01 Introduction

Václav Šebek

Course Overview

- The minimum of 60 points (out of 100 points) is required to pass this course.
- The points are awarded based on the following criteria:
 - Active attendance (up to 2 pts per lecture, max 10)
 - Written exam (May/June) based on readings and lectures (max 45 pts)
 - Paper (max 45 pts)
- The written exam will contain both multiple choice and open questions. The date of exam is TBA (you will be notified by e-mail about the changes).
- If you have any questions, do not hesitate to contact the lecturers.

Course Overview

- Paper topic:
 - either a literature review of the topic of your choosing (in the field of energy economics) or
 - essay on specific case regarding major energy corporation (e.g. court rulings in competition cases, energy public access or its financial position)
- Recommended length is around 10 pages of A4 format (in any case, total length should not exceed 15 pages) including all tables, charts, figures and bibliography.
- Due May 18th, reviewed in a week

Energy Economics

Energy Economics

- Branch of *applied* economics e.i. economics of energy
 - Sources
 - Consumption
 - Trade
 - Regulation
 - Anything included in TPES

Today's Contents

- Energy market specifics
- Demand
- (Supply)

• Bhattacharyya (2008) chaps. 3 & 12

• Case study

Energy Economics

- Energy sector (research, analysis...) is complex
 - Energy consumption ubiquitous importance of the issues – political and social stress
 - Highly technology-determined and -dependable
 - Influenced by interactions at various levels global to local
 - Interdisciplinarity
 - From oil to wooden litter, from wind turbines to diesel engine

Energy Market

Microeconomic market model (remember previous course)

- Supply, demand, price, quantity, equilibrium

- Basic competitive market variant
 - Free entry and information flows
 - Agents are price takers
 - P = MC in short run and P = MC = AC in long run

Energy Market

Standard S&D competitive market

Capital Indivisibility

- Supply increments discreet, not smooth
- Inherent price instability
- Difficult to plan investment

Capital Indivisibility

- This may lead to:
 - Horizontal integration (oil industry)
 - Regulation (electricity)
 - Because of better managing the assets
- Decentralization production lessen capital indivisibility problem eg:
 - Renewables electricity production
 - Shale gas and oil in US

Capital Specificity

- The more an asset is specific, the less it may be used elswhere
- In energy industry assets are usually very capital intensive (ei expensive) and specific
- Coupled with economies of scale VC usually much lower than AC → firms maximizing production to make up their capital costs

Market Failures

- Monopoly problem
- Natural monopoly and its solutions
- Rents
- Externalities

Monopoly Problem

- Monopolies quite common in energy industry
 - Economies of scale
 - Capital intensiveness
 - Large projects, often international
 - Network industries
- Problems:
 - Deadweight loss
 - Inefficient capital allocation (not minimal AC)
 - Rentseeking (rent competition)
 - Price discrimination

Monopoly Market

Natural Monopoly

- Production by one firm least costly
- EG average cost falls with rising production

Natural Monopoly Fix

- When NM is unavoidable, how to avoid its monopolists pricing? (above MC, with rent)
- 1. Marginal cost pricing
 - Imply financial loss no firm interesed
 - State may subsidize the loss ambiguous solution

Natural Monopoly Fix

- Probable solution somewhere in between
 - Loss compensated
 - Price subsidized or above MC

Natural Monopoly Fix

- 2. Two-part tariff
 - Fixed and variable parts (eg fixed for plug and variable for real consumption)
 - Fixed part may be diversified
- 3. Ramsey pricing
 - Maximizing
 - Higher price with lower elasticity
- 4. Public ownership
 - Behave very much like Ramsey pricing

Other Market Failures

- Rents
 - Non-renewables rent
 - Monopolists rent
 - Distorts market
- Externalities
 - Environmental
 - Public goods

Energy Demand

Energy Demand

- Different views
 - Personal (cooking, heating, electricity)
 - Scientific (energy needed for chemical reaction)
 - Managerial (eg fuel needed in a power plant)
 - Planning policy making (regional/country level)
- Primary x final
- Demand x Consumption
 - D economic ex ante concept, willingness to pay
 - C realized transactions (Demand revealed)

Demand analysis

- Since 1970's
- Trends:
 - Longer term models/predictions reaching 50-100 years ahead – global warming & energy consumption relation – sustainable development
 - Extremely short term models operational issues with liberalized markets
 - Future security of energy supplies globally
 - Computation advances

Demand decomposition

- Buying decision (Y/N)
- Appliance selection
 - Fuel (coal, oil, gas, biomass, mix...)
 - Appliance (technology)
- Capacity utilisation (economy of operation)

Demand – Descriptive Analysis

- Growth
 - Values, indices
 - Eg TPES in physical units (toe, btu...)
- Elasticities
 - Output, price, income (ratio to energy change)
 - e > 1 elastic, e < 1 inelastic, e = 1 unitary elastic</p>
- Intensities

– GDP to energy consumption ratio

Factor analysis

- Further understanding of energy consumption changes
- Demand determined by GDP, relative size of the economy, energy intensity etc.
- Change in overall demand (ΔE) between two years decomposed into separate effects of those
- E.g. GDP effect What would be the ΔE had only GDP changed?
- Similarly Intensity and Structure change
- Together $Q_{eff} + I_{eff} + S_{eff} + \varepsilon = \Delta E$
- When ε is too big then we should find other explanatory variables

Energy Supply

- ES economics explained in the third lecture about investment
- Basically
 - Value chains supplying energy products electricity, heat, fuel
 - Sources:
 - Non-renewable
 - Renewable

Demand Decomposition Case

Demand Decomposition Case

- Coal burning heating power plant
 - 5 blocks (engines): 3 coal base, 2 fuel oil peak
 - Built between 1960's and 1980's
 - Fuel oil engines not used anymore
 - 2 of 3 coal engines need \$40m investment
- Coal demand comprise:
 - Outputs: Heat demand and its sustainability
 - Inputs: ETS price, coal price and availability
- Demand decomposition
 - Y/N shall we buy another engine?
 - What would it fire? (fuel question)
 - How often would it fire? (seasons, fuel price, regulation)

Demand Decomposition Case

- Heat demand?
 - Weather dependent
 - Technology dependent (consumers may unplug)
 - Heating price regulated regulation body behavior?