of being a high-quality school when the school is not on a year-round schedule than when it is. The "x = " at the bottom of the output 
gives the means of the x (i.e., independent) variables. 

Let's try the prtab command with a continuous variable to get a better understanding of what this command does and why it is useful. First, we 

need to run a logistic regression with a new variable and calculate the predicted values. Then, we will graph the predicted values against the 
variable. The variable that we will use is called meals, and it indicates the percent of students who receive free meals while at school. 

logit hiqual meals 
Iteration 0:   log likelihood = -757.42622 
Iteration 1:   log likelihood =  -393.8664 
Iteration 2:   log likelihood = -330.71607 
Iteration 3:   log likelihood = -314.26983 
Iteration 4:   log likelihood = -312.40166 
Iteration 5:   log likelihood = -312.36786 
Iteration 6:   log likelihood = -312.36785 
 
Logit estimates                                   Number of obs   =       1200 
                                                  LR chi2(1)      =     890.12 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -312.36785                       Pseudo R2       =     0.5876 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       meals |   -.107834   .0064069   -16.83   0.000    -.1203913   -.0952767 
       _cons |   3.531564    .235202    15.02   0.000     3.070577    3.992552 
------------------------------------------------------------------------------ 

predict yhat, pr 
scatter yhat meals 
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Although this graph does not look like the classic s-shaped curve, it is another example of a logistic regression curve. It does not look like the 

curve formed using avg_ed because there is a positive relationship betweenavg_ed and hiqual, while there is a negative relationship 

between meals and hiqual. As you can tell, as the percent of free meals increases, the probability of being a high-quality school decreases. Now 

let's compare this graph to the output of the prtab command. First you will need to set the matsize (matrix size) to 800. This will increase the 
maximum number of variables that Stata can use in model estimation. 

set matsize 800 
prtab meals 

logit: Predicted probabilities of positive outcome for hiqual 
 
---------------------- 
pct free  | 
meals     | Prediction 
----------+----------- 
        0 |     0.9716 
        1 |     0.9684 
        2 |     0.9650 
        3 |     0.9611 
        4 |     0.9569 
        5 |     0.9522 
        6 |     0.9471 
        7 |     0.9414 
        8 |     0.9352 
        9 |     0.9283 
       10 |     0.9208 
       11 |     0.9126 
       12 |     0.9036 
       13 |     0.8938 
       14 |     0.8831 
       15 |     0.8715 
       16 |     0.8589 
       17 |     0.8453 
       18 |     0.8307 
       19 |     0.8150 
       20 |     0.7982 
       21 |     0.7802 
       22 |     0.7612 
       23 |     0.7410 
       24 |     0.7198 
       25 |     0.6976 
       26 |     0.6743 
       27 |     0.6502 
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       28 |     0.6253 
       29 |     0.5997 
       30 |     0.5736 
       31 |     0.5470 
       32 |     0.5202 
       33 |     0.4933 
       34 |     0.4664 
       35 |     0.4396 
       36 |     0.4133 
       37 |     0.3874 
       38 |     0.3621 
       39 |     0.3376 
       40 |     0.3139 
       41 |     0.2912 
       42 |     0.2694 
       43 |     0.2487 
       44 |     0.2291 
       45 |     0.2107 
       46 |     0.1933 
       47 |     0.1770 
       48 |     0.1619 
       49 |     0.1478 
       50 |     0.1347 
       51 |     0.1226 
       52 |     0.1115 
       53 |     0.1012 
       54 |     0.0918 
       55 |     0.0832 
       56 |     0.0754 
       57 |     0.0682 
       58 |     0.0616 
       59 |     0.0557 
       60 |     0.0503 
       61 |     0.0454 
       62 |     0.0409 
       63 |     0.0369 
       64 |     0.0333 
       65 |     0.0300 
       66 |     0.0270 
       67 |     0.0243 
       68 |     0.0219 
       69 |     0.0197 
       70 |     0.0177 
       71 |     0.0159 
       72 |     0.0143 
       73 |     0.0129 
       74 |     0.0116 
       75 |     0.0104 
       76 |     0.0093 
       77 |     0.0084 
       78 |     0.0075 
       79 |     0.0068 
       80 |     0.0061 
       81 |     0.0055 
       82 |     0.0049 
       83 |     0.0044 
       84 |     0.0040 
       85 |     0.0036 
       86 |     0.0032 
       87 |     0.0029 
       88 |     0.0026 
       89 |     0.0023 
       90 |     0.0021 
       91 |     0.0019 
       92 |     0.0017 
       93 |     0.0015 
       94 |     0.0014 
       95 |     0.0012 
       96 |     0.0011 
       97 |     0.0010 
       98 |     0.0009 
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       99 |     0.0008 
      100 |     0.0007 
---------------------- 
 
    meals 
x=  52.15 

If you compare the output with the graph, you will see that they are two representations of the same things: the pair of numbers given on the first 

row of the prtab output are the coordinates for the left-most point on the graph and so on. If you try to make this graph using yr_rnd, you will 
see that the graph is not very informative: yr_rnd only has two possible values; hence, there are only two points on the graph. 

