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CHAPTER SUMMARY

We've seen that statistical methods are descriptive or inferential. The purpose of
descriptive statistics is to summarize data, to make it easier to assimilate the informa-
tion. This chapter presents basic methods of descriptive statistics.

We first present tables and graphs that describe the data by showing the number of
times various outcomes occurred. Quantitative variables also have two key features
to describe numerically:

o The center of the data—a typical observation
o The variability of the data—the spread around the center
We'll learn how to describe quantitative data with statistics that summarize the

center, statistics that summarize the variability, and finally with statistics that specify
certain positions in the data set that summarize both center and variability.

3.1 DESCRIBING DATA WITH TABLES AND GRAPHS

Tables and graphs are useful for all types of data. We'll begin with categorical
variabies.

Relative Frequencies: Categorical Data

For categorical data, we list the categories and show the frequency (the number of
observations) in each category. To make is casier to compare different categories, we
also report proportions or percentages, also called relative frequencies.

Relative Frequency

The relative frequency for a category is the proportion or percentage of the observations
that fall in that category.

The proportion equals the number of observations in a category divided by the total
number of observations. It is a number between 0 and 1 that expresses the share
of the observations in that category. The percentage is the proportion multiplied
by 100. -
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EXAMPLE 3.1 Household Structure in the U.S.

Table 3.1 lists the different types of households in the United States in 2005, Of 111.1
million households, for example, 24.1 million were a married couple with children.
The proportion 24.1/111.1 = 0.22 were a married couple with children.

TABLE 3.1: U.5. Household Structure, 2005

Type of Family Number (millions} Proportion Percentage
Married couple with children 241 0.22 22
Married couple, no children 31.1 0.28 28
Single househelder, no spouse 19.1 0.17 17
Living alone 30.1 0.27 27
Other households 6.7 0.06 6
Total 111.1 1.00 100

Source: 138, Census Bureau, 2005 American Conumunity Survey, Tables B11001,
C11003.

A percentage is the proportion multiplied by 100. That is, the decimal place is
moved two positions to the right. For example, since (.22 is the proportion of families
that are married couples with children, the percentage is 100(0.22) = 22%. Table 3.1
shows the proportions and percentages for all the categories. - |

The sum of the proportions equals 1.00. The sum of the percentages equals 100.
(In practice, the values may sum to a slightly different number, such as 99.9 or 100.1,
because of rounding.)

It is sufficient in such a table to report the percentages (or proportions) and
the total sample size, since each frequency equals the corresponding proportion
multiplied by the total sample size. For instance, the frequency of married couples
with children equals 0.22(111.1) = 24 million. When presenting the percentages but
not the frequencies, always also include the total sample size.

Frequency Distributions and Bar Graphs: Categorical Data

Table 3.1 lists the categories for household structure and the number of households
of each type. Such a listing is called a frequency distribution.

Fraquency Distribution

A freguency distribution is a listing of possible values for a variable, together with the
number of ohservations at each value. A corresponding relative frequency distribution
lists the possible values together with their proportions or percentages.

To construct a frequency distribution for a categorical variable, list the categories and
count the number of observations in each.

To more easily get a feel for the data, it’s helpful to look at a graph of the relative
frequency distribution. A bar graph has a rectangular bar drawn over each category.
The height of the bar shows the relative frequency in that category. Figure 3.1 is a
bar graph for the data in Table 3.1. The bars are separated to emphasize that the
variable is categorical rather than quantitative. Since household structure is a nominal
variable, there is no particular natural order for the bars. The order of presentation
for an ordinal variable is the natural ordering of the categories.
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FIGURE 3.1: Relative Frequency of U.5. Household Structure Types, 2005

Another type of graph, the pie chart, is a circle having a “slice of the pie” for each
category. The size of a slice represents the percentage of observations in the category.
The bar graph is more precise than the pie chart for visual comparison of categories
with similar relative frequencies.

Frequency Distributions: Quantitative Data

Frequency distributions and graphs also are useful for quantitative variables. The
next example illustrates.

EXAMPLE 3.2 Statewide Violent Crime Rates

Table 3.2 lists all 50 states in the United States and their 2005 violent crime rates.
This rate measures the number of violent crimes in that state in 2005 per 10,000
population. For instance, if a state had 12,000 violent crimes and a population size of
2,300,000, its violent crime rate was (12,000/2,300,000) X 10,000 = 52. It is difficult
to learn much by simply reading through the violent crime rates. Tables, graphs, and
numerical measures help us more fully absorb the information in these data.

First, we can summarize the data with a frequency distribution. To do this, we
divide the measurement scale for violent crime rate into a set of intervals and count
the number of observations in each interval. Here, we use the intervals {0-11, 12-23,
24-35, 3647, 48-59, 6071, 72-83}. The values Table 3.2 reports were rounded,
so for example the interval 12-23 represents values between 11.5 and 23.5. Counting
the number of states with violent crime rates in each interval, we get the frequency
distribution shown in Table 3.3. We see that considerable variability exists in the
violent crime rates.

Table 3.3 also shows the relative frequencies, using proportions and percentages.
For example, 3/50 = 0.06 is the proportion for the interval 0-11, and 100(0.06) = 6
is the percentage. As with any summary method, we lose some information as the cost
of achieving some clarity. The frequency distribution does not identify which states
have low or high violent crime rates, nor are the exact violent crime rates known. H

The intervals of values in frequency distributions are usually of equal width. The
width equals 12 in Table 3.3. The intervals should include all possible values of the
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TABLE 3.2; List of States with Violent Crime Rates Measured as Number
of Violent Crimes per 10,000 Population

Alabama 43 Louisiana 65 Ohio 33
Alaska 59 Maine 11 Oklahoma 51
Arizona 31 Maryland 70 Oregon 30
Arkansas 46 Massachusetts 47 Pennsylvania 40
California 58 Michigan 51 Rhode Island 29
Colorado 34 Minnesota 26 South Carolina 79
Connecticut 31 Mississippi 33 South Dakota 17
Delaware 66 Missouri 47 Tennessee 69
Florida 73 Montana 36 Texas 35
Georgia 45 Nebraska 29 Utah 25
Hawaii 27 Nevada 61 Vermont 1
Idaho 24 New Hampshire 15 Virginia- 28
Tllinois 56 New Jersey 37 Washington 35
Indiana 35 New Mexico 66 West Virginia 26
Towa 27 New York 46 Wisconsin 22
Kansas 40 North Carolina 46 Wyoming 26

Kentucky 26 North Dakota 8

TABLE 3.3: Frequency Distribution and Relative Frequency Distribution for Violent

Crime Rates

Violent Crime Relative
Rate Frequency Frequency Percentage

0-11 3 0.06 6

12-23 3 0.06 4]
24-35 18 (.36 36
3647 11 0.22 22
48-59 7 0.14 14
60-71 6 0.12 12
72-83 2 0.04 4
Total 50 1.00 100.0

variable. In addition, any possible value must fit into one and only one interval; that
is, they should be mutually exclusive.

Histograms

A graph of a relative frequency distribution for a quantitative variable is called a
histogram. Each interval has a bar over it, with height representing the number of
observations in that interval. Figure 3.2 is a histogram for the violent crime rates.
Choosing intervals for frequency distributions and histograms is primarily a matter
of common sense. If oo few intervals are used, too much information is lost. For
example, Figure 3.3 is a histogram of violent crime rates using the intervals 0-29,
30-59, 60—89. This is too crude to be very informative. If too many intervals are
used, they are so narrow that the information presented is difficult to digest, and the
histogram may be irregular and the overall pattern of the results may be obscured.
Ideally, two observations in the same interval should be simnilar in a practical sense.
To summarize annual income, for example, if a difference of $5000 in income is not
considered practically important, but a difference of $15,000 is notable, we might
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FIGURE 3.3: Histogram of Relative Frequencies for Violent Crime Rates, Using Too Few Intervals

choose intervals of width less than $15,000, such as $0-$9999, $10.000-%1
$20,000-$29,999, and so forth. Statistical software can automatically?,chéose itz:’?fi?s:
for us and construct frequency distributions and histograms.

