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71 LINEAR RELATIONSHIPS

LEAST SQUARES PREDICTION EQUATION

THE LINEAR REGRESSION MODEL

MEASURING LINEAR ASSOCIATION: THE CORRELATION
INFERENCES FOR THE SLOPE AND CORRELATION
MODEL ASSUMPTIONS AND VIOLATIONS

CHAPTER SUMMARY

Chapter 8 presented methods for analyzing association between categorical response
and explanatory variables. This chapter presents methods for analyzing quantitative
response and explanatory variables.

Table 9.1 shows data from Statistical Abstract of the United States for the 50 states
and the District of Columbia (ID.C.) on the following:

e Murder rate: The number of murders per 100,000 people in the population

e Violent crime rate: The number of murders, forcible rapes, robberies, and
aggravated assaults per 100,000 people in the population

» Percentage of the population with income below the poverty level
o Percentage of families headed by a single parent

For these quantitative variables, violent crime rate and murder rate are natural
response variables. We’ll treat the poverty rate and percentage of single-parent
families as explanatory variables for these responses as we study methods for
analyzing relationships between quantitative variables in this chapter and in some
exercises. The text Web site contains two datasets on these and other variables that
we will also analyze in exercises in this and later chapters.

We analyze three different, but related, aspects of such relationships:

1. We investigate whether there is an association between the variables by testing
the hypathesis of statistical independence.

2. We study the strength of their association using the correlation measure of
association.

3. We estimate a regression equation that predicts the value of the response
variable from the value of the explanatory variable. For instance, such an
equation predicts a state’s murder rate using the percentage of its population
living below the poverty level.

The analyses are collectively called a regression analysis. Section 9.1 shows how to
use a straight line for the regression equation, and Section 9.2 shows how to use data
to estimate the line. Section 9.3 introduces the linear regression model, which takes
into account variability of the data about the regression line. Section 9.4 uses the
correlation and its square to describe the strength of association. Section 9.5 presents
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TABLE 9.1: Statewide Data Used to lllustrate Regression Analyses

Viclent Murder Poverty Single Violent Murder Poverty Singj,
State  Crime Rate Rate  Parent State Crime Rate Rate
AK 761 9.0 9.1 143 MT 178 30 149
AL 780 1i.6 17.4 115 NC 679 11.3 14.4
AR 593 10.2 200 10.7 ND 82 1.7 11.2
AZ 715 8.6 15.4 121 NE 339 3.9 10.3
CA 1078 13.1 182 125 NH 138 20 9.9
CO 567 5.8 9.9 121 NI 627 53 10.9
cT 456 6.3 8.5 101 NM 930 8.0 174
DE 686 5.0 10.2 114 NV B75 104 9.8
FL 1206 8.9 17.8 106 NY 1074 13.38 16.4
GA 723 114 13.5 13.0 OH 504 6.0 13.0
HI 261 3.8 8.0 21 0K 635 8.4 19.9
1A 326 23 10.3 20 OR 503 4.6 11.8
1D 282 2.9 13.1 95 PA 418 6.8 132
1L 960 11.42 13.6 11.5 RI1 402 39 11.2
IN 489 7.5 122 10.8 SC 1023 10.3 18.7
KS 496 6.4 13.1 9.9 SD 208 34 14.2
KY 463 6.6 204 166 TN 766 10.2 19.6
LA 1062 203 26.4 149 TX 762 11.9 17.4
MA 805 3.9 10.7 108 UT 301 31 10.7
MD 998 12.7 9.7 120 VA 372 83 9.7
ME 126 1.6 10.7 106 VT 114 3.6 110
MI 792 0.8 15.4 130 WA 515 5.2 121
MN 327 3.4 11.6 99 WI 264 4.4 12,6
MO 744 11.3 16.1 109 WV 208 6.9 222
MS 434 13.5 247 147 WY 286 34 13.3

DC 2922 78.5 26.4

statistical inference for a regression analysis. The final section takes a closer look a
assumptions and potential pitfalls in using regression.

Notation for Response and Explanatory Variables

Let y denote the response variable and let x denote the explanatory variable.

We shall analyze how values of y tend to change from one subset of the population.
to another, as defined by values of x. For categorical variables, we did this by
comparing the conditional distributions of y at the various categories of x, in a:
contingency table. For quantitative variables, a mathematical formula describes how-
the conditional distribution of y varies according to the value of x. This formula
describes how y = statewide murder varies according to the level of x = percent
below the poverty level. Does the murder rate tend to be higher for states that have
higher poverty levels?

Linear Functions

Any particular formula might provide a good description or a poor one of how -
relates to x. This chapter introduces the simplest type of formula—a straight line. For
it, y is said to be a linear function of x.
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Linear Function

The formula y = a + PBx expresses observations on y as a linear function of observations
on x. The formula has a straight line graph with slope 3 (beta) and y-intercept « (alpha).

EXAMPLE 9.1 Example of a Linear Function

The formula y = 3 + 2xis a linear function. It has the formy = o + By witha = 3
and 8 = 2. The y-intercept equals 3 and the slope equals 2,

Each real number x, when substituted into the formula y = 3 + 2x, yields a
distinct value for y. For instance, x = O has y = 3 + 2(0) = 3, and x = 1 has
y =3 + 2(1) = 5. Figure 9.1 plots this function. The horizontal axis, the x-axis, lists
the possible values of x. The vertical axis, the y-axis, lists the possible values of y. The
axes intersect at the point where x = 0 and y = 0, called the origin. &
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FIGURE 9.1: Graph of the Straight Line ¥ = 3 + 2x. The y-intercept is 3 and the slope is 2.

Interpreting the y-Intercept and Slope

Atx = 0, the equation y = @ + Bxsimplifiestoy = a + fr = a + B(0) = o
Thus, the constant « in this equation is the value of y when x = 0. Now, points on
the y-axis have x = 0, so the line has height « at the point of its intersection with
the y-axis. Because of this, o is called the y-intercept. The straight line y = 3 + 2x
intersects the y-axis at @ = 3, as Figure 9.1 shows.

The slope B equals the change in y for a one-unit increase in x. That is, for two x-
values that differ by 1.0 (such asx = Oandx = 1), the y-values differ by 8. For the line
y=3+2x,y =3atx = 0andy = Satx = 1. These y valuesdifferbyg =5 — 3 = 2.
Two x-values that are 10 units apart differ by 103 in their y-values. For example,
whenx =0,y = 3,and whenx = 10,y = 3 + 2{10) = 23,and 23 - 3 =20 = 108.
Figure 9.2 portrays the interpretation of the y-intercept and slope.

To draw the straight line, we find any two separate pairs of (x,y) values on the
graph and then draw the line through the points. To illustrate, let’s use the points just
discussed: (x = 0,y = 3) and (x = 1, y = 5). The point on the graph with {x = 0,
y = 3) is three units up the y-axis. To find the point with (x = 1, y = 5), we start al
the origin (x = 0,y = 0) and move one unit to the right on the x-axis and five units
upward parallel to the y-axis (see Figure 9.1). After plotting the two points, drawing
the straight line through the two points graphs the functiony = 3 + 24,
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FIGURE 9.2: Graph of the Straight Liney = o + fx. The y-intercept is & and the slope is .

EXAMPLE 9.2 Straight Lines for Predicting Violent Crime

For the 30 states, consider the variables y = violent crime rate and x = poverty
rate. We'll see that the straight line y = 210 + 25x approximates their relation. The
y-intercept equals 210. This represents the violent crime rate at poverty rate x = (
(unfartunately, there are no such states) The slope equals 25. When the percentage
with income below the poverty level increases by 1, the violent crime rate increases
by about 25 crimes a year per 100,000 population.

By contrast, if instead x = percentage of the population living in urban areas, the
straight line approximating the relatlonshlp isy = 26 '+ 8x. The slope of 81is smaller_
than the slope of 25 when poverty rate is the predictor. An increase of 1 in the percen!
below the poverty level corresponds to a greater change in the violent crime rate than
an increase of 1 in the percent urban. Figure 9.3 shows the lines relating the violen
crime rate to poverty rate and to urban residence. Generally, the larger the absolute
value of B, the steeper the line. n

If B is positive, then y increases as x increases—the straight line goes upward, like
the two lines just mentioned. Then large values of y occur with large values of x
and small values of y oceur with small values of x. When a relationship between tw
variables follows a straight line with 8 > 0, the relationship is said to be positive.

If Bis negative, then y decreases as x increases. The straight line then goes downward
and the relationship is said to be negative. For instance, the equationy = 1756 — 16x
which has slope — 16, approximates the relationship between y = violent crime rat
and x = percentage of residents who are high school graduates For each increase o
1.0 in the percent who are high school graduates, the violent crime rate decreases b
about 16. Figure 9.3 also shows this line. ;

When 8 = 0, the graph is a horizontal line. The value of y is constant and does not.__
vary as x varies. If two variables are independent, with the value of y not depending-
on the value of x, a straight line with 8 = 0 represents their relationship. The line.
y = 800 shown in Figure 9.3 is an example of a line with 8 = 0.

Models Are Simple Approximations for Reality

As Section 7.3 explained, a model is a simple approximation for the relations.hj
between variables in the population. The linear function is the simplest mathematica
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FIGURE 9.3: Graphs of Lines Showing Positive Relationships {8 > 0), a Negative Relationship (8 < 0),
and Independence {8 = 0}

function. It provides the simplest model for the relationship between two quantitative
variables. For a given value of x, the model y = & + fx predicts a value for y. The
better these predictions tend to be, the better the model.

