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The numerical/computational methods underlying these models are illustrated using
the GAUSS programming language. The custom programming capabilities of Stata,
R, TDA, and LIMDEP are also illustrated.'” SAS, Stata, and R have procedures to
estimate generalized linear models, which would include all the models discussed in
this chapter and most of the models discussed in Chapter 4.

3.6. Summary

Chapter 4

Loglinear Models for Contingency Tables

This chapter provides an overview of the most common techniques for modeling
binary data. We first considered the transformational approach, and showed that
when data are in the form of contingency tables (or fixed grids), FGLS estimation
techniques can be used on the transformed empirical probabilities. With grouped or
ungrouped data, the IRLS technique can be used to obtain ML estimates from logit,
probit, and complementary log-log models as generalized linear models. The IRLS
technique thus provides a natural extension of the FGLS technique to individual-
_ level data. Logit and probit models can be justified by invoking the concept of
utility maximization. The latent variable formulation is a natural extension of this
viewpoint.

12. We are continuously updating our website to include examples of special purpose software such as
fEM, TDA, and aML.

4.1. Contingency Tables

Contingency tables are joint frequency distributions of two or more categorical
variables. More formally, a contingency table can be thought of as a cross-
classification of possible values (or categories) of two or more variables, together
with the number of observations in each cross-classified cell reported. When two
variables are involved, the resulting contingency table is called a two-way fable. When
three variables are involved, it is called a three-way table. A three-way or higher-way
table is also referred to simply as a multiway table.

Contingency tables, or “crosstabs,” are among the oldest and the most widely
used statistical tools available to social scientists. One major reason for their
popularity is simplicity. Another reason is that contingency tables are nonparametric
or require very weak parametric (or distributional) assumptions. Mozre often than
not, the researcher directly interprets the descriptive statistics revealed by a
contingency table and reaches substantive conclusions without resort to explicit
modeling. This eye-balling method, however, is very imprecise when the researcher
explores complicated relationships or analyzes multiway tables. In this chapter,
we will learn how to model contingency tables according to theoretically derived
hypotheses and, in so doing, smooth out apparent irregularitics due to sampling
variability.

4.1.1. Types of Contingency Tables

Goodman (1981a) lists three ideal types of two-way contingency tables. They are:

1. The joint distribution of two explanatory variables (e.g., height and weight).

2. The causal relationship of an outcome variable depending on an explanatory
variable (e.g., smoking and lung cancer).

3. The association between two outcome variables (e.g., attitude toward abortion
and attitude toward premarital sex).

Note that the distinction among the three types -of contingency tables is
conceptual, for they appear in the same form. In fact, statistical models for
contingency tables discussed in this chapter are estimated with frequencies rather
than with the outcome variable as the expressed dependent variable in a generalized
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Table 4.1: Education and attitude toward premarital sex.
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Table 4.2: Observed (expected) frequencies.

Education Attitude toward premarital sex Education Attitude toward premarital sex
Disapproval Approval Total Disapproval Approval Total
High school or less 873 1190 2063 High school or less Ffu (F
F
College and above 533 1208 1741 College and above f: ; (F;; j:; gFg; ?H g H;
Total 06 2398 3804 Total S Fe) Ji2 (Fa) Foe (F)

linear model. As in the case of correlations, cross-tabulations are inherently
symmetric. For a simple regression involving only one independent variable,
the slope coefficient can be recovered from the symmetric correlation coefficient
between the dependent variable and the independent variable plus the scale
parameters for the two variables. Likewise, statistical models for the analysis of
contingency tables are also symmetric from the standpoint of estimation, atthough
conceptual distinctions can be drawn between an outcome variable and an

explanatory variable.

4.1.2.  An Example and Notation

To go beyond the simplistic method of eye-balling, one needs to model contingency
tables. Loglinear models are designed for this purpose. For the three types of
contingency tables discussed earlier, the same statistical models are applicable. They
are called loglinear models and are formally defined later in this chapter. For now, let
us illustrate the setup and the notation with a concrete example.

Table 4.1 shows a cross-tabulation between level of education and attitude toward
premarital sex.! The data are drawn from the 1987-1991 pooled General Social
Surveys (GSS). For our illustration, let us assume the table to be of type 2, with
education being the explanatory variable and attitude toward premarital sex the
outcome variable.

Note that we use the symbol + to denote summation. Subscript i+ stands for the
row marginal total:

J J
fin :fof and Fiy ZZFU
=1 j=1

i. The original GSS question was: “If a man and womar have sexual relations before martiage, do you
think it is always wrong, almost always wrong, wrong only sometimes, or not wrong at all?” We collapsed
the first two responses into “disapproval” and the last two responses into “approval.”

Similarly, subscript + stands for the column marginal total:

1 I
f—t,-j:foj andF+j=Zsz
i=1 i=1

and subscript ++ represents the grand total:

!

Joof I
f++:Zny and F++=ZZFU
f=1 i=1

=1 =1

Obviously, f1: = n, the sample size. In practice, almost all models have the
property Fi =f++. As will be shown later in this chapter, most applications in
social science actually maintain equality in marginal totals between the expected and
observed frequencies.

In gene'ral, we denote a two-way contingency table as consisting of two variables:
a row variable (R) and a column variable (C). Let R vary by a row index i Wheré
i=1, e I, and let C vary by a column index j, where j= 1, ..., J. When onf,: of the
two varlgbles is an outcome variable and the other is an explanatory variable (i.e
typ(;: 2), it is customary to let R denote the explanatory variable and C the outcoinlé
variable. We denote the cell frequency of the ith row and the jth column by f; and the
expected frequency under a model by Fj. The distinction between the ij)bserved
frequency (/) and the expected frequency (F) disappears in the special case of a
saturated model, in which = F for all the cells in the table. In this example, the

observed frequencies and expected frequencies (in
At parentheses) are de
notation in Table 4.2. ) noted by the

- 4.1.3. Independence and the Pearson y* Statistic

As With any observed data from a sample, we should treat frequencies in a
coqtm_gency table as realizations of an underlying process. Because of sampling
variation, observed frequencies may appear much less regular than an underlying
pattern. One possible, and often interesting, pattern is the independence of the row
and column variables. That is, we sometimes want to know whether or not observed
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Table 4.3: Expected probabilities.
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Table 4.4: Expected frequencies under independence.

Education Attitude toward premarital sex Education Attitude toward premarital sex
Disapproval Approval Total Disapproval Approval Total
High school or less 11 T2 : 1+ High school or less 762.51 1300.49 2063
College and above 1 T2z o+ College and above 643.49 1097.51 1741
~Total. .. . , Tl o, T2 =1 Total 1406 2398 -3804

frequencies fit the null hypothesis of independence (i.., deviating from independence
only within sampling error). For our GSS example, the independence hypothesis
means that education is unrelated to attitude toward premarital sex.

To test the independence hypothesis, it is useful to think of it as a special statistical
model. In general, let F; depote the expected value of fj; under some model. Let the
expected probability associated with the cell (i,j) be denoted by m;. By definition,

Fy=nmy 4.1)

Likewise, we define 7,4+ and m4; as the expected marginal probabilities of the row
and column variables. For our example, the notation of expected probabilities is

given in Table 4.3.
The independence model means that the joint probability 7 is the product of two

associated marginal probabilities:
i = T+ Ty (42)

Let the marginal probabilities be fitted as observed:

iy =fis/f ot
my =1 +j/f ++ 43)

Combining Egs. 4.1, 4.2, and 4.3, we have
Fy=fif lfvs (4.4)

meaning that the expected frequency of any cell is determined by the sizes of its
associated marginal totals. That is, the independence hypothesis allows for
dissimilarity in the marginal distributions of the row and column variables. This
makes intuitive sense. For our example in Table 4.1, we expeci the cell (2,1) to be
small in the absence of any relationship between education and attitude because, for

our GSS sample, less than half (46%) of the respondents had attained college -

education, and less than half (37%) disapproved of premarital sex. Numerically, we

Table 4.5: Contribution to Pearson y°.

Education Attitude toward premarital sex
Disapproval Approval Total
High school or less 16.01 9.39 25.40
College and above 18.97 11.12 30110
Total 34.98 20.51 55:50

A \fvidely. used test statistic for testing the independence model is the Pearson y*
statistic. It 18 computed as

I J
2 E=lj=l
=1 (4.5)

with degrees of freedom equal to (7 — 1){.J — 1). Since the difference between fitted and
observgd frequencies, Fy;—fj, is called the residual, y* statistics such as Eq. 4.5
measuring the Jack of fit are also said to be residual-based 3 statistics. More wi.11 ‘t;e
Sald. abqut degrees of freedom later in this chapter. For our example, the Pearson y2
statistic is 55.50 for 1 degree of freedom, which is significant bevond tile 0.001 oc-IevéCl
meaning that the chance of observing the actual association between education anc{
:dttltude toward premarital sex in Table 4.1 is very small if the two variables are
mde'pendent of each other in the population. The contribution of specific cells to »”
(as in Eq. 4.5) is given in Table 4.5, g
, NoFe Fhat Eq. 4.5 is a generic formula for calculating the residual-based Pearson
x° statistic, although it is commonly associaied with the independence model with the
expectgd frequencies defined by Eq. 4.4. Statistical programs that compute cross-
tabulations routinely report this statistic under the independence hypothesis.
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4.2. Measures of Association

4.2.1. Homogeneous Proportions

An alternative way to express the independence model is to examne cond1t10_n$
proportions. This is particularly appropriate when one -of the two categgilcd
variables in a two-way cross-tabulation is an outcc_)me variable, as in our atti ude
example. Table 4.6 presents the row-specific proportions for the expected frequencies
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This table reveals that respondents with higher education are more likely to
approve of premarital sex than are those with a high-school education or less. The

Pearson j° statistic reported earlier shows that this relationship is unlikely to be due to
chance alone.

4.2.2. Relative Risks

under independence (i.e., Table 4.4). . ‘
We see fhat the proportion is the same in each row. This should not surprise us

because the expected frequencies were derived under the independenc; model, whlcl(;
implies the homogeneity of proportions. Let the conditional proportion be denote
by m;;. It is easy to show that under independence

Fij fi+f+j _ﬁ

i =7 =7 5 = Tqy ‘ (46)

Foo fufoe Ja

Clearly, the independence model constrains all row-specific proportions to be equ‘?l
to the marginal proportion and thus to each other. By symmetry, the same property
holds true for column-specific proportions. Conversely, if the proportions are no;
homogeneous across rows or columns, there is dependeznce 1_361:.ween ‘the oW euﬁ}l1

column variables. From an earlier test with the Pearson y stat1§tlc, we infer that the
proportions are not homogeneous for our data set. To show_ this, Table 4.7 presents

the row-specific proportions in the observed data.

Table 4.6: Row-specific proportions under independence.

Education Aftitude toward premarital sex
Disapproval Approval Total
High school or less 0.370 . 0.638 }ggg
College and above 0.370 0.63 1.000
Total 0.370 0.630 .

Table 4.7: Row-specific proportions for observed data.

Education Attitude toward premarital sex
Disapproval Approval Total
High school or less 0.423 0.577 iggg
College and above 0.306 0.694 1.000
Total 0.370 0.630 .

For a dichotomous outcome variable, only one proportion is needed to summarize
the information. The other is its complement and thus redundant. In general, for an-
outcome variable with J categories, only J— 1 proportions are nonredundant. For
our attitude example, we only need to know either the proportion of disapproval or
the proportion of approval. After focusing on either of the outcome categories, it is
often useful to have a summary measure of the difference by the explanatory
variable. When there are only two categories for the explanatory variable, such as in
our attitude example, only one summary measure is needed. One convenient measure

is to take the ratio of conditional proportions, treating the first category for both row
and column as the reference:

P2

@.7)
241

Formula 4.7 is called the relative risk, as defined in Chapter 3. Note that the
relative risk for the first outcome category is a different but constrained number:
m/mn = (1 — mp)/(1 — 7). In general, there are (/— 1) nonredundant compar-
isons for an explanatory variable with I categories. For our attitude example, the
relative risk of approval between the respondents with higher education and those
without higher education is 0.694/0.577 = 1.203.