For a discrete variable with relatively few values, a histogram has a separate bar
for each possible value. For a continuous variable or a discrete variable with many

possible values, you need to divide the possible values into intervals, as we did with
the violent crime rates.

Stem-and-Leaf Plots

Figure 3.4 shows an alternative graphical representation of the violent crime rate data.
T.hJ_S figure, called a stem-and-leaf plot, represents each observation by its leading
digit(s) (the stem) and by its final digit (the /eaf). Each stem is a number to the left of
t.he vertical bar and a leaf is a number to the right of it. For instance, on the second
line, the stem of 1 and the leaves of 1, 1, 5, and 7 represent the violent crime rates 11

11,15, 17. The plot arranges the leaves in order on each line, from smallest to largest?
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FIGURE 3.4: Stem-and-lLeaf Plot for Violent Crime Rate Data in Table 3.2

A stem-and-leaf plot conveys similar information as a histogram. Turned on its
side, it has the same shape as the histogram. In fact, since the stem-and-leaf plot
shows each observation, it displays information that is lost with a histogram. From
Figure 3.4, the largest violent crime rate was 79 and the smallest was 8 (shown as 08
with a stem of 0 and leaf of 8). It is not possible to determine these exact values from
the histogram in Figure 3.2.

Stem-and-leaf plots are useful for quick portrayals of small data sets. As the sample
size increases, you can accommodate the increase in leaves by splitting the stems.
For instance, you can list each stem twice, putting leaves of 0 to 4 on one line and
jeaves of 5 to 9 on another. When a number has several digits, it is simplest for
graphical portrayal to drop the last digit or two. For instance, for a stem-and-leaf
plot of annual income in thousands of dollars, a value of $27.1 thousand has a stem
of 2 and a leaf of 7 and a value of $106.4 thousand has a stem of 10 and leaf
of 6.

Comparing Groups

Many studies compare different groups on some variable. Relative frequency distri-
butions, histograms, and stem-and-leaf plots are useful for making comparisons.

EXAMPLE 3.3 Comparing Canadian and U.S. Murder Rates

Stem-and-leaf plots can provide visual comparisons of two smali samples on a
quantitative variable. For ease of comparisen, the results are plotted “back to back.”
Each plot uses the same stem, with leaves for one sample to its left and leaves for
the other sample to its right. To illustrate, Figure 3.5 shows back-to-back stem and
leaf plots of recent murder rates (measured as the number of murders per 100,000

population) for the 50 states in the U.S. and for the provinces of Canada. From this -

figure, it is clear that the murder rates tended to be much lower in Canada, varying
between 0.7 (Prince Edward Island) and 2.9 (Manitoba) whereas those in the U.S.
varied between 1.6 (Maine) and 20.3 (Louisiana). |

Population Distribution and Sample Data Distribution

Frequency distributions and histograms apply both to a population and to sam-
ples from that population. The first type is called the population distribution, and
the second type is called a sample data distribution. In a sense, the sample data
distribution is a blurry photo of the population distribution. As the sample size
increases, the sample proportion in any interval gets closer 1o the true popula-
tion proportion. Thus, the sample data distribution looks more like the population
distribution.
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FIGURE 3.5: Back-to-Back Stem-and-Leaf Plots of Murder Rate
! s from U.5. and Canada. Both sh
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For a contim}ous variable, imagine the sample size increasing indefinitely, with
the number of intervals simultaneously increasing, so their width narrows. '1"[‘hen
the shape of the sample histogram gradually approaches a smooth curve. This texi
uses such curves to represent population distributions. Figure 3.6 shows two sample
hlstogra_ms, one based on a sample of size 100 and the second based on a sam-
ple of. size 500, and also a smooth curve representing the population distribution
Even if a variable is discrete, a smooth curve often approximates well the popula—.

Iion distribution, especially when the number of possible values of the variable is
arge.

a} 100 measurements by) 500 measurements ¢) Population
Relative Relative
Frequency Frequency Frequency
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Values of the Variable Values of the Variable Values of the Variable

FIGURE 3.6: Histograms for a Continuous Variable, W
IGURE 3 . We use smooth curves to represent i
distributions for continuous variables. b nt population

The Shape of a Distribution

One way to surmparize a sample or a population distribution is to describe its shape.
A group for which the distribution is bell-shaped is fundamentally different from
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a group for which the distribution is U-shaped, for example. See Figure 3.7. In the
U-shaped distribution, the highest points (representing the largest frequencies) are
at the lowest and highest scores, whereas in the bell-shaped distribution, the highest
point is near the middle value. A U-shaped distribution indicates a polarization on
the variable between two sets of subjects. A bell-shaped distribution indicates that

most subjects tend to fall near a central value.

Relative Relative
frequency frequency
U-shaped Bell-shaped
Low High Low High
Values of the Variable Values of the Variable

FIGURE 3.7: U-Shaped and Bell-Shaped Frequency Distributions

The distributions in Figure 3.7 are symmetric: The side of the distribution below a
central value is a mirror image of the side above that central value. Most distributions
encountered in the social sciences are not symmetric. Figure 3.8 illustrates. The parts
of the curve for the lowest values and the highest values are called the tails of
the distribution. Often, as in Figure 3.8, one tail is much longer than the other. A
distribution is said to be skewed to the right or skewed to the left, according to which

tail is longer.

Relative Relative
frequency frequency

Skewed to the Skewed to the
right left

Income Exam Score

FIGURE 3.8: Skewed Frequency Distributions, The longer tail indicates the direction of skew.

To compare frequency distributions or histograms for two groups, you can give
verbal descriptions using characteristics such as skew. It is also helpful to make
numerical comparisons such as, “On the average, the murder rate for U.S. states is
5.4 higher than the murder rate for Canadian provinces.” We now turn our attention

to numerical descriptive statistics.

3.2 DESCRIBING THE CENTER OF THE DATA

This section presents statistics that describe the center of a frequency distribution for

a quantitative variable. The statistics show what a typical observation is like.
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The Mean

The best known and most commonly used measure of the centeris the mean.

Mean

The mean is the sum of the observations divided by the number of observations.

The mean is often called the average.

EXAMPLE 3.4 Female Economic Activity in Europe

Table‘3.4 shows an index of feplale economic activity for the countries of South

America and of Eastern Europe in 2003. The number specifies female employment as

?npt?lrcental%? of male eilglployment. In Argentina, for instance, the number of females
he work force was 48% of the number of males in the work fo T

83 in the United States and in Canada.) ree. (The value was

TABLE 3.4; Female Economic Activity in South
America and Eastern Europe; Female Employment
as a Percentage of Male Employment

South America Eastern Europe
Country Activity Country Activity
Argentina 48 Czech republic 83
Bolivia 58 Estonia 82
Brazil 52 Hungary 72
Chile 50 Latvia 80
Colombia 62 Lithuania 80
Ecuador 40 Poland 81
Guyana 51 Slovakia 84
Paraguay 44 Slovenia 81
Peru 45
Uruguay 68
Venezuela 55

Saurce: Human Development Report 2003, United
Nations Development Programme.

For the eight observations for Eastern Europe, the sum equals
83 + 82+ 72 + 80 + 80 + 81 + 84 + 81 = 643.

The mean female economic activity e = i
quals 643/8 = 80.4. By comparison, you ca
;hecgl that the mean for the 11 South American countries equa]sp573/ 11 Y= 521n
emale economic activity tends to be considerably 1 i ica than in
Eastors Borone. ably lower in South America than 1;



40 Chapter 3

Descriptive Statistics

Notation for Observations and Sample Mean

The sample size is symbolized by n. For a variable denoted by y, its observations are

denoted by 1, ¥2, ..., ¥n. The sample mean is denoted by y.