As we mentioned in Section 3.4 and will explain further at the beginning of Chapter
10, association does not imply causation. For example, consider the interpretation of
the slope in Example 9.2 of “When the percentage with income below the poverty
level increases by 1, the violent crime rate increases by about 25 crimes a year per
100,000 population.” This does not mean that if we had the ability to go to a state and
increase the percentage of people living below the poverty level from 10% to 11%,
we could expect the number of crimes to increase in the next year by 25 crimes per
100,000 people. 1t merely means that based on current data, if one state had a 10%
poverty rate and one had a 11% poverty rate, we’d predict that the state with the
higher poverty rate would have 25 more crimes per year per 100,000 people. But, as
we’ll see in Section 9.3, a sensible model is actually a bit more complex than the one
we’ve presented so far.

9.2 LEAST SQUARES PREDICTION EQUATION

Using sample data, we can estimate the linear model. The process treats @ and 8 in
the equation y = @ + Bx as unknown parameters and estimates them. The estimated
linear function then provides predicted y-values at fixed values for x.

A Scatterplot Portrays the Data

The first step of model fitting is to plot the data, to reveal whether a model with a
straight line trend makes sense. The data values (x,y) for any one subject form a
point relative to the x- and y-axes. A plot of the n observations as » points is called
a scatterplot.

EXAMPLE 9.3 Scatterplot for Statewide Murder Rate and Poverty

For Table 9.1, let x = poverty rate and y = murder rate. To check whether a straight
line approximates the relationship well, we first construct a scatterplot for the 51
observations. Figure 9.4 shows this plot.
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FIGURE 9.4: Scatterplot for y = Murder Rate and x = Percentage of Residents below the Poverty Let
for 50 States and D.C. Box plots are shown for murder rate to the left of the scatterplat and for pove
rate below the scatterplot.

Each point in Figure 9.4 portrays the values of poverty rate and murder rate for a
given state. For Maryland, for instance, the poverty rate is v = 9.7, and the murder
rate is y = 12.7. Its point (x,y) = (9.7,12.7) has coordinate 9.7 for the x-axis and
12.7 for the y-axis. This point is labeled MD in Figure 9.4. :

Figure 9.4 indicates that the trend of points seems to be approximated well by
straight line. Notice, though, that one point is far removed from the rest. This is th
point for the District of Columbia (D.C.). For it, the murder rate was much highe:
than for any state. This point lies far from the overall trend. Figure 9.4 also shows bo
plots for these variables. They reveal that D.C. is an extreme outlier on murder rate
In fact, it falls 6.5 standard deviations above the mean. We shall see that outliers can
have a serious impact on a regression analysis.

The scatterplot provides a visual check of whether a relationship is approximatel
linear. When the relationship seems highly nonlinear, it is not sensible to use a straigh
line model. Figure 9.5 illustrates such a case. This figure shows a negative relationshi

X

FIGURE 9.5: A Nonlinear Relationship, for Which 1t Is Inappropriate to Use a Straight Line Model )
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over part of the range of x values, and a positive relationship over the rest. These
cancel each other out using a straight line model. For such data, a different model,
presented in Section 14.5, is appropriate.

Prediction Equation

When the scatierplot suggests that the model y = @ + Bx is realistic, we use the data
to estimate this line. The notation

y=a + bx

represents a sample equation that estimates the linear model. In the sample equation,
the y-intercept (a) estimates the y-intercept a of the model and the slope (b) estimates
the slope 8. Substituting a particular x-value into @ + bx provides a value, denoted
by y, that predicts y at that value of x. The sample equation y = @ + bx is called the
prediction equation, because it provides a prediction y for the response variable at
any value of x,

The prediction equation is the best straight line, falling closest to the points in the
scatterplot, in a sense discussed later in this section. The formulas for « and b in the
prediction equation y = @ + bx are

, - S = D)y~ 7)
S(x - )

If an observation has both x- and y-values above their means, or both x- and y-values
below their means, then {(x — X){y — 7) is positive. The slope estimate b tends to be
positive when most observations are like this, that is, when points with large x-values
also tend to have large y-values and points with small x-values tend to have small
y-values. Figure 9.4 is an example of such a case.

We shall not dwell on these formulas or even illustrate how to use them, as they are
messy for hand calculation. Anyone who does any serious regression modeling uses
a computer or a calculator that has these formulas programmed. To use statistical
software, you supply the data file and usually select the regression method from a
menu. The appendix at the end of the text provides details.

\ a=y — bX.

EXAMPLE 9.4 Predicting Murder Rate from Poverty Rate

For the 51 observations on y = murder rate and x = poverty rate in Table 9.1,
SPSS software provides the results shown in Table 9.2. Murder rate has § = 8.7
and s = 10.7, indicating that it is probably highly skewed to the right. The box plot
for murder rate in Figure 9.4 shows that the extreme outlying observation for D.C.
contributes to this.

TABLE 9.2: Part of SPSS Printout for Fitting Linear Regression Model to Observations for 50
States and D.C. on x = Percent in Poverty and y = Murder Rate

Variable Mean 5td Deviation B Std. Error

MURDER 8.727 10.718 (Constant) -10.1364 4.1206
POVERTY 14.258 4.584 POVERTY 1.3230 0.2754
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The estimates of @« and B are listed under the heading “B,” the symbol 't}
SPSS uses to denote an estimated regression coefficient. The estimated y-interce
is @ = —10.14, listed opposite “*(Constant).” The estimate of the slope isb =13
listed opposite the variable name of which it is the coefficient in- the predicti
equation, “POVERTY.” Therefore, the prediction equation is ¥y = a + py _
-10.14 + 1.32x. 4

The slope b = 1.32 is positive. So the larger the poverty rate, the larger is 1h
predicted murder rate. The value 1.32 indicates that an increase of 1in the percenta'ge
living below the poverty rate corresponds to an increase of 1.32 in the predict;
murder rate.

Similarly, an increase of 10 in the poverty rate corresponds to a 10(1.32) = 13,
unit increase in predicted murder rate. If one state has a 12% poverty rate and ano
has a 22% poverty rate, for example, the predicted annual number of murders'p
100,000 population is 13.2 higher in the second state than the first state. Since the
mean murder rate is 8.7, it seems that poverty rate is an important predictor:
murder rate. This differential of 13 murders per 100,000 population translates to
per million or 1300 per 10 million population. If the two states each had populatio
of 10 million, the one with the higher poverty rate would be predicted to have 1300
more murders per year.

Effect of Outliers on the Prediction Equation

Figure 9.6 plots the prediction equation from Example 9.4 over the scatterplot. The
diagram shows that the observation for D.C. is a regression outlier—it falls quit
far from the trend that the rest of the data follow. This observation seems to have
substantial effect. The line seems to be pulled up toward it and away from the center
of the general trend of points.

80 1 .
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FIGURE 9.6: Prediction Equations Relating Murder Rate and Percentage In Poverty, with and without.
D.C. Observation .

Let's now refit the line using the observations for the 50 states but not the one
for D.C. Table 9.3 shows that the prediction equation equals § = —0.86 + 0.58x.
Flgure 9.6 also shows this line, which passes more directly through the 50 points. The
slope is 0.58, compared to 1.32 when the observation for D.C. is included. The one.
outlying observation has the impact of more than doubling the slope!
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TABLE 9.3: Part of Printout for Fitting Linear Model to 50 States {but not D.C.) on x = Percent
in Poverty and y = Murder Rate

Sum of Mean Unstandardized
Squares df Square Coefficients
Regression  307.342 1 307.34 B
Residual 470.406 48 9.80 (Constant) -.B857
Total T77.749 49 POVERTY .bg4

MURDER  PREDICT  RESIDUAL

9.0000 4.4599 4.5401
11.6000 §.3091 2.2909
10.2000 10.8281 -0.8281

8.6000 8.1406 0.4594

B Wk

An observation is called influential if removing it results in a large change in the
prediction equation. Unless the sample size is large, an observation can have a strong
influence on the slope if its x-value is low or high compared to the rest of the data and
if it is a regression outlier.

In summary, the line for the data set including D.C. seems to distort the relationship
for the 50 states. It seems wiser to use the equation based on data for the 50 states
alone rather than to use a single equation both for the 50 states and D.C. This line for
the 50 states better represents the overall trend. In reporting these results, we would
note that the murder rate for D.C. falls outside this trend, being much larger than this
equation predicts.

Prediction Errors Are Called Residuals

The prediction equation y = —0.86 + 0.58x predicts murder rates using x = poverty
rate. For the sampie data, a comparison of the acfual murder rates to the predicted
values checks the goodness of the prediction equation.

For example, Massachusetts had x = 10.7 and y = 3.9. The predicted murder rate
(y)atx = 10.7is §y = —0.86 + 0.58x = —0.86 + 0.58(10.7) = 5.4. The prediction
error is the difference between the actual y-value of 3.9 and the predicted value of 5.4,
ory — y =39 — 54 = —1.5. The prediction equation overestimates the murder
rate by 1.5. Similarly, for Louisiana, x = 26.4 and y = —0.86 + 0.58(26.4) = 14.6.
The actual murder rate is y = 20.3, so the prediction is too low. The prediction error
isy — y =203 — 14.6 = 5.7. The prediction errors are called residuals.

Residual

For an observation, the difference between an observed value and the predicted value of
the response variable, y — y, is called the residual.

Table 9.3 shows the murder rates, the predicted values, and the residuals for the
first four states in the data file. A positive residual results when the observed value y
is larger than the predicted value y,soy — y > 0. A negative residual results when
the observed value is smaller than the predicted value. The smaller the absolute value
of the residual, the better is the prediction, since the predicted value is closer to the
observed value.
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FIGURE 9.7: Prediction Equation and Residuals. A residual is a vertical distance between a point and th
prediction line.