4.2.3. Odds-Ratios

Odds-ratios are the basic building blocks of loglinear models, since many loglinear
models can be characterized in terms of odds-ratios. Before we define odds-ratios, let
us first review odds. As discussed earlier in connection with the logit model, the odds
are the raiio of the probability of an event occurring to the probability of the event
not occurring. For the first and second rows of a 2 x 2 table, with j = 2 as the positive
outcome, the odds are

@ = T€12/7E11

Wz = 7522/7521

A monotonic transformation of a probability, odds measure the likelihood that an
event occurs. A higher value means that the likelihood of outcome 2 in reference to
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outcome 1 is higher. To measure the relative likelihood, we can take the ratio in odds -

between two categories of another (often explanatory) categorical variable, called the
odds-ratio. Formally, the odds-ratio for a 2 x 2 table is

_ npf/mn _ mpmn _ Fufn (4.8)

g =22
W ma/mn mana FiFa
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Table 4.8: Full table for the attitude example.

Although formula 4.8 refers to expected frequencies (F’s), observed frequencies
{(f’s) are also often used in practice. When observed frequencies are used, the
resulting odds-ratios are called observed odds-ratios. Note that odds-ratios are
always positive, varying in the range (0,00). Like all relative measures, the
interpretation of odds-ratios depends on the choice of reference categories. As
defined by Eq. 4.8, an odds-ratio higher than 1 means that the second categories of
the row and column variables, or conversely, the first categories of the row and
column variables, are positively associated. An odds-ratio of 1 indicates a null
relationship between the two variables, corresponding tq statistical independence. It
is often convenient to take the natural logarithm of an odds-ratio to convert it to a
Jog-odds-ratio (LOR). LOR vary in the range (— co,0), with 0 corresponding to
independence. For our attitude example, the odds-ratio is 1.663, and the
LOR = 0.508.

For a 2 x 2 table, there is only one meaningful odds-ratio. Rearranging reference
categories yields either the same odds-ratio or its reciprocal. Owing to formula 4.8,
odds-ratios are also called cross-product ratios, with the product across the main
diagonal as the numerator. For a general two-way table of dimension /% J, there are
(I—1)(J/—1) nonredundant odds-ratios, from which other odds-ratios can be
derived. For convenience, we define as the basic nonredundani odds-ratios those
from the (I—1) x (J—1) 2 x 2 subtables with adjacent rows and columns. Let 0
denote these “local odds-ratios,” defined as

0. — FyF1)i+1)

= L i=h.., I j=L.,J -1 4.9)
FianFarry

To sce how these fundamental local odds-ratios constrain other odds-ratios, first
recognize that for an /x J table, there are many possible odds-ratios, since each
odds-ratio involves the combination of two categories of the row variable and two
categories of the column variable. For illustration, we use a fuller table for our
attitude example (Table 4.8), which is based on four categories of education and four
Likert-scale categories of attitude toward premarital sex.

For this 4 x 4 table, we can easily calculate the nine local odds-ratios, each
involving a 2 x 2 subtable with adjacent rows and columns. They are reported in
Table 4.9. Any other odds-ratio can be derived from the local odds-ratios. For
example, say that we wish to know the odds-ratio involving rows 2 and 3 and

Education Premarital sex is
Always Almost always Sometimes Not wrong
wrong wrong wrong at all
(1) 04 3) C)
Less than high 332
school-(1} ¢ 799 : 141 | M
High school (2) 313 129 258 480
Some college (3) 199 87 218 423
College and 176 71 208 359
above (4) '

Table 4.9: Local odds-ratios based on adjacent rows and columns.

Education Attitude toward premarital sex
C: 2 versus 1 C: 3 versus 2 C: 4 versus 3
R: 2 versus 1 1.382 1.404 0.843
R: 3 versus 2 1.061 1.253 1.043
R: 4 versus 3 0.923 1.169 0.890

columns 2 and 4. Using the notation of Eq. 4.9, we see tﬁat b iplyi -
k) multipl
both numerator and denominator) (by multiplying F>3F53 in

FpFa  FpFuFiFis
FupFr  FyFouFpFis

_ (F 2k 33) (F 23F34
FozF3 f \FasF

= b (4.10)

As an exercise, verify that Eq. 4.10 is true numericall i
1 ex \ .4 using th
frequencies in Table 4.8. ¢ g the observed

4.2.4. The Invariance Property of Odds-Ratios

O.dd§-rat.ios are invariant to changes in (1) the total sample size, (2) the row marginal
distribution, and (3) the column marginal distribution. This can be easily
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demonstrated with the following example. Say that for the following 2 x 2 table, the

observed frequencies are denoted by f’s, and the odds-ratio by

fll f12
f2i f22

_Juf=
6  fiafa

If we change the sample size by a factor of ¢, all the frequencies are changed b){ the
same factor ¢, but the odds-ratio remains unchanged:

cfiy ¢fia
efy

6= Cfucfzz :fnfzz
B ¢f 12¢f Frzfa

If we alter the distribution of the row marginals so that the first row totactlld}s
changed by a factor of ¢, and the second row is changed by a factor of d, the odds-

ratio still remains unchanged:

o o
df21 deZ

_fudfn _fuln
S fndfn Sfu

Likewise, if we alter the distribution of the column marginals so that the first colurrklln
total is changed by a factor of ¢, and the second column by a factor of 4, we have the

g8

same result:

efn df »
cfn 4w

_ cf 1df =f11f22
B dfipefsr fiafn

g

In general, odds-ratios are invariant to changes in marginal d}strlbgtlons, since
such changes in marginal distributions are translated to proportional increases or
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decreases across rows or columns. This invariance property makes odds-ratios the
measure of choice in studies that wish to partial out differences in marginal
distributions {e.g., Featherman, Jones, & Hauser, 1975). It is due to this
invariance property that maximum likelihood estimation for simple random
samples can be directly applied to situations where samples are stratified on either
the explanatory variable (i.e., stratified samples) or the outcome variable (i.c., case-
control studies), as far as the estimation of odds-ratios is concerned (Xic & Manski,
1989).

—Odds-ratios_are closely related-to-the independence model, which allows- free
marginal distributions. As we commented earlier, the independence model for an
I'x Jtable has (7 — 1)(J— 1) degrees of freedom, or (/ — 1)(J - 1) constraints. We now
can be more explicit: the independence model specifies that the (J—1)(J— D
nonredundant odds-ratios are equal to 1. Rejection of the independence model
implies that some of these odds-ratios are not equal to 1. This explains why most
models for contingency tables begin with independence as the baseline model {i.e.,
controlling for the marginal distributions) and more complicated models can often be
expressed in terms of odds-ratios.

4.3. Estimation and Goodness-of-Fit

For any given data, there are always many potential models. Which model the
researcher believes to be true depends to a large extent on the researcher’s theoretical
assumptions and beliefs. However, more often than not, several models are equally
appealing on theoretical grounds. To aid in such situations, the researcher may wish
to estimate the different models and use empirical tests to assess their relative
plausibility. Thus, it {s important that we discuss estimation and measures for
evaluating a model’s goodness-of-fit.

4.3.1. Simple Models and the Pearson y* Statistic

Equation 4.5 provides the general formula for computing the Pearson #° statistic.
Although it is most commonly used for contputing the Pearson y* statistic under the
independence model, it can be used in connection with any model. Let us use the
earlier attitude example as an illustration, focusing on model constraints and degrees
of freedom. From our earlier discussion, we already know that the independence
model does not fit the data. In this subsection, we will discuss some more naive but
simpler models. Let us first consider the model of “equal probability” (Model A).
The equal probability model says that the distribution of frequencies is equal for all
cells:

Fy=F
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Table 4.10: Pearson ¥ components under model A.

Education _ Attitude toward premarital sex
Disapproval Approval Total

High school or less 6.40 60.06 . 66.4112

College and above 183.73 69.45 253.

Total 190.12 129.52 319.64
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distributions, the model becomes the “independence” model (Model D). The Pearson
i statistic under Model D is 55.50 with 1 degree of freedom, as shown before. Only 1
degree of freedom remains because 3 degrees of freedom are consumed for the
independence model: total sample size, the column proportion (either n, or n,,),
and the row proportion (either 7,4 or z, . ): df =4—3 = 1.

From the preceding examples, we see that the Pearson ;f statistic is very easy to
compute. The major step is to obtain expected frequencies (F’s). Once F’s are known,
it is straightforwargl to apply formula 4.5. Under the hypothesis that the model is

The constraints of the model are such that the expected cell frequencies do not
vary either with 7 or with j. The estimation is simple:

1
4

n

T =~ Of ﬁg=z—951

The model consumes 1 degree of freedom for estimating the meag fregusency.
Thus, df = 4 — 1 = 3. Applying formula 4.5 for computing the Pearson y~ statistic for
this model, we obtain the results in Table 4.10. L

Obviously, the model provides a very poor fit to the data. The model is * naive” in
the sense that it does not recognize the unequal distributions across categories, either
for the explanatory variable (education) or the outcome variable (attitude).

We now consider the model of “equal probability conditional on column” (Model B).
The model specifies that the distribution of frequencies is equal for both cells within each

column:

I
'.TC,'U=§

From this, it is easy to derive the estimates of Fy, which is invariant with i

T,
b +i | 7’
The last equality holds because we fit the column marginals exactly. Thus, in this
model, 2 degrees of freedom are used for two column marginal totals: df = 4 —2 =2
The calculated Pearson y° statistic from the model is 82.35. Model B is an
improvement over Model A in that it takes into account the lower proportion of
respondents in the first category of the outcome variable than in the second category.
The marginal distribution of the education variable is left unaocount-e_d for. )
Similarly, we may also fit a naive model of “equal probability conditional on row

{(Model C). Model C would fit the row marginals but not the column marginals (With
Pearson y* statistic being 310.41 with df = 2). If we fit both row and column marginal

true, the Pearson y~ statistic is asymptotically distributed as y°. The researcher can
compare the calculated y* with the corresponding critical value from a y? table.

4.3.2.  Sampling Models and Maximum Likelihood Estimation

The class of models that we wish to introduce in this chapter are called loglinear
models, with log(F) as the dependent variable. As discussed in an earlier chapter,
such nonlinear models are best estimated by using maximum likelihood or,
equivalently, by using iterative reweighted least squares for generalized linear
models. The key requirement for ML estimation, however, is the prior knowledge of
(or assumptions about) the sampling distribution for the stochastic component of a
model. For the problem of contingency tables, three sampling models are usually
invoked.

4.3.2.1. Poisson The Poisson model is the most natural sampling model for
observed counts within a fixed space and time. It is one of the simplest distributions
with a single parameter, A. If variable f follows a Poisson distribution with A = F,its
probability mass function is

p(flﬂ=ﬂ;,ﬂg for f=0,1,2,... (4.11)

Equation 4.11 ensures that E(f)=var(f)=F. Note that we are omitting
subscripts for f and F, respectively, denoting observed and expected frequencies,
since they may contain two or more subscripts for multiple dimensions of a
contingency table. What is important here is the assumption that the frequency count
defined within each cross-classified cell follows an independent Poisson distribution.
Examples are accidents, arrests, scientific discoveries, and births. In the context of
contingency tables, we assume that these counts are cross-classified by certain
characteristics defining either the outcome or the explanatory variables (such as age
and education). The sum of independent Poisson-distributed variables, the total
sample size (#), is a random variable that is also distributed as Poisson.

