

OP Vzdělávání pro konkurenceschopnost

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FOSSIL FUELS: OIL AND NATURAL GAS (+ UNCONVENTIONAL SOURCES)

Filip Černoch

ESS411 – Environmental aspects of energy

Exploration and production of oil

□ Onshore

- Limited impacts considerable experience, physically limited possibility of spillage
- Impacts similar to mining operations in non-energy industry land use, water and air pollution, dust, noise, transportation damages of habitats.
- Long history of regulation in the EU and USA

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

Exploration and production of oil

Offshore

- Complicated technology increases the risk of accidents and consequent damages due to the hostile environmental conditions
- Worse impacts of oil spillages (1m3 = spillage up to 1km2)
- Increase in a number of off-shore installations accompanied by more stringent regulation (2010 Gulf of Mexico - Directive 2013/30/EU on safety of offshore oil and gas operations)

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republik

Contributions to global oil production growth

4

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

Unconventional oil

- = produced or extracted using techniques other than the conventional (oil well) methods.
- Conventional crude: mineral oil consisting of a mixture of hydrocarbons of natural origin, exists in liquid form under normal surface temperatures and pressure, unconventional oil: to be extracted non-conventional technology is needed, in natural state (without heating or diluting) couldn't be extracted.
- Oil sands
- Tight oil
- □ Oil shale
- □ Oil produced from coal

••••

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

Oil sands, tight oil, oil shale...

- □ Consistency extremely dense and viscous, almost solid.
- □ High level of sulphur and metals (nickel, vanadium).
- Venezuela Orinoco Belt (1200 bn. barrels = approximately equal the world's reserves of lighter oil, 200 billion barrels technically recoverable)
- Alberta, Canada reserves of 1700 -250 bn. barrels (11 % of world oil reserves, 3rd on the world), 99 % oil sands. Export around 2 mil. barrels/day.

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

VOIE VZDĚLÁVÁN

World's Largest Oil Reserves in 2011 (Billion Barrels)

*Alberta's total oil reserves were 170.2 billion barrels, of which crude bitumen reserves accounted for 168.7 billion barrels and conventional crude oil reserves for 1.5 billion barrels.

Sources: ERCB 2012 ST-98 Report "Alberta's Energy Reserves 2011 and Supply/Demand Outlook 2012 - 2021" and Oil & Gas Journal "Worldwide Look at Reserves and Production. Special Report",

Producing techniques

In – situ mining (Oil shale-kerogen). Injecting hot fluids (or steam) into the rock formation, shale oil is recovered through vertical wells. Increased water and energy (natural gas) consumption. 2-4 barrels of water/1 barrel of oil, 70-90% could be recycled. Steam-Assisted Gravity Drainage (SAGD)

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

Producing techniques

- Open pit (ex-situ) mining (max 70m) (oil sand-bitumen, also shale oil). Excavation, when sand is cooped out by power shovels, carried away, then hot water is used to separate bitumen from the sand. Then it is refined. 8-10 barrels of water/1 barrel of oil, 40 – 70% could be recycled. About 2 (but up to 4) tons of material/1 barrel of oil. 1,5x more GHG then in case of conventional crude oil.
 - EROI cca 5:1

http://www.youtube.com/watch?v=YkwoRivP17A

Shale gas

- \Box Natural gas (= clean fuel) trapped within shale formations.
- Fracking combination of horizontal drilling and hydraulic fracturing.
- High consumption of water, 0,5-2% of injected liquid represents added chemicals.
- □ One well $-280\ 000\ \text{hl}$ of water.
- □ 2-4 hectares/1 drilling pad (= up to 30 wells), 3-6km between pads.
- Transport one well/700-2000 trucks (during installation one car every 4 minutes)
- □ Methane leackages, earthquakes.

https://www.youtube.com/watch?v=Ag9GUogWEa0

Shale gas

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

Ø

EROEI of different sources of energy

Oil in the beginning of oil business	100
Oil in the beginning of oil business	
Oil in Texas around 1930	60
Oil in the Middle East	30
Other oil	10-35
Natural gas	20
High quality coal	10-20
Low quality coal	4-10
Water power plants	10-40
Wind power plants	5-10
Shale oil	5
PV power plants	2-5
Nuclear energy	4-5
Oil sands	max. 3
Shale oil	max. 1,5
Biofuels (in Europe)	0,9 - 4

ento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem Ceské republiky

Transport of oil

- Dominated by marine transport (2/3 of world production vs. 1/3 transported by pipelines)
- Liquid bulk carriers (tankers) 77% of all tankers transport crude, 33 % oil and chemical products.

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

W

Transport of oil

- One of the biggest threats in ship transportation accident and oil spill. Intentional accidents (terorism, piracy), unintentional (accident, collision,, running ashore, failure of the ship).
- Risk is significantly higher in highly frequent areas in 1995-2005 in Turkish Straits 269 accidents.
- □ To stop VLCC or ULCC tanker 14 minutes and 3km are needed.
- □ In 70s there were 25,2 leaks annually, in 80s 9,3 leaks, in 90s 7,8 and after 2000 3,4 leaks annually.
- But with increasing capacity of tankers the oil spills are more severe with increasing environmental impacts.

Oil accidents

- Exxon Valdez 3/1989 at Alaska, 37 000 tons of oil leaked. Impacts still visible.
- Deep Water Horizon 2010, at Louisiana. Oil spill almost 10 000 km2.

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

Cleanup and recovery

- Bioremediation use of microorganisms or biological agents (bacterias) to break down oil
- □ Controlled burning air pollution
- Dispersants to dissipate oil slick.
- Wath and wait.
- Solidifying changing the physical state of spilled oil from liquid to a semi-solid.
- Skimming
- \square = usually no more than 20% of oil is re-captured.

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