In a scatterplot, the residual for an observation is the vertical distance between its
point and the prediction line. Figure 9.7 illustrates this. For example, the observatio
for Louisiana is the point with (x,y) coordinates (26.4, 20.3). The predlcpon i
represented by the point (26.4, 14.6) on the prediction line obtained by .substlFutir_;_
x = 264 into the prediction equation y = —0.86 + 0.58x. The residual is th
difference between the observed and predicted points, which is the vertical distanc
y —y=203 — 14.6 =57

Prediction Equation Has Least Squares Property

Each observation has a residual. If the prediction line falls close to.the points in th
scatterplot, the residuals are small. We summarize the size of the residuals by the su
of their squared values. This quantity, denoted by SSE, equals

SSE = >(y — )"

In other words, the residual is computed for every observation in the sample, eac
residual is squared, and then SSE is the sum of these squares. The symbql SSEisa
abbreviation for sum of squared errors. This terminology refers to the residual being:
a measure of prediction error from using y to predict y. Some software (such as SPSS):
calls SSE the residual sum of squares. It describes the variation of the data around:
the prediction line.

The better the prediction equation, the smaller the residuals tend to be and, hence,’
the smaller SSE tends to be. Any particular equation has corresponding residuals and a
value of SSE. The prediction equation specified by the formulas for the estimates a and
b of & and B has the smallest value of SSE out of all possible linear prediction equations.

Least Squares Estimates

The least squares estimates a and b are the values that provide the prediction equation

¥ = a + bx for which the residual sum of squares, SSE = Z(y — _17)2, is @ minimum.
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The prediction line y = a + bx is called the least squares line, because it is the
one with the smallest sum of squared residuals. If we square the residuals (such as
those in Table 9.3) for the least squares line y = —0.86 + 0.58x and then sum them,
we get

SSE = X\ (y — 7)* = (4.54)% + (229)* + - = 4704

This value is smaller than the value of SSE for any other straight line predictor, such
as y = —0.88 + 0.60x. In this sense, the data fall closer to this line than to any other
line.

Software for regression lists the value of SSE. Table 9.3 reports it in the *“Sum of
Squares’ column, in the row labeled “Residual.” In some software, such as SAS, this
is labeled as “Error” in the sum of squares column.

Besides making the errors as small as possible in this summary sense, the least
squares line

e Has some positive residuals and some negative residuals, but the sum (and
mean) of the residuals equals

o Passes through the point, (X,7)

The first property tells us that the too-low predictions are balanced by the too-high
predictions. Just as deviations of observations from their mean y satisfy 3,(y — ¥) = 0,
so is the prediction equation defined so that 3(y — §) = 0. The second property
tells us that the line passes through the center of the data. :

3 THE LINEAR REGRESSION MODEL

For the madel y = @ + Bx, each value of x corresponds to a single value of y. Such a
model is said to be deterministic. It is unrealistic in social science research, because
we do not expect all subjects who have the same x-value to have the same y-value.
Instead, the y-values vary.

For example, let x = number of years of education and y = annual income.
The subjects having x = 12 years of education do not all have the same income,
because income is not completely dependent upon education. Instead, a probability
distribution describes annual income for individuals with x = 12. This distribution
refers to the variability in the y values at a fived value of x, so it is a conditional
distribution. A separate conditional distribution applies for those with x = 13 years
of education, and others apply for those with other values of x. Each level of
education has its own conditional distribution of income. For example, the mean
of the conditional distribution of income would likely be higher at higher levels of
education.

A probabilistic model for the relationship allows for variability in y at each value
of x. We now show how a linear function is the basis for a probabilistic model.

Linear Regression Function

A probabilistic model uses ¢ + Bx to represent the mean of y-values, rather than y
itself, as a function of x. For a given value of x, « + Bx represents the mean of the
conditional distribution of y for subjects having that value of x.

Expected Value of y

Let E(y) denote the mean of a conditional distribution of y. The symbol E represents
expected value, which is another term for the mean.
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We now use the equation
E(y)=a + Bx

to model the relationship between x and the mean of the conditional distribution |
y. For y = annual income, in dollars, and x = number of years of education, suppo"
E(y) = —3000 -+ 3000x. For instance, those having a high school education (x =7
have a mean income of E(y) = —5000 + 3000(12) = 31,000 dollars. The mog
states that the mean income is 31,000, rather than stating that every subject wj
x = 12 has income 31,000 dollars. The model allows different subjects having x =
to have different incomes.

An equation of the form E(y) = @ + fx that relates values of x to the m

ean:
the conditiona! distribution of y is called a regression function. oo

Regression Function

A regression function is a mathematical function that describes how the mean of th
response variable changes according to the value of an explanatory variable. :

The function E(y} = @ + Bxis called a linear regression function, because it useg
a straight line to relate the mean of y to the values of x. The y-intercept « and the
slope B are called the regression coefficients for the linear regression function. '
In practice, the parameters of the linear regression function are unknown. Least
squares provides the sample prediction equation ¥y =a + bx. At a fixed value of ;

$ = a + bx estimates the mean of y for all subjects in the population having thzit
value of x.

Describing Variation about the Regression Line

The linear regression model has an additional parameter o describing the standard
deviation of each conditiona! distribution. That is, o measures the variability of the
y values for all subjects having the same x-value. We refer to o as the conditiona
standard deviation. : '

A model also assumes a particular probability distribution for the conditiona
distribution of y. This is needed to make inference about the parameters. For quanti
tative variables, the most common assumption is that the conditional distribution o
y is normal at each fixed value of x.

EXAMPLE 9.5 Describing How Incame Varies, for Given Education

Again, suppose E(y) = —5000 + 3000x describes the relationship between mean
annual income and number of years of education. Suppose also that the conditiona
distribution of income is mormal, with & = 13,000. According to this model, fo
individuals with x years of education, their incomes have a normal distribution with
mean of E(y) = —5000 + 3000x and a standard deviation of 13,000.

Those having a high school education (x = 12) have a mean income of E(y)
—5000 + 3000(12} = 31,000 dollars and a standard deviation of 13,000 dollars. |~
So about 95% of the incomes fall within two standard deviations of the mean,:|-
that is, between 31,000 — 2(13,000) = 5000 and 31,000 + 2(13,000) = 57,000 |-
dollars. Those with a college education (x = 16) have a mean annual income of |
E(y) = —5000 + 3000(16) = 43,000 dollars, with about 05% of the incomes falling’ |
between $17,000 and $69,000. .

The slope B = 3000 implies that mean income increases $3000 for each year: |
increase in education. Figure 9.8 shows this regression model. That figure shows th
conditional income distributions at x = 8,12, and 16 years. :
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F]GURE 9.8: The Regression Model E(y) = —5000 + 3000x, with ¢ = 13,000, Relating y = Income
(in Dollars) to x = Education {in Years)

In Figure 9.8, each conditional distribution is normal, and each has the same
standard deviation, o = 13,000. In practice, the distributions would not be exactly
normal, and the standard deviation need not be the same for each. Any model never
holds exactly in practice. It is merely a simple approximation for reality. For sample
_data, we’ll learn about ways to check whether a particular model is realistic. The most
important assumption is that the regression equation is linear. The scatterplot helps us
check whether this assumption is badly violated, as we’ll discuss later in the chapter.

Mean Square Error: Estimating Conditional Variation

The ordinary linear regression model assumes that the standard deviation o of the
conditional distribution of y is identical at the various values of x. The estimate of o
uses the numerical value for SSE = 3 (y — )%, which measures sample variability
about the least squares line. The estimate is

SSE_ _ [S(y - )
n—-2 n—2

If the constant variation assumption is not valid, then s provides a measure of average
variability about the line.

EXAMPLE 9.6 TV Watching and Grade Point Averages

A survey' of SO‘COIIege students in an introductory psychology class observed self-
reports of y = high school GPA and x = weekly number of hours viewing television.
The study reported y = 3.44 — 0.03x. For the data, software reports the following:

Sum of Squares af Mean Square

Regression 3.63 1 3.63
Residual 11.66 48 .24
Total 15.29 49

lwww.iusb.edu/~journal/2002/hershberger/hershberger.html
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The residual sum of squares in using x to predict y was SS§E = 11.66. The estiﬁna’téd
conditional standard deviation is . o

s=\/ SSE z\/ 1166 _ 449
n— 2 50 - 2

At any fixed value x of TV viewing, the model predicts that GPAs vary around 4
mean of 3.44 — 0.03x with a standard deviation of 0.49. At x = 20, for instance, the
conditional distribution of GPA is estimated to have amean of 3.44 — 0.03(20) = 2.83
and standard deviation of 0.49. n

The term (7 — 2) in the denominator of s is the degrees of freedom (df) for
the estimate. In general, when a regression equation has p unknown parameters,
then df = n — p. The equation E(y) = @ + fBx has two parameters (e and 8);
so df = n — 2. The table in the preceding example lists SSE = 11.66 apd its
df =n — 2 =350 — 2 = 48. The ratio of these, s> = 0.24, is listed on the printout.
in the “Mean Square” column. Some software calls this the MSE, short‘ fc')r mean .
square error. Its square root is the estimate of the conditional standard dev1a.t10n ofy, -
namely s = +/0.24 = 0.49. (SPSS lists this under the rather misleading heading “Std,
Error of the Estimate’) i