4.3.2.2. Multinomial The multinomial distribution is a generalization of the
binomial distribution. If the total sample size » is fixed, the distribution of
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» observations into multiple categories can be thought of as following a multinomial
distribution. When we use notation for a two-way table, the probability mass
function of a multinomial distribution is

z
P(fll"'WfU):#

LIS

|

. 4.12)

y

-

J

J

LN

1
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4.3.3. The Likelihood-Ratio y* Statistic

As- reviewed in Appendix B, maximum likelihood estimation yields parameter
f:st{mates that maximize the joint probability of all observed events oceurring. Since
it 1s common that only a part of the likelihood function involves unl;nown
parameters, we can focus on just this part, called the kernel, and ignore the rest. For

example, under multinomial sampling (Eg, 4.12 ikeli ion i
o pling (Eq. 4.12), the likelihood function is

Equation 4.12 is an extension of the more familiar binomial distribution. The
uncertainty here does not pertain to sample size, as in the case of the Poisson model,
but to the assignment of elements in a sample of fixed size into a classification. For
example, the researcher may create a grid for classifying marital status by gender,
with marital status categorized as single, married, divorced/separated, and widowed.
Every sampled individual in a survey has to fall into one of the eight mutually
exclusive categories. ‘

4.3.2.3. Product-Multinomia! Fixing the total sample size is very often insufficient.
In many studies, particularly in experiments or in stratified samples, the marginal
totals of the different categories of the explanatory variable are fixed by design. In
other situations, marginal totals of the outcome categories are also fixed either by
study design or by research needs. For example, situations like this occur when a
sample is drawn using disproportionate stratification. Thus, it is sometimes more
natural to condition a contingency table on the marginal totals of either the row or
the column variable. When this is the case, the sampling distribution reduces to an
independent multinomial distribution within a broader class, which is the same as the
product-multinomial sampling for the entire dataset. When we condition on row
totals, for example, the probability mass function is :

-
pFaeesf i) == [ (4.13)
[T/t
=

Fortunately, maximum likelihood estimation under the three sampling models is
identical {see e.g., Fienberg, 1980, pp. 167-170). Appendix B outlines the
procedures involved under Poisson sampling. The main difference among the
three sampling models is the treatment of the grand fotal and marginal totals. In
practice, this distinction is inconsequential, since researchers usually include
parameters to fit the grand total and marginal totals exactly. Thus, it is not
necessary to choose a particular sampling model, so long as the marginal totals are
fitted.

I J

I J
[T1]#. whercallz; >0 and 323 my=1 (4.14)

iz jeol i=1 j=1

_ Formgla 4.14 is the kernel. The part of the likelihood function containing a ratio-
in factqnals does not involve unknown parameters and thus can be left out of the
expression for the kernel. When the kernel is maximized, the likelihood is maximized
as well. I-n practice, we maximize the logarithm of the likelihood function and thus
the logarithm of the kernel for ease of computation. Let M, denote a restricted model
and M, the saturgted model, Undeir M,, let us dengte the ML estimate of x; by 7',
and the ML estimate of F; by F y» Or simply £ when there is no COI:;quiOIIJE

Pt o =F o~
Fy= . Under M, 7 = f;/n and F; = f The ratio in the kernel between M,
and M, is '

I

J
& MdEms
L == i=1j=1 N
¢ =7 = [ (4.15)

T IJ A
ITIIE e T /m/r ==

=1 j=1 i=1j=1

o<1, as a -restgiction can only deteriorate the goodness-of-fit. Now let us define
the test statistic G~ (sometimes also denoted as L?) as

I J
G’ =-2logQ= -2 f,log(Fy/fy)
=1 =l
J

=233 fyloa(f/Fy) (4.16)

i=1 j=1

The sta}tistic G* is called the likelihood-ratio ¥ statistic. Always nonnegative, G is
asymptotically distributed as ¥* under the assumption that the restricted mc;del is
true. The degrees of freedom can be calculated as the difference between the number
of cells to begin with (i.e., 7J) and the number of parameters fitted.
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In general, G* can be seen as the difference in —2 x log-likelihood:
G* = —2(log L, —log L,) 4.17)

where log L, and log L, respectively denote the log-fikelihood for the restricted and
unrestricted models. When G? is reported for a model without an explicit unrestricted
model, the implicit reference is the saturated model. In this case, G2 is also called the
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This expression shows that BIC penalizes G* more, per degree of freedom, for a
larger sample than for a smaller sample, at the rate of log n. A smaller value of B:IC for
model M, means that model My is more likely than model M, so that the researcher
should choose Mq over M. When comparing multiple models, a lower value of BIC
means a bgtte_r-ﬁttmg model. However, the researcher should not blindly rely on BIC as
the sole criterion for model selection, since it is based on an approximation. In practice
we regommend that the researcher consider a variety of goodness—ot.'—ﬁt criteria,
including but not restricted to G* and BIC. Numerical examples will be given later ’

scaled deviance in the output of seve‘ral"‘c‘om‘puter'p'a'cka-gcs:*FeHheﬁatuﬁated_modPl,
G2 = (. When the researcher is interested in testing the statistical significance of the
difference between two nested models, it does not matter whether he/she works
directly from the general formula Eq. 4.17 or indirectly from the difference in G
between the two models, since the two formulas lead to the same ° test.

For the independence hypothesis (m; = 7iy T4 for all i and ), for example, the
likelihood is maximized when %y = f;, /nand Ty = £ ;/n. We can then calculate G°
according to Eq. 4.16. 62 is distributed as > with (7— 1)(J - 1) degrecs of freedom if
the null hypothesis is true. For our example of attitude toward premarital sex (2 x 2
version in Table 4.1), G* = 55.89 for 1 degree of freedom. The Pearson x* statistic
(%) and the likelihood-ratio y? statistic (G?) are asymptotically equivalent.

4.3.4. Bayesian Information Criterion

The use of the G statistic as a goodness-of-fit measure has been criticized by Raftery
(1986, 1995) as an unsatisfactory procedure for rejecting one model in favor of another
in large samples. The essence of the argument is that, when the sample size is large, it is
much easier to accept (or at least harder to reject) more complex models because the
likelihood-ratio test (G?) is designed to detect any departure between a model and
observed data. Adding more terms to a model will always improve the fit, but with
large samples it becomes harder to distinguish a “real” improvement in fit from a
trivial one. In this sense, the likelihood-ratio test often rejects acceptable models. One
solution to this problem is to use the BIC (Bayesian Information Criterion) statistic in
searching for parsimonious models that provide an “adequate” fit to the data.

The BIC index provides an approximation to a —2 % log-transformed Bayes
factor, which may be viewed as the ratio in likelihood between one model (My) and
another model (M). The basic idea is to compare the relative plausibility of two
models rather than to find the absolute deviation of observed data from a particular
model. In practice, the researcher often chooses the saturated model to be M as the
reference in assessing the adequacy of My. The statistical methods for calculating the
Bayes factor are complicated and beyond the scope of this book. Many applied
researchers have found the BIC statistic popularized by Raftery (1986, 1995) to be
useful. It is defined as

BIC = G2 — df logn (4.18)

' dl‘l: . ;notﬂ'd*’b*e noted that for models estimated using maximum likelihood on
individual-level data, such as the binary response models discussed in Chapter 3,

(:(I‘II 8] S I¥ a(le aga ) e e “(l[ the sa I'at dmO 1 ]Il hIS

BIC = -2log L + df logn (4.19)

4.4. Models for Two-Way Tables

4.4.1. The General Setup

There are two ways to express the loglinear model for a contingency table. Let R
fc‘lenote row, C denqte column, and f;; i =1, ..., I, j=1,..., J) denote the observed
requency for the ith row and the jth column. We begin with the multiplicative

version of the model, with the expected frequency (F i i
EeiTiontive g y (Fy) specified as a function of

o R C_R
Fy =gt tC (4.20)

where the 7 parameters are subject to normalization constraints to be discussed in
depth later. With the ANOVA-like normalization constraints (i.e., T’s multiply to one
along all appropriate dimensions), 7 represents the (unweighted) g;rrand mean; ¥ and
7" represent r.espectively the marginal effects of R and C; and 7% represents t,he two-
way interaction between R and €. As will be shown later, the interaction =€
parameters essentially measure the odds-ratios between R and C. When 8¢ = 1 f
all i z'tnd J» the model is the familiar independence model. T
GlVf?n' that frequency is always positive, we further restrict the t parameters to
be positive. A 7 parameter greater than 1 raises the expected frequency, and a
T par_ameter less than 1 lowers it. A 7 of 1 does not affect the expected freqlienc at
all. Sln?e multiplication is harder to work with than addition, we can transfo‘rmyth
multiplicative version of the model in Eq. 4.20 into the log—a;iditive form: ’

log Fyy = log() + log(zf) -+ log(xf') + log(tf“
=+ g© 4.210)
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Note the one-to-one correspondence between the t parameters in the multi-
plicative form (Eq. 4.20) and the p parameters in the log-additive form. gf Eq. 4l2‘1i
Since loglinear is a more familiar and more genera)] term than log-additive, we wil
refer to the second version as the loglinear form.

4.4.2. Normalization
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Which normalization system to use often depends on the computer program.
ECTA, for example, uses ANOVA coding. Most other computer programs, such as
GLIM, Stata, R, S-Plus, and SAS (proc genmod) use dummy-variable coding. For
empirical examples in this chapter, we will use the dummy-variable normalization
with the first category as reference, unless otherwise stated. However, it is important
to realize that the difference between the two normalization systems is an arbitrary
one. The reader should be able to go back and forth between the two. Let us take a
simple example to illustrate this point in the linear regression context. Say that we

Not all parameters in Eqgs. 4.20 and 4.21 are uniquely identified. This is no different
from situations in linear regressions where the researcher can use (_)nly up to J— .]'
dummy variables for a nominal independent varial?le wi.th J categories. ForanIxJ
table, the upper limit of the number of parameters 1dent1ﬁa-ble is given in Table 4.11.
This upper limit is achieved when a saturated 'mod.el is -ﬁttec_i. There are many
different ways to normalize the parameters to achieve 1defnt1ﬁcat1'0n. _Somf: of them
are not widely used by researchers but can be. usefu! in certain .s1tuatlons. F(_)r
example, the parameter for the grand total sometimes can be conveglently deleted in
order to identify uniquely [ row marginal totals or J colump matginal totals. i
For most applications, two conventions are used. One.: is ANOVA-type co<311ng
(also referred to as effect coding) that preserves the meaning of the grand total:

c
Hrf = H‘UJC = HI?C = H'cg =1 or
i ; i i
RC _
S = Y = S = S =0 @
{ i i J
The second convention is dummy-variable coding, which is equivalent to blocking

out one category for R and C. Let us block out the first category for both:

R C _ . RC _ RC _
=T =T =T =1 or

Table 4.11: Identifiable parameters.

Type of parameters Notation in © Notation in g Number of parameters
Grand total T 'tfrz ; 1 1

Row marginals £ 7% -

Column marginals Tf ”}C J—1
Interactions i H;;gc I-D-1)
Sum Ly

have a dichotomous variable sex (male versus female). We can create two dummy
variables with the following design matrix:

Sex X *s
Male 1
Female 0 1

However, in general, we cannot use both x; and x, because they are redundant when
an intercept is included in the model. For any data set coded in this manner,
x1+x2 = xo, where xg is a vector of ones. Thus, using x, and x,, together with an
intercept term (fy), introduces perfect multicollinearity in the model. There are a number
of ways to remedy this problem. A common dummy-variable normalization sets Bi=0
so that fy + B1x1 + frxz = By + fyx2. In contrast, the ANOVA-type normalization
uses both x; and x; with the constraint that §, + 8, = 0 so that f; = —§,.

In general, a normalization takes the form

K
> Wb =10
k=1

where K is the number of categories, and wy the category-specific weight. For
example, the dummy-variable normalization is achieved by setting wy = 1; w, = 0 for
k#1. The usual (unweighted) ANOVA-type normalization is achieved by setting
we = 1, for all k. Sometimes, w; is set to the sample proportion in the kth category in
the marginal distribution of the variable to enable the interpretation of the intercept
as the weighted grand mean.

