02 Measuring Energy

Václav Šebek

Measuring Energy

- Literature:
 - Bhattacharyya, S.C., 2011. Energy Economics: Concepts, Issues, Markets and Governance.
 Springer London, London.
 - Chapters 2 and 13

Energy

- Heat, light, motive force, chemical transformation etc.
- 2 thermodynamic laws
 - Mass and energy cannot vanish but transform
 - No 100% conversion losses inevitable
- Primary x Secondary energy
 - Primary directly from nature (oil, coal, wind, sun, nuclear...)
 - Secondary derived from Primaries (electricity, gasoline...)

Energy

- Other divisions (boundaries change)
 - Renewable x Non-Renewable
 - Commerical x Non-Commercial
 - Modern x Traditional
 - Conventional x Non-Conventional

Energy System

- Supply Conversion Consumption
- Extraction → PES → Transport → Final Energy
 → End use app → Useful energy
- Losses
- Energy corporations all through the system → wide variety of companies

Energy Information

- Broadly required data:
 - Energy use by various economic activities
 - E production, transformation and delivery to various users
 - "Field" technical and operating statistics
 - Financial and cost information
 - Macro-economic, social, political information

Energy Information

- Transorm into information about energy...
 - Pricing
 - Investment
 - Research & Development
 - System Management
 - Contingency Plan
 - Long-term Planning

Energy Accounting Framework

- Comprehensive account of energy flows including losses and any consumption
- See table
 - Production transformation consumption
- Accounting units
 - Commodity (physical, tonnes, barrels...)
 - Overal Energy Balance (common unit, eg BTU, GJ, TOE...) easier comparison

Energy Accounting Framework

Supply-side

Production (+) Trade (import/export) (+/-) Bunkers (transport costs, e.g. Tankers) (-) Stock change (+/-) Primary energy requirement (PER)

Conversion

Statistical difference (+/-) Transformation input (-) Energy sectors' own use (-) Transmission and Distribution losses (-) <u>Net supply available</u>

Net domestic consumption

Final energy consumption

- ∖ Agriculture
- 」 Industry
- 」 Transport
- ↘ Residential
- Commercial
- ↘ Non-energy uses

- Total energy needed to satisfy country's demand and transformation requirements
- Primary need (shown in TPES)

• Efficiency indicator

 Sectorial situation may be analyzed

Energy Accounting Units - Example

Tab – A lignite surface mine yearly consumption decomposition

Consumar	τı	l.+		Share			
Consumer	Consumer TJ kt G.	GJ/t	TJ	kt	ktce	ktoe	
PP Chvaletice	16 631	978	17,00	32%	33%	567	397
Refinery Litvínov	7 072	530	13,35	14%	18%	241	169
HP Otrokovice	4 523	274	16,51	9%	9%	154	108
Paperworks Mondi Štětí	4 358	180	16,70	8%	6%	149	104
HP Strakonice, a.s.	1 754	112	15,66	3%	4%	60	42
HP Třinec	1 698	106	16,00	3%	4%	58	41
HP Poříčí	789	47	16,79	2%	2%	27	19
PP Hodonín	446	27	16,63	1%	1%	15	11
Export	6 640	332	20,00	13%	11%	227	159
Retail	8 360	418	20,00	16%	14%	285	200
Total/mean	52 271	3 004	17,40	100%	100%	1 784	1 248

All units above are scientific – commercial units (eg TCE) might be not

Lignite Surface Mine

Useful Ratios

- Energy supply mix
 - Share of various sources on primary supply
- Self-reliance
 - What portion of energy is of domestic origin
- Share of renewables
- Power generation mix
- Efficiency
 - Electricity production
 - Refining
 - Overall
- Per capita consumption (primary and final)
- Energy intensity

Some energy data issues

- Availabilty
 - lags, various sources, imprecision, confidentiality
- Quality
 - Different standards and methodologies, deliberate changes, trade and balance discrepancies
- Cross border comparison
 - Traditional fuels, terminologies, sectors definition, accounting
- Common measurment
- Conversion factors

Energy Pricing

Energy Pricing

Ρ c) Net exporter **Domestic demand** ۲ satisfied below world price Equilibrium price should • be that of world price In reality domestic prices ٠ D of oil exporters $p^* = p^x$ significantly lower due subsidies

Max domestic consumption + Export = Total domestic production

S

Peak and Off-Peak Pricing

Peak and Off-Peak Pricing

Nuclear (yellow) – Renewables (green) – Coal (brown) – Peak gas (blue)

Peak and Off-Peak Pricing

Renewables and Electricity Pricing

[Kč/KWh]

Renewables and Electricity Pricing

[Kč/KWh]

Renewables and Electricity Pricing

[Kč/KWh]

Allowances v Taxes

- Government aims to decrease CO2 emissions
- Two ways of achieving that:
 - Tax payment for each ton of CO2 emitted
 - Tradable allowances permission to emit particular volume of CO2
- Different parameters
 - Tax maximum price for decarbonisation is set
 - Allowances maximum volume is set

- Two types of PP in a Country A and B
- Both emit 40t CO2 per year = total 80t/y
- Different emission reduction costs per 10t
 A = \$2,000; B = \$4,000
- Government' objective is 60t CO2 per year
 - Regulation
 - Tax
 - Allowances

- 1. Regulation
 - Each PP must decrease emissions by 10t/y
 - Costs = 2,000 + 4,000 = \$6,000
- 2. Allowances
 - 60t allowances issued, both A and B get 30t
 - B buys 10t allowances from A and emits 40t
 - A emit 20t ... total emissions 60t
 - Costs = 2 * 2,000 = \$4,000
 - Price of allowance between \$2k and \$4k
- 3. Taxation
 - T < \$2k ... no emission reduction & C+T = \$0 + \$0...16k</p>
 - \$2k < T < \$4k ... 40t of A reduced & C+T = \$8k + \$8k...16k</p>
 - \$4k < T ... all emissions reduced & C+T = \$16k + \$0</p>

Company	Emissions [t]	Costs reducing 1 t
A	70	20
В	80	25
С	50	10
Total	200	

- Government objective: 120 t
- Method: Allowances
- Who will sell at what price?
- What will be final cost of reducing emissions?

Company	Emissions [t]	Costs reducing 1 t
A	70	\$20
В	80	\$25
С	50	\$10
Total	200 (120 allowances issued)	

- C sells 40t allowances to B at price of \$20
- Total costs = \$1,100
 - A reduces 30t at \$20
 - B doesn't reduce
 - C reduces 50 at \$10
- Costs w/o trade
 - \$1,700