Conditional Variation Tends to be Less than Marginal
Variation

From Sections 3.3 and 5.1, a point estimate of the population standard deviation of a
variable y is
Sy - ¥

n—1

This is the standard deviation of the marginal distribution of y, becau‘se.it uses only -
the y-values. Tt ignores values of x. To emphasize that this standard deviation depemﬁs 4
on values of y alone, the remainder of the text denotes it by sy in a sample 'and_ oyin |
a population. It differs from the standard deviation of the conditional distribution of {:
y, for a fixed value of x.
The sum of squares 3}(y — ¥)? in the numerator of sy is called the rotal sum of - v
squares. In the preceding table for the 50 student GPAs, it is 15.29. Thus, the marginal 1
standard deviation of GPA is sy = {/15.29/(50 — 1) = 0.56. Example 9.6 showed
that the conditional standard deviation is 0.49. o
Typically, less spread in y-values occurs at a fixed value of x than totaled over all 1
such values. We’ll see that the stronger the association between x and y, the less the 1.
conditional variability tends to be relative to the marginal variability. {
For example, the marginal distribution of college GPAs (y) at your schoo.l may |
primarily fall between 1.0 and 4.0. Perhaps a sample has a stand_ard deviation
of s, = 0.60. Suppose we could predict college GPA perfectly using x = high |
school GPA, with the prediction equation § = 0.40 + 0.90x. Then SSE would
be 0, and the conditional standard deviation would be s = 0. In practice, perfect
prediction would not happen. However, the stronger the association in terms of less
prediction error, the smaller the conditional variability would be. See Figure 9.9, {
which portrays a marginal distribution that is much more spread out than each_: :
conditional distribution. :
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FIGURE 9.9;: Marginal and Conditional Distributions. The marginal distribution shows the overall

variability in ¥ values, whereas the conditional distribution shows how y varies at a fixed value
of x.

94 MEASURING LINEAR ASSOCIATION: THE CORRELATION

The linear regression model uses a straight line to describe the relationship.
This section introduces two measures of the strength of association between the
variables.

The Slope and Strength of Association

The slope b of the prediction equation tells us the direction of the association. Its
sign indicates whether the prediction line slopes upward or downward as x increases,
that is, whether the association is positive or negative. The slope does not, however,
directly tell us the strength of the association. The reason for this is that its numerical
value is intrinsically linked to the units of measurement.

For example, consider the prediction equation y = ~0.86 + 0.58x for y = murder
rate and x = percent living below the poverty level. A one-unit increase in x
corresponds to a b = (.58 increase in the predicted number of murders per 100,000
people. This is equivalent to a 5.8 increase in the predicted number of murders per
1,000,000 people. So, if murder rate is the number of murders per 1,000,000 population
instead of per 100,000 population, the slope is 5.8 instead of 0.58. The strength of the
association is the same in each case, since the variables and data are the same. Only
the units of measurement for y differed. In summary, the slope » doesn’t directly
indicate whether the association is strong or weak, because we can make b as large or
as small as we like by an appropriate choice of units.

The slope is useful for comparing effects of two predictors having the same units.
For instance, the prediction equation relating murder rate to percentage living in
urban areas is 3.28 + 0.06x. A one-unit increase in the percentage living in urban
areas corresponds to a 0.06 predicted increase in the murder rate, whereas a one-unit
increase in the percentage below the poverty level corresponds to a 0.58 predicted
increase in the murder rate. An increase of 1 in percent below the poverty level has a
much greater effect on murder rate than an increase of 1 in percent urban.
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The measures of association we now study do not depend on the LH'lil‘S. of meg._
surement. Like the measures of association Chapter 8 presented for categorical data,
their magnitudes indicate the strength of association. :

The Correlation

Section 3.5 introduced the correlation between quantitative variables. This i5 ,
standardized version of the slope. Its value, unlike that of the orqmary slope b, dogg
not depend on the units of measurement. The standardization adjusts the slope b for.
the fact that the standard deviations of x and y depend on their units of measurement,
The correlation is the value the slope would take for units such that the variables,
have equal standard deviations. o T

Let 5; and sy denote the marginal sample standard deviations of xand y,

_ [E(x ~ %P D ICE)
Sy = ——;1_—1w and Sy —

The correlation, denoted by r, relates to the slope b of the prediction equation y =

a + bxby
r= (‘5’1) b.
Sy

When the sample spreads are equal (sy = sy), r = b. For example, when‘the. :
variables are standardized by converting their values to z-scores, both standardized §:
variables have standard deviations of 1.0. Because of the relationship between r and §.
b, the correlation is also called the standardized regression coefficient for the modt?l ‘
E(y) = a + px. In practice, it’s not necessary 1o standardize the variables, put it {:
is often useful to interpret the correlation as the value the slope would equal if the |
variables were equally spread out. N o
The point estimate r of the correlation was proposed by the British §tat15tlcal :
scientist Karl Pearson in 1896, just four years before he developed the th-squared 1
test of independence for contingency tables. In fact, this estimate is sometimes called ]

the Pearson correlation.

Correlation

EXAMPLE 9.7 Correlation between Murder Rate and Poverty Rate

For the data for the 50 states in Table 9.1, the prediction equation relatingy = murder
rate to x = poverty rate is § = —0.86 + 0.58x. Software tells us that sy = 4.29 for
poverty rate and s, = 3.98 for murder rate. The correlation equals

p={%\p= (1'2—9)(0_58) = 0.63.
5y 3.08

We will interpret this value after studying the properties of the correlation. n

Properties of the Correlation

e The correlation is valid only when a straight line is a sensiblg rr}ode] for .thﬁ
relationship. Since r is proportional to the slope of a linear prediction equatiof
it measures the strength of the linear association between x and y.
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e —1 = r = 1. The correlation, unlike the slope b, must fall between —1 and +1.
The reason will be seen later in the section. ,

r has the same sign as the slope b. Since r equals 6 multiplied by the ratio of
two (positive) standard deviations, the sign is preserved. Thus, r = 0 when the

variables are positively related, and r << 0 when the variables are negatively
related.

» r = (} for those lines having b = 0. When r = 0, there is not a linear increasing
or linear decreasing trend in the relationship.

e v = £l when all the sample points fall exactly on the prediction line. These
correspond to perfect positive and negative linear associations. There is then no
prediction error when the prediction equation y = ¢ + bx predicts y.

The larger the absolute value of r, the stronger the linear association. Variables
with a correlation of —0.80 are more strongly linearly associated than variables

with a correlation of 0.40. Figure 9.10 shows scatterplots having various values
forr.

FIGURE 9.10: Scatterplots for Different Correlations

» The correlation, unlike the slope b, treats x and y symmetrically. The prediction
equation using y to predict x has the same correlation as the one using x to
predict y.

e The value of r does not depend on the variables’ units.

For example, if y is the number of murders per 1,000,000 population instead of
per 100,000 population, we obtain the same value of r = 0.63. Also, when murder
rate predicts poverty rate, the correlation is the same as when poverty rate predicts
murder rate, r = 0.63 in both cases.

The correlation is useful for comparing associations for variables having different
units. Another potential predictor for murder rate is the mean number of years of
education completed by adult residents in the state. Poverty rate and education have
different units, s0 a one-unit change in poverty rate is not comparable to a one-unit
change in education. Their slopes from the separate prediction equations are not
comparable. The correlations are comparable. Suppose the correlation of murder
rate with education is —0.30. Since the correlation of murder rate with poverty rate is
0.63, and since 0.63 > | — 0.30|, murder rate is more strongly associated with poverty
rate than with education.

Many properties of the correlation are similar to those of the ordinal measure of
association gamma (Section 8.5). It falls between —1 and +1, it is symmetric, and
larger absolute values indicate stronger associations.
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We emphasize that the correlation describes linear relationships. For cur\_,rﬂine'
relationships, the besi-fitting prediction line may be completely or nearly h_‘mzo_nt?d
and r = 0 when b = 0. See Figure 9.11. A low absolute value for r does not the
imply that the variables are unassociated, but that the association is not linear.

I
Good fit using
\— curvilinear
function
F=a+bx(b=0)

N

FLGURE 9.11: Scatterplot for Which r = 0, Even Though There s a Strong Curvilinear Relationship .

Correlation Implies Regression toward the Mean

Another interpfetation of the correlation relates to its standardized slope property,
We can rewrite the equality

r=(sy/sy)b as scb=rsy.

Now the slope b is the change in y for a one-unit increase _in x. An incrgase inxo
s, units has a predicted change of sib unijs. (For instam:t?, if 5, = 10,. an increase o
10 units in x corresponds to a change in § of 100.) See Figure 9.12. Since syb =15y
an increase of s, in x corresponds to a predicted change of r standard .deylahgns il
the y values. The larger the absolute value of r, the stronger the assoc1atloq, in th
sense that a standard deviation change in x corresponds to a greater proportion of

standard deviation change in y.

¥y

FIGURE 9.12: An Increase of sy Units in x Corresponds to a Predicted Change of rsy Units in y

EXAMPLE 9.8 Child's Height Regresses toward the Mean

The British scientist Sir Francis Galton discovered the basic ideas of regression and
correlation in the 1880s. After multiplying each female height by 1.08 to account for
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gender differences, he noted that the correlation between x = parent height (the
average of father’s and mother’s height) and y = child’s height is about 0.5. From the
property just discussed, a standard deviation change in parent height corresponds to
half a standard deviation change in child’s height.

For parents of average height, the child’s height is predicted to be average. If,
on the other hand, parent height is a standard deviation above average, the child
is predicted to be half a standard deviation above average. If parent height is two
standard deviations below average, the child is predicted to be one standard deviation
below average (because the correlation is 0.5).