In short, both the dummy-variable and ANOVA-type normalizations identify
parameters of a loglinear model. Depending on the particular normalization,
resulting parameters will be different. However, there should not be any substantive
difference due to the choice of normalization per se.

4.4.3. Interpretation of Parameters

Loglinear models are different from linear regressions in. that the “dependent”
variable in loglinear models is the frequency rather than the outcome variable.
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That is, the outcome variable and the explanatory variable appear in a lggimear
model symmetrically. It is up to the researcher to ipfer causal assoc.lat%on 1'? ?ezrg
them, if it is present, from model parqmeters. This fact has gertam m:jp fpaolgen
for appropriate interpretations of loglinear parameters. Loglinear m?‘ ﬁsance”
contain many parameters. The researcher §h0uld meptally separate ]E_II nee
(or uninteresting) parameters from substantively meanmgfl.ll pararpeters. a; mos
applications, the substantively meaningful parameters are 1nter:.1<:tiorf1i par " the;
This is true because the “main” effect parameters serve to saturate, or fit exactly,

' inal distributi d column variables.

marginal distributions of the row an \ . N

One way to interpret loglinear parameters 1s 10 consider cogdltlonal odds. Fﬁr
example, assume that the row variable is the explanatory varlab'le and that the
column variable is the outcome variable. Let j and j/ denote two arbitrary categories

for the column (outcome) variable. We have

. Fo
log (’i) — log (;—) — log(Fy») — log(Fy.)

(34N Ji
C RC
T S Y VR AR Ty )

RC 424

If the researcher uses the dummy-variable normaliz.ation with j as thei relggr?l%e
category, Eq. 4.24 simplifies to pf + pfC. Under the 1ndg’pendence modd§ , H.y-l _d o
and the marginal parameters for the column variable {; 5) define con 1t10na'to %
or log-odds, as well as marginal odds or log-odds due to the homogeneity
ions property.

Pr(}gilr:;oiﬁdgjerfden{:e model does not hold, then .the conFlitional odds varleé),/ rO\IJv,
with the amount of variation determined by thp 1¥1tergct10n parameters (,uy s).. n
general, marginal parameters absorb marginal distributions, agd two-way mteracttlon
parameters measure two-way associations. In fact, t.wo-wz.a.y interaction pf;.lral}le t4.‘1{5
correspond directly to LOR measures. For log# involving the four cells in the

subtable of rows (i,i") and columns (j,j'):

Fj'Fj"’ ..
logf = logﬁ% =logF;+logFyy —logFy —logFy;

yE
C RC
= () + @l g+ )

R c . .RC

— (Rl + pEC) = e pf 4+ )
RC 425
= #50 + H}%F - uf}c — My ( )

If dummy-variable coding is used for normalization, and ¥ and f _happen to be E{Iée
reference categories for the row and column variable:s3 Eq. 4.25 simplifies to pu;".
That is, with dummy-variable coding, two-way interaction parameters represent the
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LOR between the current row and column categories and their reference categories.
LORs involving any other two pairs can be easily obtained according to Eq. 4.25.

4.4.4. Topological Model

With the marginal totals fitted exactly, the substantive interest of a researcher ina
two-way table lies in the association between R and C. This interest is represented as
two-way-interaction parameters{t}“-in-Eq: 4.20 and #F€ in Eq. 4.21). One of the
casiest ways to understand this association is to estimate all nonredundant
interaction parameters in a saturated model. For an I x J table, this means that we
can estimate the local odds-ratios for the (J—1)x (J—1) 2 x 2 subtables with
adjacent rows and columns, Let us take a closer look at the following example of an
intergenerational social mobility table (Table 4.12) cross-tabulating son’s occupation
by father’s occupation (taken from Hauser, 1979).

Let us now estimate the saturated model for this table using a dummy-variable
normalization with the first row and the first column as reference categories. The
estimated uf“ coefficients are given in Table 4.13 (with asymptotic standard errors in
parentheses).

Interpretation of the estimates in terms of odds-ratios (Eq. 4.25) should be
straightforward. We observe, for example, the likelihood of son’s occupation ip farm
highly depends on father’s occupation in farm. For concreteness, contrasting the last
and the first columns and the last and the second rows, we obtain thﬂ@;@_‘@_jﬂ_

odds of being a farm worker rather than an upper nonmanual worker between the

son of a farm worker and the son of a lower nonmanual worker:

Fss/Fs

—————=50654+0—-0.852~0=47213
Fas/Fa

The saturated model is not very interesting because it is not parsimonious. In
searching for parsimonious models, the researcher may group cells with similar

Tabie 4.12: Hauser’s mobility table.

Father’s occupation Son’s occopation®

(1 (2) (3 4 5
Upper nonmanual (1) 1414 521 302 643 40
Lower nonmanua] (2) (724) 524 254 703 {48)
Upper manual (3) 798 648 856 1676 108
Lower manual (4) 756 914 771 3325 237
Farm (5) @09 357 441 1611 1832,/

*Son’s accupation (column) is defined in the same way as father’s occupation (row).
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Table 4.13: Interaction parameters of the saturated model: intergenerational

el
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Table 4.14: Estimated " parameters. -

mobility example. Parameter Estimate (S.E.)
Father’s occupation Son’s occupation _ i | _ 1813 (0.076)
(1) Q2) (3) C)] N ) i ~2.497 (0.080)
i A —2.803 (0.058)
0 #a
Upper nonmanual (1) - 0 0 o - _ t —3.403 (0.060)
R : %52 :
Lower nonmanual (2) 0 0.675 0.496 0.759 0. i
— (©.077) (0.097) (0.071) (0.219) ; _ .
Upper manual (3) 0 0.790 1.614 1.530 1.565 : A LOR involving any two rows and two columns can be obtained from these »”
PP s (0.074) (0.080) (0.064) -(0.190) T parameters. For example, consider rows 2 and 3, columns 2 and 3.
2.405
Lower manual (4) 0 1.188 1.563 2.269
— {0.071) (0.081) (0.062) 0.177) p FpFy Bk
Farm (5) 0 0.862 1.619 2.159 5.065 log 0z = log - = g + b — s — 4}
.169
— (0089 (0089 (0093 = (0.169) =t — g = —2.803 4 3.403 = 0.6

values' of odds-ratios into a type, or level, and thus map out the interaction
parameters into a topological pattern or levels. Hauser (1979), for example
designed the following matrix based on the observed odds-ratio pattern in
Table 4.12:

W oh o th WD
[V R S S
th Lh L a LA
O Y Y v
— fa tn Lh ULh

The values in this matrix delineate unique interaction parameters. A model.that
fits such a levels matrix for two-way interactions with row and column marg}nals
fitted is called a_levels model, or a topological model. If we use dummy-variable
coding with category 1 as the reference category, four levels parameters will be
estimated. Let us denote them as ,uz, i, ,u4, and us Our estimation yields
G* = 66.57 for 12 degrees of freedom, a huge improvement over the indepe-
ndence model with G2 = 6170.1 for 16 degrees of freedom. Given the large
sample size (19,912), Hauser’s topological model ﬁt§ the data well
(BIC = —52.22).* The estimated coefficients of the interaction parameters are
given in Table 4.14.

2. This is not surprising given that the levels were chosen to maximize goodness-of-fit.

Note that Hauser’s design matrix covers the whole table, not just the 16 cells with
nonzero values in Table 4.13. In general, a design matrix for a topological model
assigns levels to all cells in a table. The saturated, or full-interaction, model is a
special case of the topological model with the following design matrix:

1 1 1 1 1
r 2 3 4 3
1 6 7 8 9
1 10 11 12 13
1 14 15 16 17

In fact, as will be shown later, many special models can be conveniently
parameterized as topological models.

4.4.5. Quasi-Independence Model

In mobility tables and similar tables where there is a correspondence between row
and column variables, diagonal cells tend to be large. That is, there is a tendency for
tables to exhibit clustering along the main -diagonal. Researchers in social
stratification call such a tendency to cluster along diagonal cells inheritance effects.
These large diagonal cells often contribute significantly to the poor fit of the
independence model. One substantively interesting hypothesis is whether the rest of

the table satisfies the independence hypothesis net of the diagonal cells. This leads to
the quasi-independence model.
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A square table satisfies quasi-independence if R and C are independent of each
other in off-diagonal cells. That is,

Ty = Mip Ty, for I#J

Compared to the independence model, the quasi-independence model consumes 7
additional degrees of freedom, thus with (/— 1)(7—1)—7 degrees of freedom for
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constrained and thus of limited use. The residual degrees of freedom are one-half of
the number of off-diagonal cells, or I(7— 1)/2.

We can decompose the symmetry of Eq. 4.26 into two components: marginal
homogeneity and symmetric interactions. If we replace marginal homogeneity with
marginal heterogeneity while retaining symmetric interactions, we have the model of
quasi-symmetry:

residuals. The loss of the I degrees of fréedom can be interpreted either in terms of
the reduction of the number of data points by 7, or in terms of the increase of I
additional parameters. In fact, each interpretation corresponds to an estimation
method. For the first interpretation, the researcher can block out the diagonal cells
(e.g., by using a weight matrix) while estimating the independence model. For the
second interpretation, the researcher can add unique parameters to the diagonal cells,
effectively estimating a topological model. For a 5 x 5 table, the design matrix is

—_ = = = N
— et ma ()
— o B = e
p— R = = =
N P el et

The two estimation methaods yield identical results. The main difference is that the
second method yields estimates for diagonal cells, whereas the first does not. The
second method can also be used to constrain some diagonal parameters to be equal.
For this example, the quasi-independénce model is a significant improvement in
goodness-of-fit over that of the independence model, with G* = 683.34 for 11 degrees
of freedom. As shown by Goodman (1972), this method can be used effectively to test
for partial independence in limited regions or account for a few especially large cells.

4.4.6. Symmetry and Quasi-Symmetry

For square f x I tables, the researcher may be interested in whether or not the row
and column variables are symmetric with respect to each other. The symmetry model
is

log Fyy = p+ i + 1 + py (4.26)

where p; = p;; Here we purposely omit the superscripts R and C for the p terms
because they pertain to both R and C. The symmetry model means that all cells are
symmetric to each other across the main diagonal: F; = F;. Obviously, it is highly

log Fyy =+ pf +puf + pf© 4.27)

where pfC =pfC. That is, the quasi-symmetry model allows for marginal
heterogeneity but restricts the interaction parameters to be symmetric across the
main diagonal. Many researchers find the quasi-symmetry model to be more useful
because it conditions on differences in marginal distribution that should be left-
unconstrained. Sobel, Hout, and Duncan (1985), for example, use the quasi-
symmetric model to describe structural mobility with parameters measuring
the difference in row and column marginal distributions. Because the quasi-
symmetry model adds f—1 additional parameters compared to the symmetry
model, the residual degrees of freedom for the quasi-symmetry model are
(-D2-I-1)=I-1)(I-2)/2. ‘

The quasi-symmetry model can be easily estimated using a topological coding. For
the 5 x 5 case, for example, the design matrix for the interactions can be expressed as

21 1 1 1
13 7 8 9
17 4 10 11
1 8 10 5 12
1 9 11 12 6

For our mobility example, G* = 27.45 with 6 degrees of freedom; BIC = — 31.95.
Quasi-symmetry is more general than quasi-independence.