The symbol ¥ for the sample mean is read as ™ y-bar.” Throughout the text, letters near
the end of the alphabet denote variables. The n sample observations on a variable y
are denoted by y; for the first observation, y; the second, and so forth. For example,
for female economic activity in Eastern Europe, n = 8 and the observations are
y; = 83,52 = 82,...,ys = 8l. Abarovera letter represents the sample mean for
that variable. For instance, X represents the sample mean for a variable denoted by x.
The definition of the sample mean says that '

yi tya+ oty
n

j}":

The symbol = (uppercase Greek letter sigma) represents the process of summing.
For instance, Sy; represents thesumy; + y2 + - + Yn. This symbol stands for the
sum of the y-values, where the index { represents a typical value in the range 1 to n.
To illustrate, for the Eastern European data,

Syi=yi b oyr + oo+ =83+ 82+ o + Bl =643

The symbol is sometimes even further abbreviated as =y. Using this summation
symbol, we have the shortened expression for the sample mean of i observations,
- Xy

¥ = —=
H

Properties of the Mean

Here are some properties of the mean:

« The formula for the mean uses numerical values for the observations. So the
mean is appropriate only for quantitative variables. It is not sensible to compute
the mean for observations on a nominal scale. For instance, for religion measured
with categories such as (Protestant, Catholic, Jewish, Other), the mean religion
does not make sense, even though these levels may sometimes be coded by
numbers for convenience. Similarly, we cannot find the mean of observations
on an ordinal rating such as excellent, good, fair, and poor, unless we assign
numbers such as 4, 3, 2, 1 to the ordered levels, treating it as quantitative.

« The mean can be highly influenced by an observation that falls well above or
well below the bulk of the data, called an outlier.

EXAMPLE 3.5 Effect of Outlier on Mean Income

The owner of Leonardo’s Pizza reports that the mean annual income of employees in
the business is $40,900. In fact, the annual incomes of the seven employees are $11,200,
$11.400, $11,700, $12,200, $12,300, $12,500, and $215,000. The $215,000 income is the
salary of the owner’s son, who happens to be an employee. The value $215,000 is
an outlier. The mean computed for the other six observations alone equals $11,883,
quite different from the mean of $40,900 including the outlier. |

This example shows that the mean is not always typical of the observations in the
sample. This commonly happens with small samples when at least one observation is
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much larger or much smaller than the others, such as i i sk
much larger , s in highly skewed
e The mean is pulled in the direction of the longer tail of a skewéd distribution
relative to most of the data. ,
In Exarpple 3.5, thfe large observation $215,000 results in an extreme skewness
to the right of the income distribution. This skewness puils the mean above six

of the seven observations. In general, the more highly skewed the disiribution
the less typical the mean is of the data. ’

» The mean is the point of balance on the number line when an equal weight is at
each observation point.

For example, Figure 3.9 shows that if an equal weight is placed at each Eastern
European observation on female economic activity from Example 3.4, then the
line ‘palances by placing a fulcrum at the point 80.4. The mean is the center of
gravity (balance point} of the observations. This means that the sum of the dis-
tances to the mean from the observations above the mean equals the sum of the
distances to the mean from the observations below the mean.

v
i
7 / f% = T [
) . | el
_'J
y =804

FIGURE 3.9: The Mean as the Center of Gravit
y, for Eastern Europe Data f i
balances with a fulcrum at 80.4. b rom Example 3.4. The fine

o Derlote the_ sample means for two sets of data with sample sizes n; and
by ¥ au_d 2 The overall sample mean for the combined set of (1, + }175
observations is the weighted average )

my; + #ayy

? =
-t oo

The numerator ¥, + 13y, is the sum of all the observations, since ny = 3y
for each set of observations. The denominator is the total sample size.

To_i]lustrate, fcn: the female economic activity data in Table 3.4, the South
American observations have /y = 11 and y; = 52.1, and the Eastern European

observations have n; = 8 and ¥, = 80.4. The overall mean eco i Tvity
/ ) 2 A, nomic |
19 nations equals aetiviy for the

my; + my, _ 11(52.1) + 8(80.4) _ (573 + 643) _ 1216
n o+ m 11 + 8 19 B 19 -

y= 64.
The weighted average of 64 is closer to 52.1, the value for South America, than to

80.4, the value for Eastern Europe. This happens because more observations come
from South America than Eastern Europe.

The Median

The mean js a simple measure of the center. But other measures are also informative
and sometimes more appropriate. Most important is the median. It splits the sample

into two parts with equal numbers of observations, when they are ordered from
lowest to highest.
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Median

The median is the observation that falls in the middle of the ordered sample. When the
sample size n is odd, a single observation occurs in the middle. When the sample size is
even, two middle observations occur, and the median is the midpoint between the two,

To illustrate, the ordered income observations for the seven employees in Exam-
ple 3.5 are

$11.200, $11,400, $11,700, $12,200, $12,300, $12,500, $215,000.

The median is the middle observation, $12,200. This is a more typical value for this
sample than the sample mean of $40,900. When a distribution is highly skewed, the
median describes a typical value better than the mean.

In Table 3.4, the ordered economic activity values for the Eastern European

nations are
72,80, 80,81,81,82,83,84.

Since n = 8 is even, the median is the midpoint between the two middle values, 81
and 81, which is (81 + 81)/2 = 81. This is close to the sample mean of 80.4, because
this data set has no outliers.

The middle observation has index (n + 1)/2. That is, the median is the value
of observation (1 + 1)/2 in the ordered sample. When n = 7, (n + 1)/2 =
(7 + 1)/2 = 4, so0 the median is the fourth smallest, or equivalently fourth largest,
observation. When 11 is even, (n + 1)/2 falls halfway between two numbers, and the
median is the midpoint of the observations with those indices. For example, when
n = 8,(n + 1)/2 = 45, so the median is the midpoint between the 4th and 5th

smallest observations.
EXAMPLE 3.6 Median for Grouped or Ordinal Data

Table 3.5 summarizes the distribution of the highest degree completed in the U.S.
population of age 25 years and over, as estimated from the 2005 American Community
Survey taken by the U.S. Bureau of the Census. The possible responses form
an ordinal scale. The population size was n = 189 (in millions). The median
score is the (n + 1)/2 = (189 + 1)/2 = 95th lowest. Now 30 responses fall
in the first category, (30 + 56) = 86 in the first two, (30 + 56 + 38) = 124
in the first three, and so forth. The 87th to 124th lowest scores fall in category
3, which therefore contains the 95th lowest, which is the median. The median
response is “Some college, no degree.” Equivalently, from the percentages in the last
column of the table, (15.9% + 29.6%) = 45.5% fall in the first two categories and
(15.9% + 29.6% + 20.1%) = 65.6% fall in the first three, so the 50% point falls in
the third category. |

TABLE 3.5: Highest Degree Completed, for a Sample of Americans

Highest Degree Frequency (millions) Percentage
Not a high school graduate 30 15.9%
High school only 56 29.6%
Some college, no degree 38 20.1%
Associate’s degree 14 7.4%
Bachelor’s degree 32 16.9%
Master’s depree 13 6.9%
Doctorate or professional 6 32%
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Properties of the Median

e The .median, like the mean, is appropriate for quantitalive variables. Since it

requires only ordfared observations to compute it, it is also valid for ordinal-scale

~data, as the previous example showed. It is not appropriate for nominal-scale
data, since the observations cannot be ordered.

° For_symjpetric distributions, such as in Figure 3.7, the median and the mean
are identical. To 1‘Hustrate, the sample of observations 4, 5, 7, 9, 10 is symmetric
about 7; 5 gnd 9 fall equally distant from it in opposite directions, as do 4 and
10. Thus, 7 is both the median and the mean.

» Forskewed distributions, the mean lies toward the directi i
i i ; on of skew (th
tail) relative to the median. See Figure 3.10.. w (the longer

Relative Relative
Frequency Frequency
1 1 1 ]
| L Mean Mean —
Median Median
Values of the Variable Values of the Variahle

FIGURE 3.10: The Mean and the Medi N . .
of the longer tail. e Median for Skewed Distributions. The mean is pulled in the direction

For examp_le, consider the violent crime rates of Table 3.2. The median is 36.5
The meanisy = 40.2, somewhat larger than the median. Figure 3.2 showed th.at.
the wole.nt crime rate values are skewed to the right. The mean is larger than
the median for distributions that are skewed to the right. Income distributions
tend to be skewed to the right. For example, household income in the United

States in 2005 had a mean of about $61,000 and i
Bureau of the Census), , nd a median of about $44,000 (U.S.