Since r is less than 1, a y-value is predicted to be fewer standard deviations from
its mean than x is from its mean. Tall parents tend to have tall children, but on
the average not quite so tall. For instance, if you consider all fathers with height
7 feet, perhaps their sons average 6 feet 5 inches—taller than average, but not so
extremely tall; if you consider all fathers with height 5 feet, perhaps their sons average
5 feet 5 inches—shorter than average, but not so extremely short. In each case,
Galton pointed out the regression toward the mean. This is the origin of the name for
regression analysis. a

For x = poverty rate and y = murder rate for the 50 states, the correlation is
r = 0.63. So a standard deviation increase in the poverty rate corresponds to a’
predicted 0.63 standard deviation increase in murder rate, By contrast, r = 0.37
between the poverty rate and the violent crime rate. This association is weaker. A
standard deviation increase in poverty rate corresponds to a smaller change in the
predicted violent crime rate than in the predicted murder rate (in standard deviation
units).

r-Squared: Proportional Reduction in Prediction Error

A related measure of association summarizes how well x can predict y. If we can
predict y much better by substituting x-values into the prediction equationy = a + bx
than without knowing the x-values, the variables are judged to be strongly associated.
This measure of association has four elements:

s Rule 1 for predicting y without using x.
s Rule 2 for predicting y using information on x.

e A summary measure of prediction error for each rule, £; for errors by rule 1
and £ for errors by rule 2.

¢ The difference in the amount of error with the tworulesis £; — E;. Converting
this reduction in error to a proportion provides the definition

Proportional reduction in error = %

1
Rule 1 (Predicting y without using x): The best predictor is ¥, the sample
mean.

Rule 2 (Predicting vy using x): When the relationship between x and y is
linear, the prediction equation y = a 4 bx provides the best predictor of
y. For each subject, substituting the x-value into this equation provides the
predicted value of y.
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Prediction Errors: The prediction error for each subject is the differegce_'
between the observed and predicted values of y. The prediction error using
rule 1isy — ¥, and the prediction error using rule‘2. isy — y, the res1dpa1_
For each predictor, some prediction errors arc positive, some are negative,
and the sum of the errors equals 0. We summarize the prediction errors by
their sum of squared values,

2

E = (observed y value — predicted y value)

For rule 1, the predicted values all equal §. The total prediction error equals
42
E =2 -7
This is the total sum of squares of the y-values about their mean. We denote this b

TSS. For rule 2, the predicted values are the y-values from the prediction equatio
The total prediction error equals :

a2

B =20 -3

We have denoted this by SSE, called the sum of squared errors or the residual sum

of squares. . ) oy
fV\q/hen x and y have a strong linear association, the prediction equation provides

predictions (¥) that are much better than ¥, in the sense tha}t the sum of squared

prediction errors is substantially less. Figure 9.13 shows graphical representations Ef

the two predictors and their prediction errors. For rule 1, the same predlctlo_n ’(y)

applies for the value of y, regardless of the value of x. For rule 2 the prediction

changes as x changes, and the prediction errors tend to be smaller.

Rulel Rule 2
¥ Prediction errar r

(y—5 \[,

¥ Prediction error

(y—7¥
Predictor for \1{
rule 1 1
| ]
l ; I I
_ ' L |
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T
|
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' 1
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' ! Sum of squared errors
SSE = Ez
x x
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!
1
I
!
! TSS = Ey

- 712 .
FIGURE 9.13: Graphica! Representation of Rule 1 anfl 'gotal Sum of Squares £1 = 755 = Z(y — V)% Rule:
2 and Residual Sum of Squares £; = 55E = (¥ — ¥) .

Definition of Measure: The proportional redl_lctiop in error from using the
linear prediction equation instead of ¥ to predict y is
5 oy2
, E — E _TSS - SSE _ S(y — ) = 30y = ¥)°
T E TS S0y - 7
It is called r-squared, or sometimes the coefficient of determination.

The notation 72 is used for this measure because, in fact, the proportional reductio%
in error equals the square of the correlation 7. We don’t need to use the sums 0.
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squares in its definition to find %, as we can square the correlation. Its defining
formula is usefui for interpreting 2, but it is not needed for its calculation.

EXAMPLE 9.9  r? for Murder Rate and Poverty Rate

The correlation between poverty rate and murder rate for the 50 states is r = 0.629.
Therefore, r* = (0.629)? = 0.395. For predicting murder rate, the linear prediction
equation § = —0.86 + 0.58x has 39.5% less error than 7.

Software for regression routinely provides tables that contain the sums of squares
that compose 2. For example, part of Table 9.3 showed

Sum of Squares

Regression 307.342
Residual 470.406
Total T77.749

The sum of squared errors using the prediction equationis SSE = 3)(y — $)? = 4704,
and the total sum of squares is TSS = 3,(y — y)> = 777.7. Thus,

2_ TSS — SSE _ 771.7 — 4704 _ 307.3 _ 0.395
TSS 777.7 777.7 R

In practice, it is unnecessary to perform this computation, since software reports r or
2
r= or both. ‘ B

Properties of r-Squared

The properties of /> follow directly from those of the correlation » or from its
definition in terms of the sums of squares.

e Since ~1 = r = 1, r2 falls between 0 and 1.

 The minimum possible value for SSE is 0, in which case 1> = TSS/TSS = 1. For
SSE = 0, all sample points must fall exactly on the prediction line. In that case,
there is no prediction error using x to predict y. This condition corresponds to
r ==l

» When the least squares slope b = 0, the y-intercept a equals ¥ (because
a =y — bX, which equals y when b = 0). Then y = ¥ for all x. The two
prediction rules are then identical, so that SSE = TSS and +* = 0,

e Like the correlation, r> measures the strength of /inear association. The closer
risto 1, the stronger the linear association, in the sense that the more effective
the least squares line y = a + bx is compared to y in predicting y.

e 7% does not depend on the units of measurement, and it takes the same value
when x predicts y as when y predicts x.

Sums of Squares Describe Conditional and Marginal
Variability

To summarize, the correlation r falls between —1 and +1. It indicates the direction
of the association, positive or negative, through its sign. It is a standardized slope,
equaling the slope when x and y are equally spread out. A one standard deviation
change in x corresponds to a predicted change of r standard deviations in y. The
square of the correlation has a proportional reduction in error interpretation related
to predicting y using y = a + bx rather than ¥.
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The total sum of squares, TS§ = Z(y — ¥)2, summarizes the variability of the
observations on y, since this quantity divided by n — 1 is the sample variance 53
of the y-values. Similarly, SSE = 3(y — $)* summarizes the variability around the
prediction equation, which refers to variability for the conditional distributions. When'
72 = 0.39, the variability in y using x to make the predictions (via the prediction
equation) is 39% less than the overall variability of the y values. Thus, the 12 result i
often expressed as “the poverty rate explains 39% of the variability in murder rate”
or “39% of the variance in murder rate is explained by its linear relationship with
the poverty rate.” Roughly speaking, the variance of the conditional distribution of
murder rate for a given poverty rate is 39% smaller than the variance of the marginal
distribution of murder rate. o

This interpretation has the weakness, however, that variability is summarized by.
the variance. Many statisticians find 2 to be less useful than r, because (being based
on sums of squares) it uses the square of the original scale of measurement. It's easier
to interpret the original scale than a squared scale. This is also the advantage of the -
standard deviation over the variance. :

When two variables are strongly associated, the variation in the conditional :
distributions is considerably less than the variation in the marginal distribution. -
Figure 9.9 illustrated this.

Sections 9.1-9.3 showed how a linear regression model can represent the form of
relationships between quantitative variables. Section 9.4 used the correlation and
its square to describe the strength of the association. These parts of a regression
analysis are descriptive. We now present inferential methods for the regression
model.

A test of whether the two quantitative variables are statistically independent .
has the same purpose as the chi-squared test for categorical variables. A con-
fidence interval for the slope of the regression equation or the correlation tells
us about the size of the effect. These inferences enable us to judge whether
the variables are associated and to estimate the direction and strength of the
agsociation.

Assumptions for Statistical Inference
Statistical inferences for regression make the following assumptions:

o The study used randomization, such as a simple random sample in a survey.
e The mean of y is related to x by the linear equation E(y)=a + Bx

« The conditional standard deviation o is identical at each x-value.

« The conditional distribution of y at each value of x is normal.

The second assumption states that the linear regression function is valid. The
assumption about a common o is one under which the least squares estimates are
the best possible estimates of the regression coefficients.? The assumption about
normality assures that the test statistic for a test of independence has a ¢ sampling
distribution. In practice, none of these assumptions is ever satisfied exactly. In
the final section of the chapter we'll see that the important assumptions are the
first two.

2Under the assumptions of normality with common o, least squares estimates are special cases
of maxinnumn likelihood estimates, introduced in Section 3.1,

Section 9.5 Inferences for the Slope and Correlation 277

Test of Independence

Under the above assumptions, suppose the population mean of y is identical at each

x-value. In other words, the normal conditional distribution of ); is the same al each

.x:—val_ue. Then, the two quantitative variables are statistically independent. For the

]n‘lear regression function E{y) = o + fx, this means that the slope B8 = 0 (see

E}guée 9.{1}4). The null hypothesis that the variables are statistically independent is
i3 = k.

¥

E(y¥)=a(allx)

R
1
=

X

FIGURE 9.14: x and y Are Statistically Independent when the Slope 8 = 0 in the Regression Model
E(y) = o + Bx

We can test indepex}dence against H;; B = 0, or a one-sided alternative, H;: 8 > 0
or Hy: B < 0, to predict the direction of the association. The test statistic equals

(b

se
where se is the standard error of the sample slope b. The form of the test statistic is the
usual one for a ¢ or z test. We take the estimate b of the parameter 8, subtract the null
hypothesis value {8 = 0), and divide by the standard error of the estimate b. Under
the assumptions, this test statistic has the ¢ sampling distribution with df = n — 2.
Thtf: degrees of freedom are the same as the df of the conditional standard deviation
estimate s.