4.4.7. Crossings Model

Not all models of potential interest can be expressed in terms of topological models with
a single design matrix. One such example is the crossings model (Goodman, 1972). The
hypothesis implied by the crossings model is that different categories of a nominal
variable present varying degrees of difficulty for crossing. The further apart two
categories are for the row variable, the smaller the interaction parameter between two
categories for the column variable. Formally, the crossings moedel simplifies Eq. 4.20 to

Fy=favf© (4.28)
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with

i1
[Tve fori=j

u=j
vi© = ¢l L
[Tve fori<j

u=i
NG fori=]

For a 5 x 5 table (such as the mobility example of Table 4.12), for example, the
vEC interaction parameters can be displayed as

& V1 viva  ViVaviy o VivaVava
1 & Vi vavy o VaV3lg
viv2 V2 &y -3 V3vs
vivavs  vavs Vi &g V4
VIVaVave  VoV3vy V3Vs V4 ¢s

Note that, in this forﬁuﬂation, we follow Goodman (1972) in fitting the diagonals
exactly, as in the quasi-independence and quasi-symmetry models. Researchers may not
want to fit the diagonal cells exactly for parsimony reasons (e.g., Mare, 1991). In the
loglinear form of Eq. 4.28, for cells iz, the viC interaction parameters can be
parameterized as the sum of the coefficients of the following four sets of design matrices:

01111 00111 00011 00001
1 o000 00111 00011 00001
1 00 00 11000 O0O0CO0OT11 00001
10000 1 1 000 11100 00001
1 00 00 110006 11100 11110

with the four matrices respectively corresponding to vy, va, v3, and vy With th‘e diagonal
cells blocked out by the & parameters, only (I — 3) of the (/— 1) v parameters in Eq. 4.28
are identified. For our 5 x 5 example, only two v parameters are identified. Goodman
(1972) recommends normalizing the first and the last v: vy =vr1 = 1. Without the
diagonals blocked, all (I 1) v's are identifiable. .

One interesting feature of the crossings model is that the local o_dcis-ratlos for
adjacent rows and columns not involving diagonal cells satisfy loca-l independence.
For our 5 x 5 example, let us consider the odds-ratio involving cells in rows 4, 3 and
columns 1, 2:

_ FaFs; _ (vivav3)(vavave)
T FpFsi (mvs)(vivavava)

41
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For Hauser’s example of intergenerational mobility, the crossings model fits the
observed data rather well. The G* statistic is 64.24 for 9 degrees of freedom
(BIC = —24.85). The version not blocking out the diagonal cells has a G? statistic of
89.91 for 12 degrees of freedom (BIC = —28.88). Although the crossings model (in
either version) is short of Hauser’s topological model in pure goodness-of-fit, the
crossings model yields estimates of parameters that may be easier to interpret. For the
second version, for example, the crossings estimates in the log scale are (from the second
occupational category to the last one) (—0.4256, —0.3675, —0.2935, — 1.403). Thus, of
ali the barriers separating adjacent calegories, the last barrier separating lower manual
occupations and farming is the most difficult to cross, and the next most difficult barrier
is the one separating upper nonmanual and lower nonmanuzl occupations.

4.5. Models for Ordinal Variables

So far, we have treated the row and column variables as nominal variables (i.e.,
discrete variables with unordered categories). In substantive applications, it is often
reasonable to assume that categories are ordinal, meaning that they are ranked on
either an observed or latent scale. This additional information of ordering can be
used to obtain parsimonious model specifications.

Typically, researchers use ordering information to specify the interaction terms
only (i.e., ui of Eq. 4.21), leaving the marginal distributions fitted exactly. This is a
conservative approach, for the ordinal information is used only for the association
between the row and column variables. As shown before, for an I x J table, there are
(I —1)(J — 1) degrees of freedom for interactions after the marginal totals are fitted. If
ordering information is used, it may take few (sometimes just 1) degrees of freedom
to describe the association. Note that the payoff to ordering information goes up as
the numbers of categories increase.

4.5.1. Linear-by—Lin.ear Association

Let x; and y, denote respectively the measured attributes (or indexes) of the row and

column variables. They can be used in the specification of a linear-by-linear
association, as

log Fyy = p+ uf + uf + By, (4.29)

Compared to Eq. 4.21, the linear-by-linear association model replaces the ,uf;?c
term with a more parsimonious form fxy; where f can be seen as the association
coefficient between x and y. For an odds-ratio involving any pair of rows (/ and #)
and any pair of columns (j and ), Eq. 4.25 simplifies to

5F oy

F
logt = logm = B(x; — xr )y — y) (4.30)
Y
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That is, the LOR is proportional to the product of the distances of the row and
column variables in index scores. Multiple linear-by-linear terms can be used, so long
as they are fewer than (71— 1)}{(J— 1), changing Eq. 4.29 to

‘ 3
log Fy = pt+ i +uf + 3 BuXim¥im 31

where x,, and y,, are the row and column attributes for the mth linear-by-linear
i1
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Consuming 1 degree of freedom for interactions, the uniform-association model
has (I—1)}J—1)—1 degrees of freedom for residuals. A special feature of the
uniform association model is that its odds-ratios involving two adjacent rows and

columns are invariant. Using the constraint of Eq. 4.32 and solving for Eq. 4.9, we
see that

Oy = 722D — exp(p)

433
FiirnF ey 4.33)

‘association. Thé same attribute for row (or Tolummmy nay bnj let:d‘in combination
f&?ist?lczlitfli%renthattributes for column (or row). ](E;(;l;rgles using this approach are
i t (1984) and Lin and Xie (1998). .
fou%‘lgrlgx‘;rronr;et:yif E}ln Emd })(ie’s (1998) model of interstate mi‘gratlo,r,l, ,stgti—lexlflfz}
economic growth rates (denoted as g’s) a1:e.us-ed to capture the “push .5.11r11f pu .y
forces of migration. The push force of origin is measuFecl by 1/g,, the pu orztf:i o
destination by g; The model is similar to Eq. .4.29 with (1/g)g; as an1 {niera ton
term between origin and destination. Lin and Xie ﬁr}d th'e push-and-p}ll 11111 eﬁc‘todr
to be highly significant in explaining interstate migration streams in the Unite

States.

4.5.2.  Uniform Association

The previous discussion presumes the existence of attr.ibute (or -index) variables tfﬁr
the row and column variables. In the absence of such 1ndex. Varle_lbles, what_ can le
researcher do? There are two answers to this questiqn. One is to impose an 1nte‘rva(i
score structure on the categories. The second is to est_nnat.e the laten_t SCOTE assomait;
with the categories. We discuss the first approach in this subsictlon and Jeave the
second approach to the Section 4.5.4, “Goodmanis RC Model. o :

The easiest way to impose an interval structure is to assign consecutive mtegerstho
calegories, if the categories form an ordinal scale anq are correctly ordered. For the
example of attitude toward premarital sex (full version, Table 4.8), we mayAais_Slgré
the scores as follows. For the outcome variable, assign Always Wrong=1, . mlé)s
Always Wrong=2, Sometimes Wrong=_3, and Not Wrong at. Alsl=h4. 1_(;1:
the explanatory variable of education, assign Less than H.S.=1, ng‘h school= 5
Some College =3, and College and Above=4. This rpethod of assigning slcgore
basically assumes that the distance between any two adjacgnt categories is uni:1 0;1:1
across all possible values. We call this scoring method. integer-scoring, and e
resulting model the uniform association model. The partlcula_r values as&gnlz ztilll“e
inconsequential, so long as they are uniformly sgaced. That is, (1,2,3,4) yields he
same model as (—10,—8,—6,—4). As a convention, lilowever, we use coqsecutlvs
integers beginning with 1. That is, set x; =/ and y; = j. Substituting these impose
uniform scores to Eq. 4.29 yields

log Fyy = pu+ ik + € + Bij (4.32)

and

In fact, this important property of Eq. 4.32 can be used to define the uniform
association model (Goodman, 1979). For an odds-ratio involving arbitrary pairs
(i and 7 for row, j and  for column), the LOR is simply

Bl — 1) -7

For our example of attitude toward premarital sex, the uniform association model
yields a G? of 31.33 with 8 degrees of freedom. The estimate of B is 0.097 with a
standard error of 0.013.

The uniform association model is a special case of the linear-by-lincar mode] in
which integer-scoring is used. More generally, other scoring methods may also be
reasonable. For example, midpoints or weighted means may be used to “linearize”
categories that were originally interval. For the education vartable in the attitude
example, one may wish to assign 10 to Less Than High School, 12 to High School, 14
to Some College, and 17 to College and Above.

4.5.3. Row-Effect and Column-Effect Models

The uniform association model imposes integer-scoring to both the row and
column variables. A less restrictive approach is to assume integer-scoring for
either the row or the column variable, but not for both. When integer-scoring is used
for the column variable, the resulting model is called the row-effect model.
Conversely, when integer-scoring is used for the row variable, the model is called the
column-effect model. These models were developed by Goodman (1979). For an
mnovative application, see Duncan’s (1979) study of an 8x§ intergenerational
mobility table.

For the row-effect model, Eq. 4.21 is simplified to

log Fy = p+ pf -+ uf +jg, (4.34)
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where ¢; can be seen as the row effect (or row score) estimated frqm the model.
Assuming that the column categories are correctly ordered anfi apprommately fgllowr
the integer-scoring scale, the row-effect model is a generalization of the un_lfo.rm_
association model. Comparing Eq. 4.34 to Eq. 4.32 for the unlforfn. association
model, however, we see that there is no f§ for the row-effect model. This is due to 'th.e
fact that the row effect (¢;) is latent and needs to be normalized. In other words, it is
not possible to separate f§ from fS¢; when ¢; is latent. So, we set i} ='1 to normalize
the scale of ¢, In addition, we also need to normalize the location of ¢; One
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Table 4.15: Goodness-of-fit statistics for mobility models.

convenient normalization is to use dummy-variable coding with the IiTst CAegory as
the reference category so that ¢, = 0. With (J—1) parameters for interactions
between row and column, the row-effect model has (F— 1)(J —2) degrees of freedom.
With these specifications for the R—C interactions, it is easy to see that, as a special
variant of Eq. 4.30,

Eler _ (om d)i=7 (4.35)
log Fy F{j—(cb, I = 7)-
For the fundamental local LORs,
FyF, (i+1)(j+1))
logf; = log( 47 EDU=DY o 4 (4.36)
oY g(Fi(Hl)F(iH)f o

Likewise, we can define the column-effect model in a similar manner, which changes
Fq. 4.21 to

log Fy = p+ pf + pf + i, 4.37)

where ¢; is called the column-effect and requires a normalization. The column-effect
model has (- 2)(J—1) degrees of freedom. Note that the column-effect model
presumes that the row categories are correctly ordered and approximately follow the
integer-scoring scale. For the column-effect model, the LOR structure for any two
pair of categories is

FuFyp .o
g Fey

and the LOR for local subtables is

FyF (i+1)(j+1))
logf; = log| =2 | = @4 — @ (4.39)
8 g(F i F Gy e

Hence, we see similarities and differences among the uniform association, the row
effect and the column effect models. The uniform association model can be viewed as

Model specification G df BIC A®

Independence 6170.13 16 6011.74 20.07
Row effects’ 2080.18 12 1961.39 12.32
Uniform association (UA) 2280.69 15 213221 11.98
Quasi-independence 683.34 11 574.45 5.52
Row effect, diagonals deleted 34.91 7 —34.39 1.10
UA, diagonals deleted 73.01 10 —25.98 1.95
Hauser’s topological model 66.57 12 —52.22 1.77
Quasi-symmetry 2745 6 —31.95 1.13
Crossings {diagonals kept) £9.91 12 —28.88 2.12
Crossings (diagonals blocked) 64.24 9 —24.85 1.63

A is the index of dissimifarity between observed and predicied frequencies (in %).

a special case either of the row effect model or of the column effect model. They are
far more parsimonious than the saturated model. The gain in parsimony increases
rapidly with the dimension of a table. Like many parsimonious models, these three
types of models can also be used in combination with the key feature of the quasi-
independence model (i.e., blocking out diagonal cells (or any subsets of a table)).