drop yhat 
logit hiqual yr_rnd 

Iteration 0:   log likelihood = -757.42622 
Iteration 1:   log likelihood =  -721.1619 
Iteration 2:   log likelihood = -718.68705 
Iteration 3:   log likelihood = -718.62629 
Iteration 4:   log likelihood = -718.62623 
 
Logit estimates                                   Number of obs   =       1200 
                                                  LR chi2(1)      =      77.60 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -718.62623                       Pseudo R2       =     0.0512 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      yr_rnd |   -1.78022   .2437799    -7.30   0.000    -2.258019    -1.30242 
       _cons |  -.5021629    .065778    -7.63   0.000    -.6310853   -.3732405 
------------------------------------------------------------------------------ 

predict yhat, pr 
scatter yhat yr_rnd 

 
prtab yr_rnd 

logit: Predicted probabilities of positive outcome for hiqual 
 
---------------------- 
Year      | 
Round     | 
School    | Prediction 
----------+----------- 
not_yrrnd |     0.3770 
    yrrnd |     0.0926 
---------------------- 
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    yr_rnd 
x=     .18bsp;   .18 

Note that the values in this output are different than those seen previously because the models are different. In this example, we did not 

include avg_ed as a predictor, and here avg_ed is not being held constant at its mean. 

The prchange command computes the change in the predicted probability as you go from a low value to a high value. We are going to 

use avg_ed for this example (its values range from 1 to5), because going from the low value to the high value on a 0/1 variable is not very 
interesting. 

logit hiqual avg_ed 
 
Iteration 0:   log likelihood = -730.68708 
Iteration 1:   log likelihood = -414.55532 
Iteration 2:   log likelihood = -364.17926 
Iteration 3:   log likelihood = -354.51979 
Iteration 4:   log likelihood = -353.92042 
Iteration 5:   log likelihood = -353.91719 
 
Logistic regression                               Number of obs   =       1158 
                                                  LR chi2(1)      =     753.54 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -353.91719                       Pseudo R2       =     0.5156 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      avg_ed |   3.909635   .2383083    16.41   0.000     3.442559    4.376711 
       _cons |  -12.30054   .7314646   -16.82   0.000    -13.73418   -10.86689 
------------------------------------------------------------------------------ 
 
prchange avg_ed 
 
logit: Changes in Probabilities for hiqual 
 
        min->max      0->1     -+1/2    -+sd/2  MargEfct 
avg_ed    0.9991    0.0002    0.5741    0.4472    0.5707 
 
         not_high      high 
Pr(y|x)    0.8225    0.1775 
 
         avg_ed 
    x=  2.75396 
sd(x)=  .769952 

Let's go through this output item by item to see what it is telling us. The min->max column indicates the amount of change that we should expect 

in the predicted probability of hiqual as avg_ed changes from its minimum value to its maximum value. The 0->1 column indicates the amount 

of change that we should expect in the predicted probability of hiqual as avg_ed changes from 0 to 1. For a variable like avg_ed, whose lowest 

value is 1, this column is not very useful, as it extrapolates outside of the observable range of avg_ed. The -+1/2 column indicates the amount of 

change that we should expect in the predicted probability of hiqual as avg_edchanges from the mean - 0.5 to the mean + 0.5. (i.e., half a unit 

either side of the mean). In other words, this is the rate of change of the slope at the mean of the function (look back at the logistic function 

graphed above). The -+sd/2 column gives the same information as the previous column, except that it is in standard deviations. The MargEfct 

column gives the largest possible change in the slope of the function. The Pr(y|x) part of the output gives the probability that hiqual equals zero 

given that the predictors are at their mean values and the probability that hiqual equals one given the predictors at their same mean values. 

Hence, the probability of being a not high quality school when avg_ed is at its mean value is .8225, and the probability of being a high quality 

school is .1775 when avg_ed is at the same mean value. The mean and the standard deviation of the x variable(s) are given at the bottom of the 
output. 

Comparing models 

Now that we have a model with two variables in it, we can ask if it is "better" than a model with just one of the variables in it. To do this, we use 

a command called lrtest, for likelihood ratio test. To use this command, you first run the model that you want to use as the basis for comparison 

(the full model). Next, you save the estimates with a name using the est store command. Next, you run the model that you want to compare to 

your full model, and then issue the lrtest command with the name of the full model. In our example, we will name our full model full_model. 