The formula for the standard error of b is

se=_—— 5 , where s= SSE .

S(x — 1) n—2

This depends on the point estimate s of the standard deviation of the conditional
distributions of y. The smaller s is, the more precisely b estimates 8. A small s occurs
when the data points show little variability about the prediction equation. Also,
the standard error of b is inversely related to 3(x — ¥)?, the sum of squares of
the observed x-values about their mean. This sum increases, and hence b estimates
B more precisely, as the sample size # increases. (The se also decreases when the
x-values are more highly spread out, but the researcher usually has no control over
this except in designed experiments. }

The P-value for H;: B # 0 is the two-tail probability from the ¢ distribution.
Software provides the P-value. For large df, recall that the 7 distribution is similar to
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the standard normal, so the P-value can be approximated using the dormal probabi '
table.

EXAMPLE 92.10 Regression for Selling Price of Homes

What affects the selling price of a house? Table 9.4 shows observations on homt? sales:
in Gainesville, Florida, in fall 2006. This table shows data for 8 homes. 'Ijhe entire file
for 100 home sales is the “house selling price™ data file at the text Web site. Variables
listed are selling price (in dollars), size of house (in square feet), annual taxes (in
dollars), number of bedrooms, number of bathrooms, and whether .the house is newly
built. For now, we use only the data on y = selling price and x = size of house.

TABLE 9.4: Selling Prices and Related Factars for a Sample of Home Sales in
Gainesville, Florida

Home Selling Price  Size Taxes Bedrooms Bathrooms New

1 279,900 2048 3104 4 2 ne
2 146,500 912 1173 2 1 no
3 237,700 1654 3076 4 2 no
4 200,000 2068 1608 3 2 no
5 159,500 1477 1454 3 3 no
& 499,900 3153 2997 3 2 yes
7 265,500 1355 4054 3 2 no
8 289,900 2075 3002 3 2 yes

Note: For the complete file for 100 homes, see the text Web site.

Since these 100 observations come from one city alone, we cannot use them to
make inferences about the relationship between x and y in general. We treat them as
a random sample of a conceptual population of home sales in this market in order to
analyze how these variables seem to be related. - _

Figure 9.15 shows a scatterplot, which displays a strong positive trend. The‘model
E(y) = a + Bx seems appropriate. Some of the points at high levels of size are
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200000 -

100000 -

T 1 T
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FIGURE 9.15: Scatterplot and Prediction Equation for y = Selfing Price (in Dollars) and x = Size of House
(in Square Feet)
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regression outliers, however, and one point falls quite far befow the overall trend. We
discuss this abnormality in Section 14.5, which introduces an alternative model that
does not assume constant variability around the regression line.

Table 9.5 shows part of a SPSS printout for a regression analysis. The prediction
equationisy = —50,926 + 126.6x. The predicted selling price increases by b = 126.6
dollars for an increase in size of a square foot, Figure 9.15 also superimposes the
prediction equation over the scatterplot. In SPSS, “Beta” denotes the estimated
standardized regression coefficient. For the regression model of this chapter, this

is the correlation; it is not to be confused with the population slope, 8, which is
unknown.

TABLE 9.5: Information from SPSS Printout for Regression Analysis of y = Selling Price and
x = Size of House

N Mean S5td. Deviation
price 160 155331.00 101262.21
size 100 1629.28 666.94
Sum of
Squares daf Mean Square
Regression 7.057E+11 1 7.057E+11
Residunal 3.094E+11 98 3157352537
Total 10.15E+11 995
R Sqguare 8td. Error of the Estimate
.695 56190.324
Unstandardized Standardized
Coefficients Coefficients
B 3td. Error Beta t Sig.
(Constant) -50926.3 14896.373 -3.42 .001
size 126.594 8.468 .834 14.95 .000

Table 9.5 reports that the standard error of the slope estimate is se = 8.47. This is
listed under *‘Std. Error” for the size predictor. This value estimates the variability in
sample slope values that would result from repeatedly selecting random samples of
100 house sales in Gainesville and calculating prediction equations.

For testing independence, Hy: 8 = 0, the test statistic is

shown in the last row of Table 9.5. Since n = 100, its degrees of freedom are
df = n —~ 2 = 98. This is an extremely large test statistic. The P-value, listed in
Table 9.5 under the heading ““Sig”, is 0.000 to three decimal places. This refers to
the two-sided alternative F;: B # 0. It is the two-tailed probability of a ¢ statistic at
least as large in absolute value as the absolute value of the observed ¢, |f| = 14.95,
presuming Hy is true.

Table 9.6 shows part of a SAS printout for the same analysis. The two-sided
P-value, listed under the heading “Pr >|¢|,” is <0.0001 to four decimal places. (It is
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TABLE 9.6: Part of a SAS Printout for Regression Analysis of Selling Price and Size of Hoy s

Sum of Mean
Source DF Squares Square
Model i T.05720E1l  7.05729Ell -
Error 98 3.09420BE11 3157352537
Corrected Total 99 1.01515E12

Root MSE b56,190.3

Parameter Standaxrd S
Variable DF Estimate Error t Value Pr > [t
Intercept 1 ~50926 14896 -3.42 0.0009 -
size 1 126.59411 8.46752 14.95 <.0001:

actually 0.0000000. .. to a huge number of decimal places, but SAS reports it this way:
rather than 0.0000 so you don’t think the P-value is exactly 0.)

Both the SAS and SPSS printouts also contain a standard error and ¢ test for the
y-intercept. We won’t use this information, since rarely is ther; any reason to test the
hypothesis that a y-intercept equals 0. For this example, the y-intercept does not have
any interpretation, since houses of size x = 0 do not exist. L

In summary, there is extremely strong evidence that size of house has a positive .
effect on selling price. On the average, selling price increases as size.increases. This is
no surprise. Indeed, we would be shocked if these variables were md;pendent. Fo_r
these data, estimating the size of the effect is more relevant than testing whether it

exists. |

Confidence Interval for the Slope

A small P-value for Hy: 8 = 0 suggests that the regression line hE;lS 4 nonzero slope.
We should be more concerned with the size of the slope B8 than in knowing merely
that it is not 0. A confidence interval for 8 has the formula

b + t{se).

The t-score is the value from Table B, with df = n — 2, for the desired confidence.
level. The form of the interval is similar to the confidence interval for a mean.
(Section 5.3), namely, take the estimate of the parameter and add and subtract a f .
multiple of the standard error. The se is the same as se in the test about 3.

EXAMPLE 9.11 Estimating the Slope for House Selling Prices

For the data on x = size of house and y = selling price, b = 126.6 and se = 8.47.
The parameter § refers to the change in the mean selling price (in dollars) for each
1-square-fool increase in size. For a 95% confidence interval, we use the t g5 value for
df = n — 2 = 98, which is £pp5 = 1.984. (Table B shows {025 = 1.984 for df = 100.)
The interval is

b + tgs(se) = 126.6 & 1.984(8.47)
=126.6 + 168 or (110,143).
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We can be 95% confident that 8 falls between 110 and 143. The mean selling price
increases by between $110 and $143 for a 1-square-foot increase in house size. B

In practice, we make inferences about the change in E(y) for an increase in x that
is a relevant portion of the actual range of x-values. If a one-unit increase in x is too
small or too large in practical terms, the confidence interval for 8 can be adjusted
to refer to a different change in x. To obtain the confidence interval for a constant
multiple of the slope (such as 10083, the change in the mean of y for an increase of
100 units in x), multiply the endpeints of the confidence interval for 8 by the same
constant.

For Table 9.4, x = size of house has ¥ = 1629 and 5, = 669. A change of 1 square
foot in size is small. Let’s estimate the effect of a 100-square-foot increase in size,
The change in the mean of y is 1008. The 95% confidence interval for 8 is (110,
143), so the 95% confidence interval for 1008 has endpoints 100(110) == 11,100 and
100(143) = 14,300. We infer that the mean selling price increases by at least $11,100
and at most $14,300, for a 100-square-foot increase in house size. For example,
assuming that the linear regression model is valid, we conclude that the mean is
between $11,100 and $14,300 higher for houses of 1700 square feet than for houses of
1600 square feet.

Reading the Computer Printout

Let’s take a closer look at the printouts in Tables 9.5 and 9.6. They contain some
information we have not yet discussed. For instance, in the sum of squares table, the
sum of squared errors (SSE) is 3.094 times 10'L, This is a huge number because the
y-values are very large and their deviations are squared. The estimated conditional
standard deviation of y is

s = {SSE/(n — 2) = 56,190.

SAS labels this “Root MSE” for square root of the mean square error. SPSS
misleadingly labels it ““Std. Error of the Estimate.”” This is a poor label, because s
refers to a conditional standard deviation of selling prices (for a fixed house size), not
a standard error of a statistic.

The sum of squares table also reports the total sum of squares, TSS = 3(y — 7)? =
10.15 x 10, From this value and SSE,

2 _ TSS — SSE
= /===
T3S

This is the proportional reduction in error in using house size to predict selling price.
Since the slope of the prediction equation is positive, the correlation is the positive
square root of this value, or 0.834. A strong positive association exists between these
variables.

The total sum of squares TSS partitions into two parts, the sum of squared errors,
SSE = 3.094 x 10!, and the difference between TSS and SSE, TSS — SSE =
7.057 X 10'). This difference is the numerator of the 2 measure. SPSS calls this the
regression sum of squares. SAS calls it the model sum of squares. It represents the
amount of the total variation TSS in y that is explained by x in using the least squares
line. The ratio of this sum of squares to TSS equals +~.