We now apply the uniform association model and the row effect model to
Hauser’s mobility data, first by themselves and then after blocking out the diagonal
cells. The row effect model is borrowed from Duncan (1979). To compare these
models against alternative specifications, we also present the goodness-of-fit statistics
from other models we have discussed. The results are provided in Table 4.15. The
column denoted by G” is the likelihood-ratio ? for residuals (c.g., Eq. 4.17), with
degrees of freedom reported in the column labeled df. With » = 19,912, BIC is
calculated according to Eq. 4.18. As a purely descriptive measure of goodness-of-fit,
we also use the Index of Dissimilarity (Shryock & Siegel, 1976, p. 131), denoted as A.
The Index of Dissimilarity here can be interpreted as the proportion of misclassified
counts according to the expected frequencies under a model.

As shown in Table 4.15, several models other than Hauser’s topological model fit
the data reasonably well. For example, the row-effect and the uniform-association
models fit the data reasonably well (BIC = —34.39,-25.98) with diagonal cells
blocked. The other two models that fit the data well are the quasi-symmetry
(BIC = —~31.95) and the crossings (BIC = — 28.88) models.

4.5.4. Goodman’s RC Model

If we further follow the path of generalization from the uniform association model to
the row effect and column effect models, we may want to know what happens if we
treat both the row and the column scores as unknown. In an influential paper
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published in the Journal of the American Statistical Association in 1979, Goodman
addresses this question. Goodman’s initial solution consists of two types of mf)dles,
row-and-column-effects association model T and row-and-column-effects assoglatlon
model IT (which was renamed as the RC model by Goodman (1981b) and is now
commonly referred to by that name). .

Goodman’s association model I simplifies Eq. 4.21 into

<

log Fy = ft 4 puf 4 .z joby i, (4.40)
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which is the product of the distances between the row scores and between the column
scores. (Goodman’s association model IT is also called the log-multiplicative model
(Clogg, 1982), since two-way interaction is characterized by a multiplicative term
involving two unknown parameters in Eg. 4.42. This creates some difficulty for
estimation, which requires an iterative procedure, since ¢; and ¢ ; cannot be separated
in a single estimation. The iterative procedure alternately treats one set of estimates
(or initial values), say ¢;s, as known in updating the other set of estimates (or initial
values), say ¢;s, until they stabilize.’ Besides the GLIM macros available from this

where ¢; and ¢; are respectively row and column scores as ir-l the Tow- and colgxcnn—
effect models. That is, model I can be seen as specifying the interaction term p of
Eq. 4.21 as the sum of the interaction terms of the row- an‘d column—effect mode'ls
(j¢p; + i;). However, it is necessary to add a scale normahzahon_to either qﬁ,: or ¢y, in
addition to normalizing their locations. For example, one possible normalization 1s
é1 = @1 = @;="0. The degrees of freedom for residuals equal (I—2)(J—2). The
general formula for LOR is

log F—fﬂ’) — (61— D) —1) + (@ — @)= D) (4.41)
FyFy;

which is the sum of the weighted distances between the row scores and bet\_vec‘an the
column scores. The reader should compare Eq. 4.41 to Egs. 4.35 and 4.38. Similar to
ihe row- and column-effect models, model I also assumes that the rows and cglumns
are correctly ordered. This property means that the model is not invariant to
positional changes in the categories of the row and column variables. ‘If the
researcher has no knowledge that the categories are correctly ordered, or in fact
needs to determine the correct ordering of the categories, model T is of lim.lted nse.
For this reason, Goodman’s model II has received the most atiention. It is of 1{:he
form

loghy = p+ it + 1+ b (4.42)

where ¢; and g, are respectively row and column scores collectively rquiring three
normalization constraints. One possible normalization is to set the location of both
$; and ¢; (e.g, > ;=0 and 3 @;=0) and the scale of cither ¢; or ¢, (say
3" ¢? = 1). Model II has the same degrees of freedom as model I, (I— 2}({ -2}, for
only [+J—3 parameters are used to describe the row—column association. The
model does not require the correct ordering of either the row or th.e column
categories. The estimation of the scores (¢/s and ¢;s} reyeals the orc.lerl'ng of the
categories implicit in the model. The LOR for any two pair of categories is

FyFy |
tog(FEL) = 1= 00y = ) @43
F[]"Ff'j

book’s website, special-purpose computer packages for this type of model are also
available (such as ASSOC and £EM).

The association models proposed by Goodman are parsimonious because the
number of parameters for interactions increases by (7 +.J — 3) instead of (7— 1)(J — 1)
as in the saturated case. Obviously, the parsimony of these models can be achieved
only with tables of a sufficiently large dimension. As a rule, the number of categories
should be at least three for such models to be applicable.

The dimensionality requirement is even clearer in light of interpretations of the
estimated scores (¢;’s and ¢;’s). As Clogg (1982) shows, the real meaning of the
estimated scores lies in differences in intervals between two adjacent categories. Such
differences in intervals are not meaningful for variables with less than three
categories,

The log-multiplicative model of Eq. 4.42 can further be generalized to multiple
dimensions, mimicking the case with muttiple dimensions of observed attributes. This is
called the RC(m) model, extensively discussed by Goodman (1986) and Becker and
Clogg (1989). In the multiple dimension case, it is convenient to reparameterize the
unknown parameters differently by adding an unknown coefficient § and renormalizing

log Fy = p+ 1 + 4 + D Brbin®ym (4.44)
with

S Om=0 Y gl =1

where fi,, measures the strength of association for the mth dimension. For some
applications, the rescarcher may wish to save degrees of freedom by constraining ¢,
and @, across m, and even between ¢, and ¢, for square tables.

To illustrate the usefulness of the RC association model, let us take a look at one
of Clogg’s (1982} examples from the 1977 GSS. The tabular data are reproduced in
Table 4.16. The row variable consists of patterns conforming to a Guttman scale
measuring attitudes toward abortion. In parentheses are responses to questions

3. In standard packages such as GLIM, this procedure does not produce correct standard errors.
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Table 4.16: Attitudes toward abortion and premarital sex.
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Table 4.17: Estimated scale scores.

Attitude toward abortion Attitude toward premarital sex” Row Column
1) 2) 3 @ (Abortion) (Premarital sex)
(1) Error 44 11 38 62 () 0.075 —0.743
{2) (yes.yes,yes) 59 41 147 293 (2) 0.776 _0.127
(3) (yes,yes,no) 23 11 13 27 (3) -0.098 0.271
(4) (ves,no,no) 27 8 16 27 ) —0.155 0.598
(5) (no,no,no) 258 57 105 : 110 &) _0.598 T

aFor the column variable, (1) = Always Wrong; (2} = Almost Always Wrong; {3) = Sometimes Wrong;
(4) = Not Wrong at All.

asking whether legal abortion should be available to a woman under three different
situations: (1) if she is not married and does not want to marry the man; (2) if the
family has a very low income and cannot afford any more children; and (3) if a
woman is married and does not want any more children. Given the varying severity
of the three situations, most respondents fall into the patterns of approval of
abortion under a more severe situation if they approve of abortion under a less severe
situation. The first category of “Error” consists of respondents who do not neatly fall
into the Guttman scale.

As is well known, Guttman scales yield only ordinal variables. That is, for our
example, we only know that respondents in category (5) disapprove of abortion more
strongly than those in category (4), and those in category (4) in turn disapprove of
abortion more strongly than those in category (3), and so on. We do not know the
relative distances separating the various categories. In addition, we do not know
where the nonconforming respondents in category (1) belong.

Clogg (1982) chose measured attitude toward premarital sex as an instrument in
scaling the ordinal measure of the abortion attitude. To do this, Clogg applied the
RC model to these data. We replicated Clogg’s results using an iterative ML
estimation procedure implemented as a GLIM macro, which is available from this
book’s website. We normalize the model using the convention in Eq. 4.4, thereby
restricting both the location and scale of the row and column scores and freeing up
an association parameter . The estimated model fits the data very well (G? = 5.55
for 6 degrees of freedom; BIC = —37.81). The estimated scores are given in
Table 4.17, with S estimated to be 1.308, which means a strong positive association
between attitude toward abortion and attitude toward premarital sex.

These estimated parameters are essentially the same as those reported by Clogg,
although they appear to be different due to different normalizations. The estimated
scores should be interpreted in terms of relative distances. For example, the
respondents in the first row category (“Error”) are estimated to approve of abortion
less strongly than those in category (2) but more strongly than those in other
categories. It is important to emphasize that a shift of categories would not affect the
estimation of the RC model. That is, although the RC model presumes the ordinal

scale of- the row anfi column variables, it does not require the correct ordering of the
categories. Estimation reveals such ordering. For our data in Table 4.16, the column
categories are correctly ordered. The row categories are not.

4.6. Models for Multiway Tables

Most studies in social science are concerned with relationships among variables, for
such relationships often reveal underlying social processes. Two-way tables are the
most basic form of representation relating observed variables to each other. In the
last two decades, social researchers have fruitfully applied the loglinear models
presented in the preceding sections in analyzing associations in two-way tables.
’ However, two-way tables are inherently limited because they contain little
information. For example, two variables may be associated due to their common
association with a third variable. When the third variable is controlled, the partial
association between the two variables may be nil. To test for such “omitted-variable
bias,” it is necessary to bring other dimensions into a multivariate study.
Another common situation in which the researcher analyzes three- or higher-way
tables is when the key research interest lies in the variation of a two-way association
along one or more dimensions. Examples include trend analysis and comparative
analysis. We will review some examples in the sociological literature laterin this section.
In the next section, we introduce loglinear models for the analysis of three- and
higher-way contingency tables. We lump tables of three or higher dimensions under
the general label of “multiway” tables. Although our discussion focuses only on
models for three-way tables, generalization to higher-way models should be-
straightforward. It is also important to realize that the models for multiway tables
are generalizations of the models presented earlier for two-way tables,

4.6.1. Three-Way Tables

Lefz R, C, and L respectively denote the row, column, and layer variables, with layer
bemg' th'e additional third variable. The three-way table of R x C x L gives the detailed
association among R, C, and L. In this three-way table, the researcher can obtain
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Table 4.18: Graduate admission data from UC-Berkeley.
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Table 4.19: Collapsed graduate admission data.

Major Men Women Sex No. of applicants Percent admitted
Number of Percent Number of Percent Men 2691 45
applicants admitted applicants admitted Women 1833 30

A 825 62 108 82

B 560 8 25 68 i i ing thi

5 o e 23 T :hge;entd storu.:s‘.LUnderStand1,,r1g,th1s,p,uzzle,is essential to a multivariate analysis of

< e 13 375 25 abular data. '

E 191 28 393 24

F 373 6 341 7

partial tables between any two variables (say R and C) while holding the third variable
(L) constant at a given level. The R-C association in R x C partial tables is called the
partial association. When the R-C partial association varies across different categories
of L, it is said that there is three-way interaction involving R, C, and L. The researcher
could also ignore the third variable (say L) and collapse the three-way table
(R x Cx L) into a two-way table, called the marginal table (R x C), containing the
marginal association between the two variables (R and O). In general, partial
associations are different from marginal associations. Otherwise, the researcher would
opt for simpler tables and model them statistically. In the next subsection, we will
discuss conditions under which a partial association equals a marginal association.

In Table 4.18, we present a table pertaining to data on graduate admissions at the
University of California-Berkeley. Table 4.18 involves three variables: sex of applicants
(men versus women), admission outcome (admitted versus rejected), and major (A
through F). The data came from a study looking into the allegation that graduate
admission at the University of California-Berkeley was biased in favor of men against
women (Bickel, Hammel, & O’Connell, 1975; Freedman, Pisani, & Purves, 1978). For
convenience, let us label sex R, admission outcome C, and major L. Although Table
4.18 presents the data in the form of proportions and counts for sex by major
combinations, converting the table into frequencies by Rx C'x L is casy.?
" Table 4.18 shows clearly that the admission rate of women applicants is not
appreciably lower than men applicants in any major. If there is a notable difference
by sex, it is that women have a higher admission rate (at 82%) than men (at 62%) for
major A. However, the relationship between sex and admission outcome looks very
different if we collapse the data into a two-way marginal table over major. Table 4.19
is the resulting table.