The distribution of grafies on an exam tends to be skewed to the left when some
students perform _consuderably pocorer than the others. In this case, the mean is
iess than the meghan. For example, suppose that an exam scored on a scale of 0
f: hot(]lhz]n; li medlan ofs 888)§ and a mean of 76. Then most students performed quite
ell (half being over 88), but apparently some scores were ve i
order to bring the mean down to 76. ry much lower in
. 'I.’he median is insensitive to the distances of the observations from the middle
since it uses only the ordinal characteristics of the data. For example the’
following four sets of observations all have medians of 10: ’

Setl: 8 9, 10, 11, 12
Set2: 8, 9, 10, 11, 100
Set3: 0, 9, 10, 10, 10
Setd: 8 9, 10, 100, 100

« The median‘ is not affected by outliers. For instance, the incomes of the seven
employefas in Example 3.5 have a median of $12,200 whether the largest
observation is $20,000, $215,000, or $2,000,000.
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Median Compared to Mean

The median is usually more appropriate than the mean when the distribution is highly
skewed, as we observed with the Leonardo’s Pizza employee incomes. The mean can
be greatly affected by outliers, whereas the median is not. '

For the mean we need quantitative (interval-scale) data. The median also applies
for ordinal scales (see Example 3.6). To use the mean for ordinal data, we must assign
scores to the categories. In Table 3.5, if we assign scores 10, 12,13, 14,16, 18, 20 to the
categories of highest degree, representing approximate number of years of education,
we get a sample mean of 13.4.

The median has its own disadvantages. For discrete data that take relatively few
values, quite different patterns of data can have the same median. For instance,
Table 3.6, from a GSS, summarizes the 365 female responses to the question, “How
many sex partners have you had in the last 12 months?’’ Only six distinct responses
occur, and 63.8% of those are 1. The median response is 1. To find the sample mean,
to sum the 365 observations we multiply each possible value by the frequency of its
occurrence, and then add. That is,

Sy = 102(0) + 233(1) + 18(2) + 9(3) + 2(4) + 1(5) = 309.

The sample mean response is

if the distribution of the 365 observations among these categories were (0, 233, 18, 9,
2,103) (i.e., we shift 102 responses from 0 to 5), then the median would still be 1, but
the mean would shift to 2.2. The mean uses the numerical values of the observations,
not just their ordering.

TABLE 3.6: Number of Sex Partners Last Year, for Female Respondents in G55

Response Frequency Percentage
0 102 278
1 233 63.3
2 18 4.9
3 9 2.5
4 2 0.5
5 1 0.3

The most extreme form of this problem occurs for binary data, which can take
only two values, such as 0 and 1. The median equals the more common outcome,
but gives no information about the relative number of observations at the two levels.
For instance, consider a sample of size 5 for the variable, number of times married.
The observations (1, 1, 1, 1, 1) and the observations (0, 0, 1, 1, 1) both have a
median of 1. The mean is 1 for (1, 1, 1, 1, 1) and 3/5 for (0, 0, 1, 1, 1). When
observations take values of only 0 or 1, the mean equals the proportion of observations
that equal 1. Generally, for highly discrete data, the mean is more informative than
the median.

In summary,

e If a distribution is highly skewed, the median is usually preferred because it
better represents what is typical.
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o If the distribution is close to symmetric or only mildly skewed or if it is discrete

with fE?W distinct values, the mean is usually preferred, because it uses the
numerical values of all the observations. '

The Mode

Another measure, the mode, indicates the most common outcome.

Mode

The mode is the value that occurs most frequently.

The mode is most commenly used with highly discrete variables, such as with
catego_rlc:'fll fiata. In Table 3.5., on the highest degree completed, for instance, the
mode is “High school only,” since the frequency for that category is higher than the

frequency for any other rating. In Table 3.6, on the number of ; i
e et sex partners in the last

Properties of the Mode

¢ The mode is appropriate for all types of data. For example, we might measure
the mode for religion in Australia (nominal scale), for the rating given a teacher
(ordinal scale), or for the number of years of education completed by Hispanic
Americans (interval scale). |

° A frf.:qugncy distribution is called himedal if two distinct mounds occur in the
chstnbu'tlon. Bimodal distributions often occur with attitudinal variables when
populations are polarized, with responses tending to be strongly in one direction
or another: For instance, Figure 3.11 shows the relative frequency distribution of
Tesponses in a General Social Survey to the question, “Do you personally think
1t1s wrong or not wrong for a woman to have an abortion if the family has a very
low income and cannot afford any more children?” The relative frequencies in
the two extreme categories are higher than those in the middle categories.

30 A
Percent
40} +

Not Wrong  Almost  Always
Wrong  Only Alvays Wrong
at All Sometimes Wrong

FIGURE 3.11: Bimodal Distribution for Opinion about Whether Abartion [s Wrong

. 'I_’he mean, median, and mode are identical for a unimodal, symmetric distribu-
tion, such as a bell-shaped distribution.
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The mean, median, and mode are complementary measures. They describe differ-
ent aspects of the data. In any particular example, some or all their values may be
useful. Be on the lookout for misleading statistical analyses, such as using one slatistic
when another would be more informative. People who present statistical conclusions
often choose the statistic giving the impression they wish to convey. Recall Exam-
ple 3.5 (p-40) on Leonardo’s Pizza employees, with the extreme outlying income
observation. Be wary of the mean when the distribution may be highly skewed,

3.3 DESCRIBING VARIABILITY OF THE DATA

A measure of center alone is not adequate for numerically describing data for a
quantitative variable. It describes a typical value, but not the spread of the data about
that typical value. The two distributions in Figure 3.12 illustrate. The citizens of nation
A and the citizens of nation B have the same mean annual income ($25,000). The
distributions of those incomes differ fundamentally, however, nation B being much
less variable. An income of $30,000 is extremely large for nation B, but not especially
large for nation A. This section introduces statistics that describe the variability of a
data set.

Relative .
Frequency Nation B

Nation A

¥
0 10 20 30 40 50
Yearly Income {thousands of dollars)

FIGURE 3.12: Distributions with the Same Mean but Different Variability

The Range

The difference between the largest and smallest observations is the simplest way to
describe variability.

Range

The range is the difference between the largest and smallest observations.

For nation A, from Figure 3.12, the range of income values is about $50,000 — 0 =
$50,000. For nation B, the range is about $30,000 — $20,000 = $10,000. Nation A has
greater variability of incomes.

The range is not, however, sensitive to other characteristics of data variability.
The three distributions in Figure 3.13 all have the same mean ($25,000) and range
($50,000), but they differ in variability about the center. In terms of distances of
observations from the mean, nation A has the most variability, and nation B the least.
“The incomes in nation A tend to be farthest from the mean, and the incomes in nation
B tend to be closest.
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Nati
Nation A « ation B

Relative o
Frequency

T
Nation C

T T T

o] 10 20 30 40 50
Yearly Income (thousands of dollars)

FIGURE 3.13: Distributions with the Same Mean and Range, but Different Variability about the Mean

Standard Deviation

Other measures of variability are based on the deviations of the data from a measure
of center such as their mean.

Deviation

The deviation of an observation y; from the sample mean ¥ is (y; ~ ¥), the difference
between them.

Each observation has a deviation. The deviation is positive when the observation
falls above .the mean. The deviation is negative when the observation falls below the
mean. The interpretation of y as the center of gravity of the data implies that the sum
of the positive deviations equals the negative of the sum of negative deviations. Thus
the sum of all the deviations about the mean, Z(y; ~ ¥), equals 0. Because of this’
measures of variability use either the absolute values or the squares of the deviationsf
The most popular measure uses the squares.

Standard Deviation

The standard deviation s of n observations is

Sy - ¥ _ {sum of squared deviatians
n -1 sample size — 1 '

This is the positive square root of the variance 52, which is

2_EW - _ =Pt PPt (v - PP
n-1 n-1 ‘

The variance is approximately an average of the squared deviations. The units of
measurement are the squares of those for the original data, since it uses squared
deviations. This makes the variance difficult to interpret. It is why we use instead its
square root, the standard deviation.