The table of surns of squares has an associated list of degrees of freedom values.
The degrees of freedom for the total sum of squares TSS = 3(y — y)?isn — 1 = 99,
since TSS refers to variability in the marginal distribution of y, which has sample

= (1.695.
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variance s;-’, = TSS/(n — 1). The degrees of freedom for SSE-equals n — 2 = 98
since SSE refers to variability in the conditional distribution of y, which has variane
estimate 2 = SSE/(n — 2) for a model having two parameters. The regression (or:
model) sum of squares has df equal to the number of explanatory variables in the -
regression model, in this case 1. The sum of df for the regression sum of squares an
df for the residual sum of squared errors SSE equals df = n — 1 for the total sum g

squares, in thiscase 1 + 98 = 99, : :

Inference for the Correlation®

The correlation » = 0 in the same situations in which the slope b = 0. Let p (Gree
letter tho) denote the correlation value in the population. Then p = 0 precisely whe
B = 0. In fact, a test of Hy: p = 0 using the sample value r is equivalent to the ¢ tes
of Hy: B = 0 using the sample value b. :

The test statistic for testing Hp: p = O1is

RN s vTea

This provides the same value as the test statistic £ = b/se. Use either statistic to test
Hy: independence, since each has the same ¢ sampling distribution withdf =n — 2
and yields the same P-value. For example, the correlation of r = 0.834 for the house
selling price data has

0.834 _
Ji — 0.695)/98

J— r
= J1 = D)/ - 2)

This is the same  test statistic as Example 9.10 (page 278) had for testing Hp: 8 = 0.
For a set of variables, software can report the correlation for each pair in a
correlation marrix. This matrix is a square table listing the variables as the rows and
again as the columns. Table 9.7 shows the way software reports the correlation matrix
for the variables selling price of home, size, taxes, and number of bedrooms. The

TABLE 9.7: Correlation Matrix for House Selling Price Data. Value under correlation is
two-sided F-value for testing Hg: p =0

Correlations / P-value for Ho: Rho=0

price size taxes bedrooms

price 1.00000 0.83378 0.84198 0.38386

<.0001 <.0001 <.0001

size 0.83378 1.00000 0.81880 0.54478

<.0001 <.0001 <.0001

taxes 0.84198 0.81880 1.00000 0.47393

<.0001 <.0001 <.0001

bedrooms 0.39396 0.54478 0.47393 1.00000
<.0001 <.0001 <.0001
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correlation between each pair of variables appears twice. For instance, the correlation
of 0.834 between selling price and size of house occurs both in the row for “PRICE”
and column for “SIZE’ and in the row for “SIZE” and column for “PRICE.” The
P-value for testing Hy: p = 0 against H,: p # 015 listed beneath the correlation.

The correlations on the diagonal running from the upper lefi-hand corner to the
lower right-hand corner of a correlation matrix all equal 1.000, This merely indicates
that the correlation between a variable and itself is 1.0. For instance, if we know the
value of y, then we can predict the value of v perfectly.

Constructing a confidence interval for the correlation p is more complicated
than for the slope B. The reason is that the sampling distribution of r is not
symmetric except when p = 0. The lack of symmetry is caused by the restricted
range [—1,1] for r values. If p is close to 1.0, for instance, the sample r cannot fall
much above p, but it can fall well below p. The sampling distribution of r is then
skewed to the left. Exercise 9.64 shows how to construct confidence intervals for
correlations.

Missing Data

In a correlation analysis, some subjects may not have observations for one or more of
the variables. For example, Table 9.13 in the exercises lists 10 variables for 40 nations.
Observations on a few of the variables, such as literacy rate, are missing [or several
nations.

For statistical analyses, some software deletes all subjects for which data are
missing on at least one variable. This is called listwise deletion. Other software only
deletes a subject for analyses for which that observation is needed. For example, this
approach uses a subject in finding the correlation for two variables if that subject
provides observations for both variables, regardless of whether the subject provides
observations for other variables. This approach is called pairwise deletion. With this
approach, the sample size can be larger for each analysis.

These days, more sophisticated and better strategies exist than both of these. They
are not yet available in most software, and they are beyond the scope of this text. For
details, see Allison (2002).

9.6 MODEL ASSUMPTIONS AND VIOLATIONS

We end this chapter by reconsidering the assumptions underlying linear regression
analysis, We discuss the effects of violating these assumptions and the effects of
influential observations. Finally, we show an alternate way to express the model.

Which Assumptions Are Important?

The linear regression mode] assumes that the relationship between x and the mean of
y follows a straight line. The actual form is unknown. It is almost certainly not exactly
linear. Nevertheless, a linear function often provides a decent approximation for the
actual form. Figure 9.16 illustrates a straight line [alling close to an actual curvilinear
relationship.

The inferences discussed in the previous section are appropriate for detecting
positive or negative linear associations. Suppose that instead the true relationship
were U-shaped, such as in Figure 9.5. Then the variables would be statistically
dependent, since the mean of y would change as the value of x changes. The ¢ test of
Hp: B = 0 might not detect it, though, because the slope b of the least squares line
would be close to 0. In other words, a small P-value would probably not occur even
though an association exists. In summary, 8 = Oneed notcorrespond to independence
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for true regression function E (y)

X

FIGURE 9.16: A Linear Regression Equation as an Approximation for Nonlinear Relationship

if the assumption of a linear regression model is violated. For this reason, you should
always construct a scatterplot to check this fundamental assumption.

The least squares line and r and +2 are valid descriptive statistics no matter what
the shape of the conditional distribution of y-values for each x-value. However, the -
statistical inferences in Section 9.5 also assume that the conditional distributions of

y are (1) normal, with (2) identical standard deviation o for each x-value. These

assumptions are also not exactly satisfied in practice. For large samples, the normality
assumption is relatively unimportant, because an extended Central Limit Theorem
implies that sample slopes and correlations have approximately normal sampling
distributions. If the assumption about common o is violated, other estimates may
be more efficient than least squares (that is, having smaller se values), but ordinary
inference methods are still approximately valid.

The random sample and straight line assumptions are very important. If the true
relationship deviates greatly from a straight line, for instance, it does not make sense

to use a slope or a correlation to describe it. Chapter 14 discusses ways of checking -

the assumptions and making modifications to the analysis, if necessary.

Extrapolation Is Dangerous

It is dangerous to apply a prediction equation to values of x outside the range of
observed values. The relationship might be far from linear outside that range. We
might get poor or even absurd predictions by extrapolating beyond the observed range.

To illustrate, the prediction equation y = —0.86 + 0.58x in Section 9.2 relating x

= poverty rate to y = murder rate was based on observed poverty rates between 8.0 -

and 26.4. It is not valid to extrapolate much below or above this range. The predicted
murder rate for a poverty rate of x = 0% is 7 = —0.86. This is an impossible value
for murder rate, which cannot be negative.

influential Observations

The least squares method has a long history and is the standard way to fit prediction
equations to data. A disadvantage of least squares, however, is that individual
observations can unduly influence the results. A single observation can have a large
effect if it is a regression outlier—having x-value relatively large or relatively small
and falling quite far from the trend that the rest of the data follow.
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thure _9.17 illustrates this. The figure plots observations for several African and
Aslan nations on y = crude birth rate (number of births per 1000 population size) and
x= number of televisions per 100 people. We added to the figure an observation on
these vamablfas for the United States, which is the outlier that is much lower than the
other countries in birth rate but much higher on number of televisions. Figure 9.17
shows the prediction equations both without and with the U.S. abservation The
prediction equation changes from y = 29.8 — 0.024xtoy = 31.2 — 0.195x. Aélding

only a single point to the data set causes the prediction i i ;
mne to t
downward. P o tilt dramatically

35 -
y . Prediction equation
without United States
30 1 J'
25 A
Prediction equation
with United States
20 1
15
T T T ¥ xr
0 20 40 60 80

FIGURE 9.17: Prediction Equations for ¥ = Birth Rate and x = Televisi i i
- = vision Ownersh i
Ohservation for United States ership, with and without

Section 9.2 showed a not-so-extreme version of this. The slope of the prediction
equation more than doubled when we included the observation for D.C. in the data
set about statewide murder rates. o

When a scatterplot shows a severe regression outlier, you should investigate the
reasons forit. An observation may have been incorrectly recorded. If the observation
is correct, perhaps that observation is fundamentally different from the others in
some way, such as the U.S. observation in Figure 9.17. It may suggest an additional
predictor fcn.' the model, using methods of Chapter 11. It is often worthwhile to refit
the model without one or two extreme regression outliers to see if those observations
have a large effect on the fit, as we did following Example 9.4 (page 261) with the
D.C. observation for the murder rates.

Observations that have a large influence on the model parameter estimates can
also have a large impact on the correlation. For instance, for the data in Figure 9.17
the correlation is —0.935 when the U.S. is included and —0.051 when it is dele.teci

from the data set. One point can make qui i i
rom . quite a difference, especially wh
size is small. b Y when the sample

Factors Influencing the Correlation

Besides being influenced by outliers, the correlation depends on the range of x-values
sampled. When a sample has a much narrower range of variation in x than the
population, the sample correlation tends to underestimate drastically (in absolute
value) the population correlation.
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Fi . ws a scatterplot of 300 points that is regular and ha's a correlatig
of ljlgzu rg,?fgslsli;?::ose, instealt}? we had only sampled the middie half of thfe point
roughly between x values of 43 and 57. Tht_:n the c‘orrela.tlon equgls only r =0
considerably lower. For the relation between housing price and'sme c_)f house, po
trayed in Figure 9.15, r = 0.834. If we samplec? only those sales in which hou::;e size.
is between 1300 and 2000 square feet, which include 44 of the 100 observations, f

decreases to 0.254.
90 .
80 | . .
704
60
50

40 1

FIGURE 9.18: The Carrelation is Affected by the Range of x-Values. The correlation decreases from 0.71
to 0.33 using only points with x between 43 and 57.