The output of this is a likelihood ratio test which tests the null hypothesis that the coefficients of the variable(s) left out of the reduced model 

is/are simultaneously equal to 0. In other words, the null hypothesis for this test is that removing the variable(s) has no effect; it does not lead to 

a poorer-fitting model. To demonstrate how this command works, let's compare a model with both avg_ed and yr_rnd (the full model) to a 

model with only avg_ed in it (a reduced model). 
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logit hiqual yr_rnd avg_ed 
 
Iteration 0:   log likelihood = -730.68708 
Iteration 1:   log likelihood = -412.99872 
Iteration 2:   log likelihood = -360.19162 
Iteration 3:   log likelihood = -349.04893 
Iteration 4:   log likelihood = -348.22245 
Iteration 5:   log likelihood = -348.21614 
Iteration 6:   log likelihood = -348.21614 
 
Logistic regression                               Number of obs   =       1158 
                                                  LR chi2(2)      =     764.94 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -348.21614                       Pseudo R2       =     0.5234 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      yr_rnd |  -1.091301   .3425414    -3.19   0.001    -1.762669   -.4199316 
      avg_ed |   3.864344   .2410931    16.03   0.000      3.39181    4.336878 
       _cons |  -12.05094   .7397089   -16.29   0.000    -13.50074   -10.60113 
------------------------------------------------------------------------------ 
 
est store full_model 
logit hiqual avg_ed if e(sample) 
 
Iteration 0:   log likelihood = -730.68708 
Iteration 1:   log likelihood = -414.55532 
Iteration 2:   log likelihood = -364.17926 
Iteration 3:   log likelihood = -354.51979 
Iteration 4:   log likelihood = -353.92042 
Iteration 5:   log likelihood = -353.91719 
 
Logistic regression                               Number of obs   =       1158 
                                                  LR chi2(1)      =     753.54 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -353.91719                       Pseudo R2       =     0.5156 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      avg_ed |   3.909635   .2383083    16.41   0.000     3.442559    4.376711 
       _cons |  -12.30054   .7314646   -16.82   0.000    -13.73418   -10.86689 
------------------------------------------------------------------------------ 
 
lrtest full_model . 
 
Likelihood-ratio test                                  LR chi2(1)  =     11.40 
(Assumption: . nested in full_model)                   Prob > chi2 =    0.0007 

The chi-square statistic equals 11.40, which is statistically significant. This means that the variable that was removed to produce the reduced 

model resulted in a model that has a significantly poorer fit, and therefore the variable should be included in the model. Now let's take a moment 

to make a few comments on the code used above.  For the second logit (for the reduced model), we have added if e(sample), which tells Stata to 

only use the cases that were included in the first model. If there were missing data on one of the variables that was dropped from the full model 

to make the reduced model, there would be more cases used in the reduced model. That exactly the same cases are used in both models is 

important because the lrtest assumes that the same cases are used in each model. The dot (.) at the end of the lrtest command is not necessary to 
include, but we have included it to be explicit about what is being tested. Stata "names" a model . if you have not specifically named it. 

For our final example, imagine that you have a model with lots of predictors in it. You could run many variations of the model, dropping one 

variable at a time or groups of variables at a time. Each time that you run a model, you would use the est store command and give each model its 

own name. We will try a mini-example below. 

* full model 
logit hiqual yr_rnd avg_ed meals full 
 
Iteration 0:   log likelihood = -730.68708 
Iteration 1:   log likelihood = -365.45045 
Iteration 2:   log likelihood =  -297.5258 
Iteration 3:   log likelihood = -274.85521 
Iteration 4:   log likelihood = -270.54954 
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Iteration 5:   log likelihood =  -270.3409 
Iteration 6:   log likelihood = -270.34028 
 
Logistic regression                               Number of obs   =       1158 
                                                  LR chi2(4)      =     920.69 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -270.34028                       Pseudo R2       =     0.6300 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      yr_rnd |  -.9703336   .3810292    -2.55   0.011    -1.717137     -.22353 
      avg_ed |   2.047529    .300159     6.82   0.000     1.459228     2.63583 
       meals |  -.0725818   .0077699    -9.34   0.000    -.0878106   -.0573531 
        full |   .0336658   .0133099     2.53   0.011     .0075788    .0597527 
       _cons |  -6.994542   1.722563    -4.06   0.000     -10.3707    -3.61838 
------------------------------------------------------------------------------ 
 
est store a 
 
* with yr_rnd removed from the model 
logit hiqual  avg_ed meals full if e(sample) 
 