The expression = {y; — y)z in these formulas is called a sum of squares. Tt
represents squaring each deviation and then adding those squares. It is incorrect to
first add the deviations and then square that sum; this gives a value of 0. The larger
the deviations, the larger the sum of squares and the larger s tends to be.
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Although its formula looks complicated, the mosl basic interpretation of the .

standard deviation s is quite simple: s is a sort of typical distance of an-observation from
the mean. So the larger the standard deviation s, the greater the spread of the data.

EXAMPLE 3.7 Comparing Variability of Quiz 5cores

Each of the following sets of quiz scores for two small samples of students has a mean
of 5 and a range of 10:

Sample 1:  0,4,4,5, 7,10
Sample 2:  0,0,1,9, 10, 10.

By inspection, sample 1 shows less variability about the mean than sample 2. Most
scores in sample 1 are near the mean of 5, whereas all the scores in sample 2 are quite
far from 5.

For sample 1,

Sy — F)2=(0 - 5 + (4= 5P + (457 + (5-5)
+ (7 — 5)F + (10 — 5)* =56,
so the variance equals

=2
S2= E(yf - y) — 36 _,:@illz
n—1 6 -1 5
The standard deviation for sample 1 equals s = +/11.2 = 3.3. For sample 2, you can
verify that s> = 264 and s = v26.4 = 5.1. Since 3.3 < 5.1, the standard deviations

tell us that sample 1 is less variable than sample 2. |

Statistical software and many hand calculators can find the standard deviation. You
shouid do the caleulation yourself for a few small data sets to get a feel for what this
measure represents. The answer you get may differ slightly from the value reported
by software, depending on how much you round off in performing the calculation.

Properties of the Standard Deviation

es=0.

e 5 = 0 only when all observations have the same value. For instance, if the ages
for a sample of five students are 19, 19, 19, 19, 19, then the sample mean equals
19, each of the five deviations equals 0, and s = 0. This is the minimum possible
variability.

e The greater the variability about the mean, the larger is the value of s. For
example, Figure 3.5 shows that murder rates are much more variable among
U.S. states than among Canadian provinces. In fact, the standard deviations are
s = 4.0 for the United States and s = 0.8 for Canada.

e The reason for using (n — 1), rather than n, in the denominator of s (and s?) is
a technical one regarding inference about population parameters, discussed in
Chapter 5. When we have data for an entire population, we replace {(n — 1) by
the actual population size; the population variance is then precisely the mean
of the squared deviations. In that case, the standard deviation can be no larger
than half the range.

o If the data are rescaled, the standard deviation is also rescaled. For instance, if
we change annual incomes from dollars (such as 34,000) to thousands of dollars
(such as 34.0), the standard deviation also changes by a factor of 1000 (such as
from 11,800 to 11.8).
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Interpreting the Magnitude of s

A d'lstribution with s = 5.1 _has greater variability than one with-s = 3.3, but how do
g.e }nterpret how !argg s = 5.11s? We’ve seen that a rough answer is that s is a typical
istance of an observation [rom the mean. To illustrate, suppose the first exam in
your course, graded on a scale of 0 to 100, has a sample mean of 77. A value of s = (
in ulnhkekl,{, imce ?very student must then score 77. A value such as s = 50 seems
mplausibly large for a typical distance from the mean. Value
. sofs
seem much more realistic. ueh as § or 12
More pre‘.:ise-_ways to interpn'at s require further knowiedge of the shape of the fre-
quency distribution. The following rule provides an interpretation for many data sets.

Empirical Rule

If the histogram of the data is approximately bell shaped, then

1. About 68% of the observations fall betweeny — sand ¥ + s.
2. About 95% of the observations fall betweeny — 2sand 7 + 2s.
3. All or nearly all observations fall between ¥ — 3sandy + 3s.

The rule is called the Empirical Rule because many distributions seen in practice

thatis, i¥i ; . X -
gf . Ei‘::pzncally) are approximately bell shaped. Figure 3.14 is a graphical portrayal

Aboul 88% of measurements

444444444

T T
F-3  y- o yes ¥ Fts  FH2 F+3s

About 95% of measurements

All or neasly all measurements

FIGURE 3.14: Empirical Rule: Interpretation of the Standard Deviation for a Bell-shaped Distribution

EXAMPLE 3.8 Describing a Distribution of SAT Scores

Th.e.Scho]astir_: Aptitude Test (SAT, see www.collegeboard.com) has three portions:
Cntlca! Readmg, Mathematics, and Writing. For each portion, the distribution of
scores is approximately bell shaped. Each portion has mean about 500 and standard
devn:atlon about 100. Figure 3.15 portrays this. By the Empirical Rule, for each
portion, about 68% of the scores fall between 400 and 600, because 40b and 600
are the numbers that are ore standard deviation below and e;bove the mean of 500

Abgut. 95% of the scores fall between 300 and 700, the numbers that are fwo standarci
deviations from the mean. The remaining 5% fall either below 300 or above 700. The

distribution is roughly symmetric about 500, so about 2.5% of t
. 2. f [
700 and about 2.5% fall below 300. o of the scores fal abog

The Empirical Rule applies only to distributions i

. that are approximately bell-
shaped. For other shapes, the percentage [alling within two standard deviati}éms of
the mean need not be near 95%. It could be as low as 75% or as high as 100%. The
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68% of
scores

/

2.5% of
scores

2.5% of
SCOres

300 400 500 oo 700

03% of scores

FIGURE 3.15; A Bell-Shaped Distribution of Scores for a Portion of the SAT, with Mean 500 and Standard
Deviation 100

Efnpiﬁcal Rule may not work well if the distribution is highly skewed or if it is highly
discrete, with the variable taking few values. The exact percentages depend on the
form of the distribution, as the next example demonstrates.

EXAMPLE 3.9 Familiarity with AIDS Victims

* ither living or
A GSS asked, “How many people have you known personally, eit :

dead, who came down with AIDS?” Table 3.7 shows part Qf a computer printout
for summarizing the 1598 responses on this variable. It indicates that 76% of the

responses were 0.

TABLE 3.7: Frequency Distribution of the Number of Peaple Known Personally with AIDS

AIDS Frequency Percent

1214 76.
204 12,
85
49
19
13

5

8

1

O~NOUR W o
OO0 o WO
=W W o

N 1598
Mean 0.47
5td Dev 1.09

iati ¥ = = Qand 1

The mean and standard deviation are ¥ = 0.47 and s = 1.09. The valugs 0 an
both fail within one standard deviation of the mean. Now 88.8% of the dlstnEution
falls at these two points, or within ¥ & 5. This is considerably larger tha_n th; 6$ Yo t_hat
the Empirical Rule states. The Empirical Rule does not apply to this distribution,
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because it is not even approximately bell shaped. Instead, it is highly skewed to the
right, as you can check by sketching a hisiogram for Table 3.7. The smallest value in
the distribution (0) is.less than one standard deviation below the mean; the largest
value in the distribution (8) is nearly seven standard deviations above the mean. B

Whenever the smallest or largest observation is less than a standard deviation
from the mean, this is evidence of severe skew. For instance, a recent statistics exam
having scale from 0 to 100 had ¥ = 86 and s = 15. The upper bound of 100 was less
than one standard deviation above the mean. The distribution was highly skewed to
the left.

The standard deviation, like the mean, can be greatly affected by an outlier,
especially for small data sets. For instance, the murder rates shown in Figure 3.5 for
the 50 U.S. states have y = 7.3 and s = 4.0. The distribution is somewhat irregular,
but 68% of the states have murder rates within one standard deviation of the mean
and 98% within two standard deviations. Now suppose we include the murder rate
for the District of Columbia, which equaled 78.5, in the data set. Then ¥ = 8.7 and
s = 10.7. The standard deviation more than doubles. Now 96.1% of the murder rates
(all except D.C. and Louisiana) fall within one standard deviation of the mean.

3.4 MEASURES OF POSITION

Another way to describe a distribution is with a measure of position. This tells us the
point at which a given percentage of the data fall below (or above) that point. As
special cases, some measures of position describe center and some describe variability.