Table 4.19 suggests that women have a much lower rate of admission (30%) than
that of men (45%). Why do the two tables based on the same data tell us two

4. The converted frequency table is available from this book’s website.

4.6.2. The Saturated Model for Three-Way Tables

For the three-way table R x C x L, let fi denote the observed frequency, and Fy, the
expected frequency for the cell indexed by the ith row, jth column, and kth layer.
Analogous to Eq. 4.20, the saturated model for the three-way table can be written as

. _ R C_L RC_RL_CL_RCL
Fijfe =115 Tty Tk Tk Tik (4.45)

where the = parameters are subject to usual normalization constraints. The loglinear
form of the model is

- R
log Fye = p+ pf 4+ + g + uf€ + ufE + uG- + pic* (4.46)

whe.re the p parameters are simply the logarithms of the t parameters and are thus
subject to the same normalization constraints. For the ANOVA-like normalization,

R __ (o L RC RC
||7_'._I|.=|I —I] —[I
i J k i i

J

— RE __ RL __ CL CL
~[[# =TT =TT =TT
i k 7 k

— RCL _ RCL
=l =]l = 'ciff‘r‘ =1 (4.47)
i i k
Or, in terms of the u parameters,
R _ C_ L _ RC _ RC
S = S = = S = S = Y
i J i i i

_ RL _ CL _ CcL

=3 = = S
k 7 k

— RCL __ RCL

—Z“ﬁk =D =)t =0 (4.48)
i J k
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Alternatively, we can use dummy-variable coding and set the following normal-
ization constraints (with the first category as the reference):
L _ _RC _ _RC _ _RL
T;{ = "7? =T =71 =T =T

RL _ _CL _ _CL _ _RCL
=T T =T T T

= rﬁgl‘ 'cg;CL =1 (4.49)

Or,min terms of the ,u '}')ara'rfriefefs:’

R c_ ,L__ ,RC_ RC _ ,RL
By = KR =}/ =Ry = Hy = By

—5t = u = =

= phel = it =0 (4.50)

The ¥, ¢, and ¢£ parameters in Eq. 4 45 (or p%, u€, and p* in Eq. 4.46) are called
£RC LRL RC RL

marginal parameters , and 7% (or p , and uF in Eq. 4.46) two-way
interactions, and "% (or ,uRCL in Eq. 4.46) three-way interactions. Since additive
terms are easier to work with than multiplicative terms, the loglinear form of Eq. 4.46
is commeonly used.

4.6.3. Collapsibility

Collapsibility is meaningful when research interest lies in the association between two
particular variables. The question is whether the measured association differs before
and after a table is collapsed from three-way to two-way. A three-way table is said to
be collapsible if the partial association equals the marginal association when the
three-way table is collapsed over the variable not involved in the association of
primary interest. That is, a table is considered collapsible if marginal and partial
relationships are identical.

To be more precise, let us say that we are primarily interested in the R-C
association in the table of Rx C x L. The table can be collapsed over L to the
marginal two-way table of R x C, if the marginal association in the R x C table is the
same as the partial association between R and € conditional on L.

Conditions of collapsibility for the three-way table of R x C x L into the two-way
table of R x C follow:

1. There is no three-way RCL interaction: -t =0, for all 4, j, and k.
2. Either RL or CL two-way interaction is nil: either uRl =0 or ,ujk =0, for all 4, j,
and k.

To appreciate these two conditions, let us review conditions for omiited variable
bias in the linear regression context: an omitted variable may cause a bias to the
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estimated effect of the primary variable of interest on the dependent variable only if
both of the following two conditions are true:

1. The omitted variable is (unconditionally) related to the primary variable of
interest.
2. The omifted variable affects the dependent variable.

When one of the two conditions is not met, there cannot be an omitted variable

—bias_For example, researchers-can-ignore-other relevant explanatory variables in an

experimental study because randomization ensures their independence with the
primary variable of interest — experimental treatment.

By analogy, we can collapse a three-way table over the control variable if the
control variable is unrelated either to the primary explanatory variable or to the
outcome variable. Unlike the case for omitted variable bias in linear regressions,
the condition of unrelatedness for collapsing contingency tables refers to partial
association, not unconditional association. The collapsibility property is important
in analysis of multiway contingency tables, for the researcher should always try to
simplify the analysis whenever possible.

For our example of the admissions data, we can see that the two conditions of
collapsibility do not hold if one attempts to collapse the data over major:
Sex is related to major due to sex segregation by majors (i.e., RL#0), and the
proportion being admitted varies radically across majors (i.e., CL#0). Given these
conditions, collapsing results in a marginal association (as in Table 4.19) that is
different from the partial association controlling for major (as in Table 4.18).
As in the case of evaluating an omitted variable bias, we can infer the direction of
the difference between the marginal association and the partial association.
In our admissions example, RL and CL interactions are such that women
applicants are poorly represented in majors where the proportion of being
admitted is high (such as major A). This combination leads to a lower proportion
of women being admitted if the three-way table is collapsed over the dimension of
major.

One use of the collapsibility conditions is to purge rates of confounding effects of
a third variable. Assuming no three-way interactions, Clogg (1978) proposed to
purge the confounding factor of L in studying the association between R (primary
explanatory variable) and C (outcome variable for the calculation of rates) by
adjusting the frequencies according to

S
S =t (4:51)
ik

where /¥ is the adjusted frequency to be used for calculating purged rates. This
adjustment by Eq. 4.51 ensures that there is no partial association between R and L
for the adjusted frequencies. Thus, the conditions of collapsibility are satisfied so that
the third dimension L can be ignored in the adjusted table. Xic (1989) further
proposed an alternative way to purge rates of confounding factors by meeting the
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conditions of collapsibility in a different way:

fh= % (4.52)
T

(i.e., by eliminating the partial association between C and L). Clogg (1978) discussed

ways to purge three-way interactions (t°“%) when present.

4.6.4. Classes of Models for Three-Way Tables

As in the case for two-way tables, the saturated model is seldom of research interest,
for it simply parameterizes observed frequencies. Researchers often wish to construct
more parsimonious models and test them against observed data. Let us now further
simplify the saturated model of Eqs. 4.45 and 4.46 into the following special classes
of models. From now on, we will use the loglinear notation of Eq. 4.46, although
corresponding notation in terms of the multiplicative form of Eq. 4.45 can be easily
obtained. We use a notation for models in which additive terms are separated by a
comma, and interactions between variables are pot separated. Unless explicitly
stated, hierarchical structure of terms is maintained so that a higher-order interaction
implicitly assumes the presence of lower-order interactions and marginal parameters.
Thus, the saturated model of Eq. 446 can be denoted simply as (RCL).

Class I. Let us first consider the “mutual independence™ model, denoted as (R,C.L).
The key feature of the model is that there are no interactions. Under this model, all
two-way and three-way interactions are nil (i.e., PRC = yRL = yCL = yRCEL = 0 for all
i, j, and k). This model assumes that the three variables are independent of each other
pairwise:

e R and C are independent,

e R and L are independent, and

e ( and L are independent.

Because there is no two-way interaction, the three-way {able can be collapsed in all
three dimensions. That is, '

¢ marginal association = partial association = nil, for any pair of variables.

If the model holds true, it calls for a univariate analysis.

Class 2. Let us now consider the “joint independence” model, denoted as (R, CL),
(RC, L), or (RL, C). This class of models allows only one iwo-way interaction.
Hence, two sets of two-way interactions and the three-way interactions are nil. Let us
use model (R, CL) as an illustration. In this case, pf = uRL = yRC = for all £, /,
and k, so that R is independent with respect o the other two variables (C and L):

e R and L are independent and
e R and C are independent.
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The three-way table is collapsible in all three dimensions. We have

. marg}'nal association = partial association, for any pair of variables. In addition
* marginal RL and RC association = partial RL and RC = nil. ,

Class 3. Let us further consider the model of iti i

conditional independence,” denoted as
(IiL’ C-I:), (RC., CL), or (RC, RL). This class of models contains two two-way
interactions. With (RL, CL) as our example, the conditional independence mode
means-that-R-and-Care-independent-of each other at each level of L :

¢ R and C are independent, given .

The table is collapsible along R and C, but not along L. In other words,

. marg%nal RE and C“L.association = partial RL and CL association, but
e marginal RC association s partial RC association { = nil).

T.hxs is an important model. It means that the marginal association (RC) may be
spurious if one ignores a relevant variable (1), similar to an omitted-variable bias in

Clc?ss 4. Finally, let us consider the “no three-way interaction” model (RC, RL, CL)
Thls model allows for all three two-way interactions. It does not imply c,ondi’tionai
independence. .No three-way interaction implics homogeneous associations: partial
two-way association does not vary with the third variable. '

The table is not collapsible in any direction. That is,

¢ marginal two-way association # i iati
; partial two-way association, for an i
variables. ’ Y pair of

Finally, when the (RC, RL, CL) model does not fit the d i
way astso?lations (RC, RL, and CL) vary as a function of the thii?avfr?;tli?é. %?s
$;€§£ gc,]l:;alled heterogeneous association, which requires modeling of three-way

We now apply various models to the graduate admissions d i i
Tabl-e 4 18. The data are of the dimensioi 2% 2x6(for RxC 1ti§a2:§r1;r}2s;nst:f lg
adm1551qn ou?come, and L major. Summary measures of fit for tfle various mod’els
are provided in Table 4.20. Model 1 is the mutual independence model, which does
not fit the data (G* = 2092.69, for 16 degrees of freedom; BIC = 195’8 01) but is
preser_lted here as a baseline for other models. Model 2 is a joint independénce model
allowing for the interaction between sex and major. In allowing for the interaction
betW(.ae:n sex gnd major, we bracket out the sex segregation of major as a pre-existin
condition prior to the admission process. With G* = 872.08 for 11 degrees ogf
freedom and BIC = 779.48, model 2 significantly improves upon model 1 in
goo@nejss-of-ﬁt. In model 3, we further allow for the interaction between major and
adm1§31(?n outcome and in effect specify conditional independence. There is no net
association between sex and admission outcome conditional on major. Model 3 fits
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Table 4.20: Goodness-of-fit statistics of models for admission data.

Model Parameter terms” G* df BIC A

(1) (R, C, L) 2092.69 16 1958.01 25.98
{2) (RL, O) 872.08 11 779.48 16.85
(3) (RL, CL) 21.13 6 ~29.37 1.66
4) (RL, CL, dummy) 2.81 5 —39.28 0.81
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applicants are underrepresented in majors A and B and overrepresented in majors C
through F, and that the admission rate is higher in majors A and B than in other
majors and is particularly low in major F.

4.6.5. Analysis of Variation in Asseciation

The preceding subsection considered some common maodels for three-way tables.

“R =sex, C — admission outcome, and L = major. Dummy refers to ihc c‘éil"wlitare“R‘: f:ula.‘m,
C = admitted, and L = major A. A is the index of dissimilarity between observed and predicted frequencies
(in %).

Table 4.21: Estimates of interaction parameters of model 4.