Iteration 0:   log likelihood = -730.68708 
Iteration 1:   log likelihood = -365.50944 
Iteration 2:   log likelihood = -298.91372 
Iteration 3:   log likelihood = -277.66868 
Iteration 4:   log likelihood = -273.90919 
Iteration 5:   log likelihood = -273.75198 
Iteration 6:   log likelihood = -273.75163 
 
Logistic regression                               Number of obs   =       1158 
                                                  LR chi2(3)      =     913.87 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -273.75163                       Pseudo R2       =     0.6254 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      avg_ed |   2.045295   .2936238     6.97   0.000     1.469803    2.620787 
       meals |  -.0727145   .0076311    -9.53   0.000    -.0876711   -.0577578 
        full |   .0349739   .0132324     2.64   0.008     .0090389    .0609089 
       _cons |  -7.199853   1.704632    -4.22   0.000    -10.54087   -3.858837 
------------------------------------------------------------------------------ 
 
est store b 
lrtest a b, stats 
 
Likelihood-ratio test                                  LR chi2(1)  =      6.82 
(Assumption: b nested in a)                            Prob > chi2 =    0.0090 
 
------------------------------------------------------------------------------ 
       Model |    Obs    ll(null)   ll(model)     df          AIC         BIC 
-------------+---------------------------------------------------------------- 
           b |   1158   -730.6871   -273.7516      4     555.5033    575.7211 
           a |   1158   -730.6871   -270.3403      5     550.6806    575.9528 
------------------------------------------------------------------------------ 
 
* with yr_rnd and full removed from the model 
logit hiqual avg_ed meals if e(sample) 
 
Iteration 0:   log likelihood = -730.68708 
Iteration 1:   log likelihood = -365.44681 
Iteration 2:   log likelihood =  -299.2168 
Iteration 3:   log likelihood = -280.19401 
Iteration 4:   log likelihood = -277.46203 
Iteration 5:   log likelihood = -277.38133 
Iteration 6:   log likelihood = -277.38124 
 
Logistic regression                               Number of obs   =       1158 
                                                  LR chi2(2)      =     906.61 
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                                                  Prob > chi2     =     0.0000 
Log likelihood = -277.38124                       Pseudo R2       =     0.6204 
 
------------------------------------------------------------------------------ 
      hiqual |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      avg_ed |   1.970691   .2793051     7.06   0.000     1.423263    2.518119 
       meals |  -.0764628   .0072617   -10.53   0.000    -.0906955   -.0622301 
       _cons |  -3.594219   .9836834    -3.65   0.000    -5.522203   -1.666235 
------------------------------------------------------------------------------ 
 
est store c 
lrtest a c 
 
Likelihood-ratio test                                  LR chi2(2)  =     14.08 
(Assumption: c nested in a)                            Prob > chi2 =    0.0009 
 
lrtest a b 
 
Likelihood-ratio test                                  LR chi2(1)  =      6.82 
(Assumption: b nested in a)                            Prob > chi2 =    0.0090 

These results suggest that the variables dropped from the full model to create model a should not be dropped (LR chi2(2) = 14.08, p = 0.0009). 
The results of the second lrtest are similar; the variables should not be dropped. In other words, it seems that the full model is preferable. 

We need to remember that a test of nested models assumes that each model is run on the same sample, in other words, exactly the same 

observations. The likelihood ratio test is not valid otherwise. You may not have exactly the same observations in each model if you have missing 

data on one or more variables. In that case, you might want to run all of the models on only those observations that are available for all models 

(the model with the smallest number of observations). 

A note about sample size 

As we have stated several times in this chapter, logistic regression uses a maximum likelihood to get the estimates of the coefficients. Many of 

desirable properties of maximum likelihood are found as the sample size increases. The behavior of maximum likelihood with small sample 

sizes is not well understood. According to Long (1997, pages 53-54), 100 is a minimum sample size, and you want *at least* 10 observations per 

predictor. This does not mean that if you have only one predictor you need only 10 observations. If you have categorical predictors, you may 

need to have more observations to avoid computational difficulties caused by empty cells. More observations are needed when the dependent 

variable is very lopsided; in other words, when there are very few 1's and lots of 0's, or vice versa. In chapter 3 of this web book is a discussion 
of multicollinearity. When this is present, you will need a larger sample size. 

Conclusion 

We realize that we have covered quite a bit of material in this chapter. Our main goals were to make you aware of 1) the similarities and 

differences between OLS regression and logistic regression and 2) how to interpret the output from Stata's logit and logistic commands. We 

have used both a dichotomous and a continuous independent variable in the logistic regressions that we have run so far. As in OLS regression, 
categorical variables require special attention, which they will receive in the next chapter. 
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