Quartiles and Other Percentiles

The range uses two measures of position, the maximum value and the minimum value.
The median is a measure of position, with half the data falling below it and half above
it. The median is a special case of a set of measures of position called percentiles.

Percentile

The pth percentile is the point such that p% of the observations fall below or at that point
and (100 — p)% fall above it.

Substituting p = 50 in this definition gives the 50th percentile. This is the median.
The median is larger than 50% of the observations and smaller than the other
(100 — 50) = 50%. Two other commonly used percentiles are the lower guartile and
the upper quartile.

Lower and Upper Quartiles

The 25th percentile is called the lower quartile. The 75th percentile is called the upper

quartile. One quarter of the data fall below the lower quartile. One quarter fall above the
upper quartile.

The quartiles result from p = 25 and p = 75in the percentile definition. The lower
quartile is the median for the observations that fall below the median, that is, for the
bottom haif of the data. The upper quartile is the median for the observations that
fall above the median, that is, for the upper half of the data. The quartiles together
with the median split the distribution into four parts, each containing one-fourth of
the observations. See Figure 3.16.
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Imerquartile

Lower pegjan Upper
quartile guartile

FIGURE 3.16: The Quartiles and the Interguartile Range

For the violent crime rates in Table 3.2, the sample size is n = 50 and the
median equals 36.5. As with the median, the quartiles can easily be found from the
stem-and-leaf plot of the data (Figure 3.4), which was

Stem Leaf

0 |8

I (1t 1 35 7

2 (2 4 5 6 6 6 6 7T 7T 8B 9 9
3 |01 3 3 4 5 5 6 7

4 |0 0 3 5 6 6 6 7 7

5 {1 1 1 5 6 8 9

6 |1 5 6 6 9

T (0 3 9

The lower quartile is the median for the 25 observations below the median. It is
the 13th smallest observation, or 27. The upper quartile is the median for the 25
observations above the median. It is the 13th largest observation, or 51.

In summary, since

lower quartile = 27, median = 36.5, upper quartile = 51,

roughly a quarter of the states had violent crime rates (i) pelow 27, (ii) between 27
and 36.5, (iii) between 36.5 and 51, and (iv) above 51. The clls_tance between the upper
quartile and the median, 51 — 36.5 = 14.5, exceeds the distance 36.5 — 27 = 9.5
between the lower quartile and the median. This commonly happens when the
distribution is skewed to the right. . _

Software can easily find quartiles as well as other percentiles. In practice, percentiles
other than the median are usually not reported for smali data sets.

Measuring Variability: Interquartile Range

The difference between the upper and lower quartiles is called the interquartile
range, denoted by IQR. This measure describes the spread of the_ middle h;:ilf of the
observations. For the U.S. violent crime rates in Table 3.2, the interquartile range
IQR = 51 — 27 = 24. The middle half of the murder rates fall witl}in.al_ range of 24.
Like the range and standard deviation, the IQR increases as the variability increases,
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and it is useful for comparing variability of different groups. For example, 12 years
earlier in 1993, the quartiles of the U.S. statewide violent crime rates were 33 and 77,
giving an IQR of 77 — 33 = 44 and showing quite a bit more variability.

An advantage of the IQR over the ordinary range or the standard deviation is
that it is not sensitive to outliers. The U.S. violent crime rates range from 8 to 79, so
the range is 71. When we include the observation for D.C., which was 161, the IQR
changes only from 24 to 28. By contrast, the range changes from 71 to 153.

For bell-shaped distributions, the distance from the mean to either quartile is
about 2/3rd of a standard deviation. Then IQR is roughly (4/3)s. The insensitivity
of the IQR to outliers has recently increased its popularity, although in practice the
standard deviation is still much more common.

Box Plots: Graphing a Five-Number Summary of Positions

The median, the quartiles, and the maximum and minimum are five positions often
used as a set to describe center and spread. For instance, software reports the
following five-number summary for the violent crime rates (where Q1 = lower
quartile, Q3 = upper quartile, regarding the median as the second quartile):

100% Max 79.0
75% Q3 51.0
50% Med 36.5
25% 01 27.0

0% Min 8.0

The five-number summary provides a simple description of the data. It is the
basis of a graphical display called the box plor that summarizes both the center
and the variability. The box of a box plot contains the central 50% of the distri-
bution, from the lower quartile to the upper quartile. The median is marked by a
line drawn within the box. The lines extending from the box are called whiskers.
These extend to the maximum and minimum, except for outliers, which are marked
separately.

Figure 3.17 shows the box plot for the violent crime rates, in the format provided
with SPSS software. The upper whisker and upper half of the central box are longer
than the lower ones. This indicates that the right tail of the distribution, which
corresponds to the relatively large values, is longer than the left tail. The plot reflects
the skewness to the right of violent crime rates. (Some sofiware also plots the mean
on the box plot, representing it by a + sign.)

T [} T T
40 80 120 160
violent

FIGURE 3.17: Box Plot of Violent Crime Rates of U.S. States and B.C.

Side-by-side box plots are useful for comparing two distributions. Figure 3.5 showed
side-by-side stem-and-leaf plots of U.S. and Canadian murder rates. Figure 3.18 shows
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FIGURE 3.18: Box Plots for U.5. and Canadian Murder Rates

the side-by-side box plots. These side-by-side box plots revea} th_a_t the murder rates
in the U.S. tend to be much higher and have much greater variability.

Outliers

Box plots identify outliers separately. To explain this, we now present a formal
definition of an outlier.

Outlier

An observation is an outlier if it falls more than 1.5{IQR} above the upper quartile or more
than 1.5{IQR) below the lower quartile.

In box plots, the whiskers extend to the smallest and largest observations only if
those values are not outliers; that is, if they are no more than 1.5(IQR) peyonq tt_le
guartiles. Otherwise, the whiskers extend to the most extreme DbSBI:VE{.thHS within
1.5(IQR), and the outliers are marked separately. For instance, the statistical software
SAS marks by an O (O for outlier) a value between 1.5 and 3.0{IQR) from the box
and by an asterisk (*) a value even farther away. o

Figure 3.18 shows one outlier for the U.S. with a very high murder rate. This is
the murder rate of 20.3 (for Louisiana). For these data, the lower quartile = 3.9 and
upper quartile = 10.3,s0 IQR = 10.3 — 3.9 = 6.4. Thus,

Upper quartile + 1.5(IQR) = 10.3 + 1.5(6.4) = 19.9.

Since 20.3 > 19.9, the box plot highlights the observation of 20.3 as an outlier.

Why highlight outliers? It can be informative to investigate them. W:as the obser-
vation perhaps incorrectly recorded? Was that subject fundamentally d1ffe_rent: from
the others in some way? Often it makes sense to repeat a statistical analysis without
an outlier, to make sure the conclusions are not overly sensitive to a single obser-
vation. Another reason to show outliers separately in a box plot is that they do not
provide much information about the shape of the distribution, especially for large
data sets. ' .

In practice, the 1.5(LQR) criterion for an outlier is somewhat arbl_trary. It is better
to regard an observation satisfying this criterion as a potential outlier rather than a
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definite outlier. When a distribution has a long right tail, some observations may fall
more than 1.5 TQR above the upper quarlile even if they are not separated far from
the bulk of the data. '

How Many Standard Deviations from the Mean? The z-Score

Another way to measure position is by the number of standard deviations that a
point falls from the mean. For example, the U.S. murder rates shown in the box
plot in Figure 3.18 have a mean of 7.3 and a standard deviation of 4.0. The value of
20.3 for Louisiana falls 20.3 — 7.3 = 13.0 above the mean. Now, 13 is 13/4 = 3.25
standard deviations. The Louisiana murder rate is 3.25 standard deviations above the
mean.

The number of standard deviations that an observation falls from the mean is
called its z-score. For the murder rates of Figure 3.18, Louisiana has a z-score of

. _ 203 — 7.3 _ Observation — Mean
z = =
4.0 Standard Deviation

By the Empirical Rule, for a bell-shaped distribution it is very unusual for
an observation to fall more than three standard deviations from the mean. An
alternative criterion regards an observation as an outlier if it has a z-score larger than
3 in absolute value. By this criterion, the murder rate for Louisiana is an outlier.