Class of parameters Parameter Estimate (S.E.)

jor Female x major A —_— —
Gender by majo Female x rnajor B —0.329 (0.311)
Female x major C 3.382 (0.244)
Female x major D 2.674 (0.244)
Female x major E 3.502 (0.250)
Female x major F 2.691 {0.245)
Admission by major Admitied x major A — —
Admitted x major B 0.052 (0.112)
Admitted x major C —1.106 (0.100)
Admitted x major D —1.155 (0.104)
Admitted x major E —1.572 0.11%)
Admitted x major I —3.159 (0.168)
Dummy Female, major A, admitted 1.027 (0.261)

the data reasonably well (G* =21.13 for 6 degrees of freedom, BIC = —29.37).
Based on the BIC statistic, we may conclude that the data support the conditional
independence hypothesis. .
However, we observed earlier that female applicants seem to have an advantage in
major A. Testing this specific three-way interaction, we add to model_4 a dummy
variable denoting the cell where R = female, C = admitted, and L = mgjor A. As the
goodness-offit statistics show, model 4 fits the data extremely well (G" = 2.81_ ‘for 5
degrees of freedom, BIC = —39.28). The final model means that con_d;tlonal
independence holds true for all majors except for major A, where there 15 a sex
difference in admission rates. As shown in the estimated parameters presented in
Table 4.21, the sex difference for major A is in favor of women, contrary to the
criticism that the admission process at the University of California-Berkeley favors
male applicants. From the parameter estimates, we also observe clearly that women

These models are primarily used to test the presence or absence of partial
associations. From these tests, we are able to say whether a three-way table is
collapsible over a dimension. We did not consider complicated cases beyond the no
three-way interaction model.

What should we do if the no three-way interaction model does not fit the data?
Fitting the saturated model is usually not a satisfactory answer, since the saturated
model is not parsimonious. For the admissions example, we were able to identify a
local three-way interaction by carefully examining the table.

We now consider a general situation where the research interest centres on the
variation of a two-way association over a third dimension (or more generally a
combination of other dimensions). Examples of this kind are plentiful in social science.
For example, researchers studying comparative social mobility may be interested in
whether the association between father’s occupation and son’s occupation varies
systematically as a function of a nation’s characteristics (Grusky & Hauser, 1984).
Family sociologists may be interested in whether educational assortative mating has
strengthened over time (Mare, 1991). .

In this section, we recommend a “conditional” approach generalized from
loglinear models for two-way tables for the analysis of variation in association. There
are two advantages to this conditional approach. First, the researcher often can
achieve parsimony. Second, parameters from such an approach are relatively easy to
interpret. ‘

Let us illustrate the approach with a three-way table of R x C x L where the
primary rescarch interest lies in the analysis of R—C association over the dimension
of L. Under the saturated model, the expected frequency is given in Eq. 4.45. Given
the objective of analysis of variation in association over a third dimension, the

researcher often wishes to begin with the model of conditional independence
(RL,CL); that is,

R_C_L_RL_CL
Fig = 1005 0Ty T (4.53)

implying that there is no association between R and C given L. Compared to the
saturated model of Eq. 4.45, we see that the baseline two-way interaction (%) and
the three-way interaction (%) are omitted in Eq. 4.53. The researcher typically
focuses on the specification of 7 and 7°“", This is what we mean by a conditional
approach, for the analysis of variation in association is now conditioned on
Eq. 4.53. This point is made even clearer if we write out the local odds-ratio
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conditional on L = k from the saturated model Eq. 4.45:

RC_RC RCE RCL
FaFang+e _ Ty Tnu+n Tk DG+
Bijlk g NG DE _ CF DG T { )E(é‘L (454)

A RC _RC RCL
FigeneF e Ty Ty TiGe e Tenk

That is, the conditional odds-ratio depends only on the two-way interaction t°¢

parameters and the three-way interaction RCL parameters.
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Yvh?re the parameters desm."ibe the R-C two-way deviation association, and ¢’s
1nd1c§1t_e the layer-specific deviations in the association. With this specification, the
conditional local LOR (from Eq. 4.54) is simplified to ’

log(@gu) = Oy +¥gy1x001) = Yigany — Ve i
= ¢y 108(9:})

where 6 is a function of the 1 parameters and can be thought of as the baseline

““There are many ways L0 paramete‘rize“‘*cRC”aﬁd—rﬂ-CLrS‘ee"Goodmanm(-w%);w)(—i%mw——m;
(1992), and Goodman and Hout (1998) for more thorough treatments of the subject.
Note that both 8¢ and %% contain an R-C two-way association. The most
common specification for R {5 to interact a two-way R-C association pattern with
tayer. Let us say that 7€ is modeled to follow a baseline association ®C, and 7"
modeled by interacting a two-way cross-layer “deviation” association (gbRC) and
Jayer (L). @™ and ¢ can be the same. With this notation, we will provide some
general guidelines and illustrate them with a concrete example.

Recommendation 1. It is desirable to have a simple model to reduce o and ¥ to just y.
This is tantamount to specifying that the two-way R-C association has the same
pattern across layers. When this is the case, we can set 7€ to 1 and 17“F as interaction
between v with L. This strategy requires that t be a more parsimonious specification
than the full-interaction of R and C {i.e., consuming less than (/— 1)}(/— 1) degrees of
freedom). Otherwise, the resulting model is saturated. This strategy works because we
only specify the same association function for the basic two-way association but allow
the parameters for the function to differ across layers. For example, the researcher may
specify a general RC association model at each layer and estimate the different RC
parameters at different layers (Becker & Clogg, 1989; Clogg, 1982).

Recommendation 2. If it is necessary to give different specifications to the baseline
association @ and the deviation association ¥, it is desirable to have a more
parsimonious specification for y than for o. This is intuitive because the number of
parameters for the RCL three-way interaction (which is the interaction between yr
and L) multiplies quickly as the complexity of i increases. Researchers sometimes
give a saturated model to @ in order to achieve a better fit. In Mare’s (1991) study of
trends in educational homogamy, for example, w is the full interaction, but v is a
crossings models with only four parameters. Interacting the four crossings
parameters with time, Mare was able to show the trends in the strength of
educational homogamy.

Recommendation 3. Tt is desirable to specify the log-multiplicative-layer specification -
between ¢ and L rather than the simple interaction specification. This is particularly
powerful if recommendation 1 is taken so that y and  are the same. By the log-
multiplicative-layer specification, we mean the following model (Xie, 1992) (with
w=1)

Fye = vefeliofl it expObydy) (4.55)

odds-ratio. This log-multiplicative-layer model is parsimonious, for it only adds
(K — 1} degrees of freedom to test for three-way interactions, yielding a l-degree-of-
freedom test for each additional layer. In addition, at each layer, the R~C association
follows the same pattern but with different strengths. See Goodman and Hout (1998)
for a discussion of situations where w=£1.

Wfa now provide an example where these three recommendations are put to
practice. The example was drawn from a study of class mobility in three nations
(England, France, and Sweden) conducted by Erikson, Goldthorpe, and Portocarero
(1979). There are seven categories for both father’s class and son’s class, giving rise to
a7 x 7T x 3 table. The same data were also analyzed by Hauser (1984) and Xie (1992)
In :l'able 4.22, we present a series of models for these data. Both the data and thP;
estimated models are available from this book’s website.

‘In the first line of Table 4.22, we present the conditional independence model
which fits the data poorly (G* = 4860.03 for 108 degrees of freedom), as the nuli
model. The second line is the homogeneous full-interaction model (FI,), which is the
same as the no three-way interaction model. Although model FI, fits the data
_reasona_bly well by the BIC statistic criterion, its heterogeneous form (simply
1nteract1gn with layer) is the saturated model (#7). In the log-multiplicative-layer
model w%th full-interaction as y (¥7,), we use 2 more degrees of freedom to test for
systematic variation in the full-interaction across layer, providing a superior
goodness-of-fit, by both the reduction in G* (29.16 for 2 degrees of freedom) and

Table 4.22: Models for three-nation class mobility data.

Model Features G* df BIC

cd Conditional independence 4860.03 108 3812.57
Fly Homogeneous full-interaction 121.30 72 — 577.01
FI Heterogeneous full-interaction 0 0 Ol

FI, Log-multiplicative full-interaction 92.14 70 — 586.77
Hy Homogeneous levels model 244.34 103 - 754-63
o, Heterogeneous levels model 208.50 93 69348
H, Log-multiplicative levels model 216.37 101 —763.20
RCQOy Homogeneous quasi-RC 337.86 76 — 399'24
RCQ, Heterogeneous quasi-RC 271.97 54 — 251.76
RCQ, Log-multiplicative gquasi-RC 33237 74 - 385:34
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BIC (—586.77). The three H models are based on a topological pattern (with six
levels).> With this parsimonious baseline specification for the otigin-destination
association, the homogeneous levels model provides a reasonable fit to the data
(notably BIC = —754.63) for 5 additional degrees of freedom beyond the C4 model.
Since the levels model is parsimonious, we can adopt the first recommendation and
interact the levels matrix and layer, resulting in the heterogeneous levels model, Hy.
Given the large sample size (16,297), Erikson et al, (1979) and Hauser (1984) choose
to prefer model H, over model H, even though, strictly speaking, the y? statistic
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‘Table 4.23: Nation-specific ¢ parameters.

Model ¢y (England) ¢» (France) @5 (Sweden)

gx 0.617 0.633 (.468

Ré : 0.613 0.634 0472
0. 0.652 0.575 0.495

“between the two nested models '(35.Sﬂ‘for'“l‘(}“d"egrees-oHreedem9~is~s-igniﬁcant.
According to BIC, model Hp has a lower negative value and thus fits the data better
than model H,. With the specification that the origin-destination association varies
log-multiplicatively cross-pationally, model H is between models Hy and H,. By the

log-likelihood-ratio y* statistic, model £, (G? of 216.37 with 101 degrees of freedom)

fits the data significantly better than model Hy (AG?* =27.97 for 2 degrees of
freedotm) and not significantly worse than model H; (AG* = 7.87 with 8 degrees of
freedom). Additionally, of all the models in Table 4.22, model H, has the lowest BIC
value and thus fits the data the best according to the BIC criterion.

In the last three lines of Table 4.22, we change the two-way association
specification (i) from a levels model to an RC association model while blocking
diagonals, called quasi-RC and denoted as RCQ. In this specification, the RELRCL
part of Eq. 4.45 becomes

exp(Brduepp) for i#f

Model RCQ, constrains all three parameters (8, ¢, and @) to be invariant across
L, while RCQ, allows them to vary freely with L. The log-multiplicative-layer version

(RCQ,) is intermediate in fixing the scores (¢ and ¢) but allowing the strength

parameter f§ to vary by level. The results in Table 4.22 indicate that model RCQ, fits
the data better than the other two versions of the RCQ model according to the BIC
statistic.

One advantage of the log-multiplicative-layer model is that a simple parameter
measuring the strength of association can be obtained for each table, subject to a
global normalization. Xie (1992) capitalizes on this property to separate levels of
mobility from patterns of mobility, the latter of which Xie assumes to be the same in
all modern societies according to his revised interpretation of a classic hypothesis in
the social mobility literature. We report these parameters for the three log-
multiplicative models in Table 4.23. From these estimates, we can conclude a similar
pattern regardless of model specification: the strength of the association between
father’s class and son’s class is weaker in Sweden than in England and France but
similar between England and France. This example shows that fine-tuning of

5. The levels matrix is available from the book’s website.

two-way specifications (both baseline and”deviation) sometimes has little conse-

quence .for the main .research objective: detection of the variation in a two-way
association along a third dimension.

4.6.6. Model Selection

In Table 4.22 we have selected models based on two criteria: the change in G* for
nested models and BIC for nested as well as unnested models, We recommend usin
these_: apd other goodness-of-fit criteria (including Pearson y* statistic and the ind .
of dissimilarity) in the course of model fitting. -
The hkelihood‘—ratio x° test in terms of the change in G* is the most common
method for selecting among competing nested models. The likelihood-ratio test has
the adyantage of having a familiar proportionate reduction in error interpretation
mu.ch like ﬂ’_lB F-test in OLS regression models and of being applicable to any modei
gstlmateq with ML. The index of dissimilarity provides a descriptive measure, which
1s nseful in assessing how well a model is able to reproduce the observed freqliencies
The BIC StatlSti.C helps the researcher trade parsimony for goodness-of-fit in large;
samples, for which even a “good” model might be rejected by the G2 statistic.