The correlation is most appropriaie as a summary measure of qssociation w];len-:-.
the sample (x, y)-values are a random sample of the populajtlc_m. This way, thereis a.
representative sample of the x variation as well as the y variation.

EXAMPLE 9.12 Does the SAT Predict College GPA?

ider the association between x = score on the SAT coliege entrance exam E}Ild
J(,:O_—I.]Ségtlal;ge GPA at end of second year of college. The strength of the c'or..relat:&n_
depends on the variability in SAT scores in the sample. I'f we study the association only
for students at Harvard University, the correlation will probably be weak, becau]:e_:
the sample SAT scores will be concentrated very narrawly at_the upper g?nd ofh t Ei
scale. By contrast, if we randomly sampled from the populatlon of all hlgh sC ocat_
students who take the SAT and placed those students in the Harvard env1ronmenl&
students with poor SAT scores would tend to have low GPAs at Harvard. We wou.
then observe a much stronger correlation.

Other aspects of regression, such as fitting a prediction equation to the data_ aqd
making infeliences abogurt the slope, remain vali.d when we _rapdomly sample y w1tTh1112
a restricted range of x-values. We simply limit our preghc_tlon.s to that rangfe.- e
slope of the prediction equation is not affected by a restriction in the r.ange 00 36 fc)I :
Figure 9.18, for instance, the sample slope equals 0.97 for the full data and 0. ho
the restricted middle set. The correlation makes most sense, however, when both x -
and y are random, rather than only y.

Regression Model with Error Terms*

Recall that at each fixed value of x, the regression model permits values of y to fluctuate
around their mean, E(y) = « + Bx. Any one observation may fall above that mean
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(i.e., above the regression line) or below that mean (below the regression line). The
standard deviation o summarizes the typical sizes of the deviations from the mean.
An alternative formulation for the model expresses each observation on y, rather
than the mean £(y) of the values, in terms of x. We've seen that the deferministic mode!
¥y = o + Bx is unrealistic, because of not allowing variability of y-values. To allow
variability, we include a term for the deviation of the observation y from the mean,

y=a + Bx + &

The term denoted by £ (the Greek letter epsilon) represents the deviation of y from
the mean, &« + QBx. Each observation has its own value for &.

If £ is positive, then @ + Bx + eis larger than @ + Bz, and the observation falls
above the mean. See Figure 9.19. If £ is negative, the observation falls below the mean.
When & = 0, the observation falls exactly at the mean. The mean of the e-values is 0.

E(y) = o+ fx

y=a+fBr+e
(e<0)

X

FIGURE 9.1%: Positive and Negative e-Values Correspond to Observations above and helow the Mean of
the Conditicnal Distribution

For each x, variability in the y-values corresponds to variability in . The & term is
called the error term, since it represents the error that results from using the mean
value (o + fBx)} of y at a certain value of x to predict the individual observation.

In practice, we do not know the n values for g, just like we do not know the
parameter values and the true mean a + Bx. For the sample data and their prediction
equation, let e be such that

y=a+ bx + e

Thatis,y =y + e,sothate =y — §. Then eis the residual, the difference between
the observed and predicted values of y. Since y = @ + Bx + &, the residual e
estimates . We can interpret  as a population residual. Thus, £ is the difference
between the observation y and the mean @ + Bx of all possible observations on y at

that value of x. Graphically, ¢ is the vertical distance between the observed point and
the true regression line.

In summary, we can express the regression model either as
E(yv)=a + Bx oras y=a + Bxr + =

We use the first equation in later chapters, because it connects better with regression
models for response variables assumed to have distributions other than the normal.
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Models for discrete quantitative variables and models for categorical variables are
expressed in terms of their means, nol in terms of y itself.

Models and Reality

We emphasize again that the regression model approximates the true relationship
No sensible researcher expects a relationship to be exactly linear, with exactly norma
conditional distributions at each x and with exactly the same standard deviation o
y-values at each x-value. By definition, models merely approximate reality.

If the model seems too simple to be adequate, the scatterplot or other diagnostic
may suggest improvement by using other models introduced later in this text. Suc
models can be fitted, rechecked, and perhaps modified further. Model building is an
iterative process. Its goals are to find a realistic model that is adequate for describin
the relationship and making predictions but that is still simple enough to interpre
easily. Chapters 1115 extend the model so that it applies to situations in which th
assumptions of this chapter are too simplistic. '

Problems 289

TABLE 9.8: Summary of Tests of Independence and Measures of Association

Measurement Levels of Variables
Ordinal

Nominal Interval

Null hypothesis ~ Hp: Independence  Hjy: Independence  Hy: Independence (8 = 0)

.. - 2
Test statistic X"'— =3 o—fe)” =X t = ﬁ,df =5 -7
fe s¢ e

Measure of T — 5= E20 w5

o ) Tl Y cin [ b 5
association )

Odds ratio ;2 = IS5-SSE
TSS

a_nd quantitative predictors. Chapter 14 introduces models for more complex rela-
tlonshigs, such as nonlinear ones. Finally, Chapter 15 presents regression models for
categorical response variables. Before discussing these multivariate models, however,
we introduce in the next chapter some new concepts that help us to understand and
interpret multivariate relationships.

PROBLEMS

Chapters 7-9 have dealt with the detection and description of association between
two variables. Chapter 7 showed how to compare means Or proportions for two
groups. When the variables are statistically independent, the population means
or proportions are identical for the two groups. Chapter 8 dealt with asseciation
between two categorical variables. Measures of association such as the difference of
proportions, the odds ratio, and gamma describe the strength of association. The
chi-squared statistic for nominal data or a z statistic based on sample gamma for
ordinal data tests the hypothesis of independence. _

This chapter dealt with association between quantitative variables. A new element
studied here was a regression model to describe the form of the relationship between
the explanatory variable x and the mean E(y} of the response variable. The major
aspects of the analysis are as [ollows: :

e The linear regression equation E(y) = a + Bx describes the form of the
relationship. This equation is apprapriate when a straight line approximates the
relationship between x and the mean of y.

e A scatterplot views the data and checks whether the relationship is approxi-
mately linear. If it is, the least squares estimates of the y-intercept « and the
slope f provide the prediction equation y = a + bx closest to the data in terms -
of a sum of squared residuals.

o The correlation r and its square describe the strength of the linear association.
The correlation is a standardized slope, having the same sign as the slope but *
falling between —1 and +1. Its square, #2, gives the proportional reduction in '
variability about the prediction equation compared to the variability about y.

e For inference about the relationship, a ¢ test using the slope or correlation tests
the null hypothesis of independence, namely, that the population slope and
correlation equal 0. A confidence interval for the slope estimates the size of the
effect.

Practicing the Basics
9.1.

. Sketch plots of the following prediction equations,

9.3.

(b) A femur found at a particular site has length
of 50 em. What is the predicted height of the
person who had that femur?

%.4. The OECD (Organization for Economic Cooper-
ation and Development) consists of 20 advanced,
industrialized countries. For these nations? the

For the following variables in a regression analysis,
which variable more naturally plays the role of x
{explanatory variable) and which plays the role of
¥ (response variable)?

(a) College grade point average (GPA) and high

school GPA prediction equation relating y = child poverty rate
(b} Number of children and mother’s education in 2000 to x = social expenditure as a percent of
level aross domestic product is y =22 — 1.3x. The o
(¢) Annual income and number of years of edu- valuesranged from2.8% (Finland) to 21.3% (U.S.).
cation The x-values ranged from 2% (U.S.) to 16% (Den-

mark).

(a) Interpret the y-intercept and the slope.

(b) Find the predicted poverty rates for the 1J.5.
and for Denmark.

(d} Annual income and assessed value of home

for vzﬂﬂues of x between 0 and 10:
(1) y=7+ 05x

B F=7+ x (c) The correlation is --0.79. Interpret.

© 7=7-x 9.5. Look at Figure 2 in www.ajph.org/cgifreprint/93/4/
@ 5=7— 05« 6527ck=nck, a scatterplot for U.S. states with corre-
@€ 5=71 lation 0.53 between x = child poverty rate and y =
® 5=x child mortality rate. Approximate the y-intercept
Anthropologists often try to reconstruct informa- and slope of the predictien equation shown there.

9.6. A study’ of mail survey response rate patferns of
the elderly found a prediction equation relatingx =
age (between about 60 and 90) and y = percentage
of subjects responding of y = 90.2 — 0.6x.

(a) Interpret the slope.
(b) Find the predicted response rate for a (i) 60-
year-old, (ii) 90-year-old.

9.7. For recent UN data from 39 countries on y = per
capita carbon dioxide emissions (meltric tons per

tion using partial human remains at burial sites. For
instance, after finding a femur (thighbone), they
may want to predict how tall an individual was, An
equation they use to do this is y = 61.4 + 2.4x,
where y is the predicted height and x is the length
of the femur, both in centimeters.?

(a) Identify the y-intercept and slope of the equa-

tion. Interpret the slope.

Table 9.8 summarizes the methods studied in the past three chapters.

Chapter 11 introduces the multiple regression model, a generalization that per-
mits several explanatory variables in the model. Chapter 12 shows how to include
categorical predictors in a regression model. Chapter 13 includes both categorical |

38. Junger, Vanity Fair, October 1999,
4Source: Figure 8H in www.stateofworkingamerica.org
ip, Kaldenberg et al., Public Opinion Quarterly, Vol. 58, 1994, p. 68.