We’ll study z-scores in more detail in the next chapter. We'll see they are especially
useful for bell-shaped distributions.

= 3.25.

3.5 BIVARIATE DESCRIPTIVE STATISTICS

In this chapter we’ve learned how to summarize categorical and quantitative variables
graphically and numerically. In the next three chapters we’ll learn about basic ideas of
statistical inference for a categorical or quantitative variable. Most studies have more
than one variable, however, and Chapters 7-16 present methods that can handle two
or more variables at a time.

Assaciation between Response and Explanatory Variables

With multivariable analyses, the main focus is on studying associations among the
variables. There is said to be an asseciation between two variables if certain values
of one variable tend to go with certain values of the other.

For example, consider “religious affiliation,” with categories (Protestant, Catholic,
Other) and “ethnic group,” with categories (Anglo-American, African-American,
Hispanic). In the United States, Anglo-Americans are more likely to be Protestant
than are Hispanics, who are overwhelmingly Catholic. African-Americans are even
more likely to be Protestant. An association exists between religious affiliation and
ethnic group, because the proportion of people having a particular religious affiliation
changes as ethnic group changes.

An analysis of association between two variables is called a bivariate analysis,
because there are two variables. Usually one is an outcome variable on which
comparisons are made at levels of the other variable. The oulcome variable is cailed
the response variable. The variable that defines the groups is called the explanatory
variable. The analysis studies how the outcome on the response variable depends
on or is explained by the value of the explanatory variable. For example, when we
describe how religious affiliation depends on ethnic group, religious affiliation is the
response variable. In a comparison of men and women on income, income is the
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response variable and gender is the explanatory variable. Income may depend on
gender, not gender on income.

Often, the response variable is called the dependent variable and the explanatory
variable is called the independent variable. The terminology dependent variable
refers to the goal of investigating the degree to which the response on that variable
depends on the value of the other variable. We prefer not to use these terms,
since independent and dependent are used for so many other things in statistical

methods,

Comparing Two Groups Is a Bivariate Analysis

Chapter 7 will present descriptive and inferential methods for comparing two groups.
For example, suppose we’d like to know whether men or women have more good

friends, on the average. A GSS reports (for variable NUMFREND) that the mean -

number of good friends is 7.0 for men (s = 8.4) and 5.9 for women (s = 6.0). The
two distributions have similar appearance, both being skewed to the right and with a
median of 4. )

Here, this is an analysis of two variables—number of good friends and gender. The
response variable, number of good friends, is quantitative. The explanatory variable,
gender, is categorical. In this case, it’s common to compare means on the response
variable for the categories of the categorical variable. Graphs are also useful, such as
side-by-side box plots.

Bivariate Categorical Data

Chapter 8 will present methods for analyzing association between two categorical
variables. Table 3.8 is an example of such data. This table results from answers to
two questions on the 2006 General Social Survey. One asked whether homosexual
relations are wrong. The other asked about the fundamentalism/liberalism of the
respondent’s religion. A table of this kind, called a contingency table, displays the
number of subjects observed at combinations of possible outcomes for the two
variables. It displays how outcomes of a response variable are contingent on the
category of the explanatory variable.

TABLE 3.8: Cross-Classification of Religion and Opinion about Homasexual Relations

Opinion about Homosexual Relations

Always  Almost Always Sometimes Not Wrong

Religion Wrong Wrong Wrong at All Total
Fundamentalist 416 26 22 83 547
Liberal 213 29 52 292 586

Table 3.8 has eight possible combinations of responses. (Another possible cutcome,
“moderate” for the religion variable, is not shown here.} We could list the categories
in a frequency distribution or construct a bar graph. Usnally, though, it's more
informative to do this for the categories of the response variable, separately for
each category of the explanatory variable. For example, if we treat opinion about
homosexual relations as the response variable, we could report the percentages in the
four categories for homosexual relations, separately for each religious category.
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Consider those who report being fundamentalist. Since 416/547 = 0.76, 76%
bel}'eve homosexual relations are always wrong. Likewise, you can check that 5%
believe they are almost always wrong, 4% believe they are sometimes wrong, and
15% believe they are not wrong at all. For those who report being liberal, since
213/586 = 0.36, 36% believe homosexual relations are always wrong. Likewise,
you can check that 5% believe they are almost always wrong, 9% believe they are
sometimes wrong, and 50% believe they are not wrong at all. There seems to be a
deﬁqlte association between opinion about homosexuality and religious beliefs, with
religious fundamentalists being more negative about homosexuality. Chapter 8 will
show many other ways of analyzing data of this sort.

Bivariate Quantitative Data

When both variables are quantitative, a plot we've not yet discussed is helpful.
Figure 3.19 shows an example using the software SPSS to plot data from 38 nations
on fertility (the mean number of children per adult woman) and the percentage
of the adult population using cell phones. (The data are shown later in the text in
Table 9.13.) Here, values of cell-phone use are plotted on the horizontal axis, called
the x-axis, and values of fertility are piotted on the vertical axis, called the y-axis.
The values of the two variables for any particular observation form a point relative
to these axes. To portray graphically the sample data, we plot the 38 ohservations
as ?:8 points. For example, the point at the top left of the plot represents Pakistan,
which had a fertility of 6.2 children per woman but cell-phone use of only 3.5%. This
graphical plot is called a scatterplot.
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FIGURE 3.19: Scatterplot for Fertility and Percentage Using Cell Phones, for 38 Nations. The data are in
Table 9.13 in Chapter 9.



58 Chapter 3 Descriptive Statistics

The scatterplot shows a tendency for nations with higher cell-phone use to have
lower levels of fertility. Tn Chapter 9 we’ll learn about two ways to.describe such as a
trend. One way, called the correlation, describes how strong the associationis, in terms
of how closely the data follow a straight line trend. For Figure 3.19, the correlation
is —0.63. The negative value means that fertility tends to go down as cell-phone use
goes up. By contrast, cell-phone use and GDP (gross domestic product, per capita)
have a positive correlation of 0.83. As one goes up, the other also tends to go up.

The correlation takes values between —1 and +1. The larger it is in absolute value,
that is, the farther from 0, the stronger the association. Cell-phone use is a bit more
strongly associated with GDP than with fertility, because the correlation of 0.83 is
larger in absolute value than the correlation of —0.63.

The second useful tool for describing the trend is regression analysis. This provides
a straight-line formula for predicting the value of the response variable from a given
value of the explanatory variable. For Figure 3.19, this equation is

Predicted fertility = 3.4 — 0.02 {cell-phone use).

For a country with no cell-phone use, the predicted fertility is 3.4 — 0.02(0) = 3.4
children per mother. For a country with 100% of adults using cell phones, the
predicted fertility is only 3.4 — 0.02(100) = 1.4 children per mother.

Chapter 9 shows how to find the correlation and the regression line. Later chapters
show how to extend the analysis to handle categorical as well as quantitative variables.

Analyzing More than Two Variables

This section has taken a quick look at analyzing associations between two variables.
One important lesson from later in the text is that, just because two variables have
an association does not mean there is a causal connection. For example, having more
people in a nation using cell phones does not mean this is the reason the fertility rate
is lower (for example, because people are talking on cell phones rather than doing
what causes babies.) Perhaps high values on cell-phone use and low values on fertility
are both a by-product of a nation being more economically advanced.

Most studies have several variables. The second half of this book (Chapters 10-16)
shows how to conduct multivariate analyses. For example, to study what affecis the
number of good friends, we might want to simultaneously consider gender, age,
whether married, educational level, whether attend religious services regularly, and
whether live in urban or rural setting.

3.6 SAMPLE STATISTICS AND POPULATION PARAMETERS

Of the measures introduced in this chapter, the mean ¥ is the most commonly
reported measure of center and the standard deviation s is the most common measure
of spread. We'll use them frequently in the rest of the text.

Since the values 7 and s depend on the sample selected, they vary in value from
sample to sample. In this sense, they are variables. Their values are unknown before
the sample is chosen. Once the sample is selected and they are computed, they
become known sample statistics.

With inferential statistics, we shall distinguish between sample statistics and the
corresponding measures for the population. Section 1.2 introduced the term pararmeter
for a summary measure of the population. A statistic describes a sample, while a
parameter describes the population from which the sample was taken. In this text,
lowercase Greek letters usually denote population parameters and Roman letters
denote the sample statistics.
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Notation for Parameters

i (Gr.eek mu) and o (Greek lowercase sigma) denote the mean and standard deviation of
a variable for the population.

We call. u# and o the population mean and population standard deviation. The
populat}on mean is the average of the observations for the entire population. The
population standard deviation describes the variability of those observations about
the population mean.

Whereas the statistics ¥ and s are variables, with values depending on the sample
chos._en, the parameters p and o are constants. This is because p and o refer to just one
particular group of observations, namely, the observations for the entire population,
The parameter values are usually unknown, which is the reason for sampling and
cglculatmg sample statistics to estimate their values. Much of the rest of this text deals
w1tl_1 ways of making inferences about unknown parameters (such as u) using sample
statistics (such as y). Before studying these inferential methods, though, you need to
learn some basic ideas of probability, which serves as the foundation for the methods
Probability is the subject of the next chapter. '

3.7 CHAPTER SUMMARY

This chapter iptroduced descriptive statistics—ways of describing data to summarize
key characteristics of the data.

3.7.1 Overview of Tables and Graphs

o A frequency distribution summarizes the counts for possible values or intervals
of values. A relative frequency distribution reports this information using
percentages or proportions,

s A bar gmph‘uses be_lrs over possible values to portray a frequency distribution
for a categorical variable. For a quantitative variable, a similar graphic is called
a histogram. It shows whether the distribution is approximately bell shaped,
U shaped, skewed to the right (longer tail pointing to the right), or whatever.

. Thg stem-and-leaf plot is an alternative portrayal of data for a quantitative
variable. It groups together observations having the same leading digit (stem),
and shows also their final digit (leaf). For small samples, it displays the individual
observations.

o The box plot portrays the quartiles, the extreme values, and any outliers. The

box plot and the stem-and-leaf plot also can provide back-to-back comparisons
of two groups.

S‘Ztemjand-leaf plots and box plots, simple as they are, are relatively recent inno-
vations in statistics. They were introduced by the great statistician John Tukey (see
Tukey 1977), who also introduced the terminology “software.” See Cleveland (1994)
and Tufte (2001} for other innovative ways to present data graphically.

3.7.2 Overview of Measures of Center

Measures of center describe the center of the data, in terms of a typical observation.

o The mean is the sum of the observations divided by the sample size. It is the
center of gravity of the data.

e The med_ian divides the ordered data set into two parts of equal numbers of
observations, half below and half above that point.
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o The lower quarter of the observations fall b
upper quarter fall above t
percentiles. The median is t
the data into four equal part

or extreme skew.

o The mode is the most commonly occurring value. It is val.id for any type of E:Iata, '
though usually used with categorical data or discrete variables taking relatively

few values.

3.7.3 Overview of Measures of Variability

Measures of variability describe the spread of the data.

rence between the largest and smallest observations. The _
interquartile range is the range of the middle'half of the data between the upper
and lower quartiles. It is less affected by outliers.

e The variance averages the squared deviations about the mean. Its square root,
the standard deviation, is easier to interpret, describing a typical distance from

e The range is the diffe

the mean.

e The Empirical Rule st

elow the lower quartile, and the
he upper guartile. These are the 25th and 75th
he 50th percentile. The quartiles and median split -
s. They are less affected than the mean by outliers

ates that for a bell-shaped distribution, about 68% of

the observations fall within one standard deviation. of the mean, qbqut 95%
fall within two standard deviations, and nearly all, if not all, fall within three

standard deviations.

Table 3.9 summarizes the measures of center and variability. A statistic summarizes
a sample. A parameter summarizes a population. Statistical inference uses statistics

{o make predictions about parameters.

TABLE 3.9: Summary of Measures of Center and Variability

Measure

Definition

Interpretation

Center
Mean
Median
Mode

Variability
Standard deviation

Range

Interquartile range

¥y = Zy/n

Middle chservation of ordered

sample

Most frequently occurring value

s ==y - ¥ (n - 1)

Difference between largest and

smallest observation

Difference between upper quartile

(75th percentile) and lower
quartile (25th percentile)

Center of gravity

50th percentile, splits sample
into two equal parts

Most likely outcome, valid for
all types of data

Empirical Rule: If bell shaped,
68%, 95% within 5,25 of ¥
Greater with more variability

Encompasses middle half of
data

3.7.4 Overview of Bivariate Descriptive Statistics

Bivariate statistics are used to analyze data on two variables together.

» Many studies analyze how the outcome on a response variable depends on the
value of an explanatory variable.
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o Forcategorical variables, a contingency fable shows the number of observations
at the combinations of possible outcomes for the two variables.

e For quantitative variables, a scatterplot graphs the observations, showing a
point for each observation. The response variable is plotted on the y-axis and
the explanatory variable is plotied on the x-axis.

» For quantitative variables, the correlation describes the strength of straight-line
association. It falls between —1 and +1 and indicates whether the response vari-
able tends to increase (positive correlation) or decrease (negative correlation)
as the explanatory variable increases.

e A regression analysis provides a straight-line formula for predicting the value

of the response variable using the explanatory variable. We study correlation
and regression in detail in Chapter 9. '

PROBLEMS

Practicing the Basics

3.1. Table 3.10 shows the number (in millions) of the

foreign-born population of the United States in

2004, by place of birth.

(a) Construct a relative frequency distribution.

(b} Sketch the data in a bar graph.

(c) Is‘“Place of birth™ quantitative or categorical?

(d) Use whichever of the following measures is
relevant for these data: mean, median, mode.

TABLE 3.10
Place of Birth Number
Europe 4.7
Asia 8.7
Caribbean 3.3
Central America 12.9
South America 21
Other 2.6
Total 343

Source: Statistical Abstract of
the United States, 2006,

. According to www.adherents.com, in 2006 the

number of followers of the world's five largest
religions were 2.1 billion for Christianity, 1.3 bil-
lion for Islam, 3.9 billion for Hinduism, 0.4 billion
for Confucianism, and 0.4 billion for Buddhism.
(n) Construct a relative frequency distribution.
(b) Sketch a bar graph.

() Can you find a mean, median, or mode for

these data? If so, do so and interpret.

3.3. A teacher shows her class the scores on the

midterm exam in the stem-and-leaf plot:
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3.4.

3.5.

3.6.

(a) Identily the number of students and the mini-
mum and maximum scores.
{b) Sketch a histogram with four intervals.

According to the 2005 American Community Sur-

vey, in 2005 the United States had 30.1 million

households with one person, 37.0 million with two

persons, 17.8 million with three persons, 15.3 mil-

lion with four persons, and 10,9 million with five or

more persons.

(a) Construct a relative frequency distribution.

(b) Sketch a histogram. What is its shape?

(¢) Report and interpret the (i) median, {ii) mode
of household size.

Copy the “2003 statewide crime” data file from

the text Web site (www.stat.ufl.edu/~aa/social/

data.html). Use the variable, murder rate (per

100,000 population). In this exercise, do not use

the abservation for D.C. Using software,

{a) Construct a relative frequency distribution.

(b) Construct a histogram, How would you des-
cribe the shape of the distribution?

(¢} Construct a siem-and-leaf plot. How does this
plot compare to the histogram in (b)?

The OECD (Organization for Economic Coop-
eration and Development) consists of advanced,
industrialized countries that accept the principles
of representative democracy and a free market
economy. Table 3.11 shows UN data for OECD
nations on several variables: gross domestic prod-
uct {GDP, per capita in U.S. dollars), percent
unemployed, a measure of inequality based on
comparing wealth of the richest 10% to the poorest
10%, public expenditure on health (as a percentage
of the GDP), the number of physicians per 100,000
people, carbon dioxide emissions {per capita, in
metric tons), the percentage of seats in parliament
held by women, and female economic activity as



