#### Descriptive statistics & measures of association

Lukáš Lehotský & Petr Ocelík

ESS401 Social Science Methodology / MEB431 Metodologie sociálních věd

27<sup>th</sup> February 2017

# Outline

- Measures of central tendency, position, and variability
- Graphic displays of descriptive statistics
- Measures of association

## **Descriptive statistics**

- The purpose is to **summarize data**.
- Quantitative variables have two key features:
   The center of the data a typical observation.
  - The variability of the data the spread around the center.

## Notation

|            | Mean           | Standard<br>Deviation | Variance       |
|------------|----------------|-----------------------|----------------|
| Population | μ              | σ                     | $\sigma^2$     |
| Sample     | $\overline{x}$ | S                     | s <sup>2</sup> |

$$\sum$$
 = "the sum of ..."

- *n* = number of pieces of data (population)
- n-1 = number of pieces of data (sample)
- $\overline{x}$  = mean (average) of data
- $x_i$  = each of the values in the data

 $x_1, x_2, x_3, x_4, ..., x_n$  (as *i* goes from 1 to *n*)

## **Central tendency**

- The statistics that describe the center of a frequency distribution for a quantitative variable.
- Shows a **typical** observation/case.
- Most common measures: mean, mode, and median.

## Central tendency: mode

- Value that occurs most frequently in the sample.
- Applicable at all levels of measurement.
- Used mainly for highly discrete variables such as categorical data.
- {"catholic", "Muslim", "Hindu", "catholic", "catholic", "Muslim", "catholic", "catholic"}
- $-\{1, 2, 3, 1, 1, 2, 1, 1\}$
- {"agree", "agree", "disagree", "agree", "neutral", "disagree", "disagree", "disagree", "agree"}
- $\{1, 1, -1, 1, 0, -1, -1, 1\}$
- Years of education.
- {13, 9, 9, 18, 13, 9, 18, 13, 9, 13, 13}

## Central tendency: median

- Observation that is in the middle of the ordered sample (between 50th bottom and 50th upper percentile).
- Splits data into two parts with equal # of observations.
- For even sized samples: average value of the two middle observations.
- Applicable at least at ordinal level.

#### Central tendency: median

- Identification of median: (n + 1) / 2;
  n = # of observations in the data
- Odd numbered n: {1, 1, 2, 2, 3, 3, 5, 6, 6, 6, 7, 10, 39}
   Median = (13 + 1)/2 = 7<sup>th</sup> position = 5

- Even numbered *n*: {1, 1, 2, 2, 3, **3, 5**, 6, 6, 6, 7, 10}
- Median =  $(12 + 1)/2 = 6.5^{\text{th}}$  position =  $(6^{\text{th}} + 7^{\text{th}} \text{ position})/2 = (3 + 5)/2 = 4$

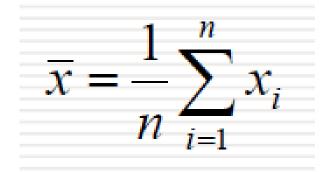
#### Central tendency: median

| Set 1 | 8 | 9 | 10 | 11  | 12  |
|-------|---|---|----|-----|-----|
| Set 2 | 8 | 9 | 10 | 11  | 100 |
| Set 3 | 0 | 9 | 10 | 10  | 10  |
| Set 4 | 8 | 9 | 10 | 100 | 100 |

Finlan & Agresti 2009: 43

### Central tendency: mean

• Arithmetic mean



- Properties:
  - Center of gravity of a distribution.
  - Can be used only for metric scales.
  - Strongly influenced by outliers.

## **Central tendency**

- Mode
- Median
- Mean
- {1, 1, 2, 2, 3, 3, 5, 6, 6, 6, 7, 10, 39}

## **Central tendency**

- Mode
- Median
- Mean
- {1, 1, 2, 2, 3, 3, **5**, **6**, **6**, **7**, 10, 39}

## Position

- The measures of central tendency are not sufficient for description of data for a quantitative variable.
- Does not describe the **spread of the data**.

• **Position measures:** describe the point at which a given percentage of the data fall below or above that point.

## Position: percentile

Percentile. The *pth* percentile is the point such that *p%* of the observations fall below that point and (and 100 - p)% fall above it.

- E.g. 89<sup>th</sup> percentile = indicates a point where 89% of observations lie below and 11% lie above it.
- Median is a 50<sup>th</sup> percentile.
- "Standard" percentiles: (25, 50, 75), or (10, 25, 50, 75, 90).

## Position: IQR

#### Interquartile range

- Difference between the values of observations at
   75% (upper quartile) and 25% (lower quartile).
- Shows spread of middle half of the observations.

{1, 1, 2, 2, 3, 3, 5, 6, 6, 6, 7, 10, 39} Median =  $(13 + 1)/2 = 7^{\text{th}}$  observation = 5 Q1 =  $(6 + 1)/2 = 3.5^{\text{th}}$  observation = (2 + 2)/2 = 2Q2 =  $(6 + 1)/2 = 3.5^{\text{th}}$  observation = (6 + 7)/2 = 6.5IQR = Q3 - Q1 IQR = 6.5 - 2 = 4.5

### Position: quartile

- Quartile
  - Values of observations at 25% (Q1), 50% (Q2), and
     75% (Q3) of a distribution.

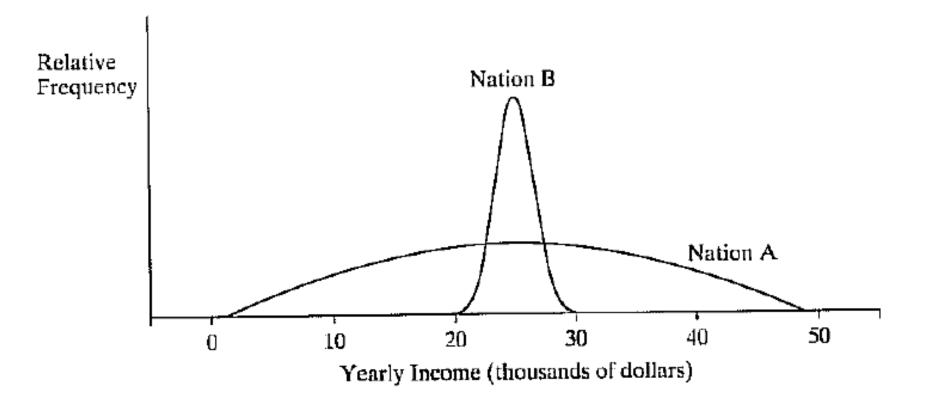
$$\{1, 1, 2, 2, 3, 3, 5, 6, 6, 6, 7, 10, 39\}$$
  
Q1 (25 %) = 2  
Q2 (50 %) = 5  
Q3 (75 %) = 6.5

# Variability

- The measures of central tendency are not sufficient for description of data for a quantitative variable.
- Does not describe the **spread of the data**.

- Variability measures: describe the deviations of the data from a measure of center (such as mean).
  - With exception of a range.

## Variability



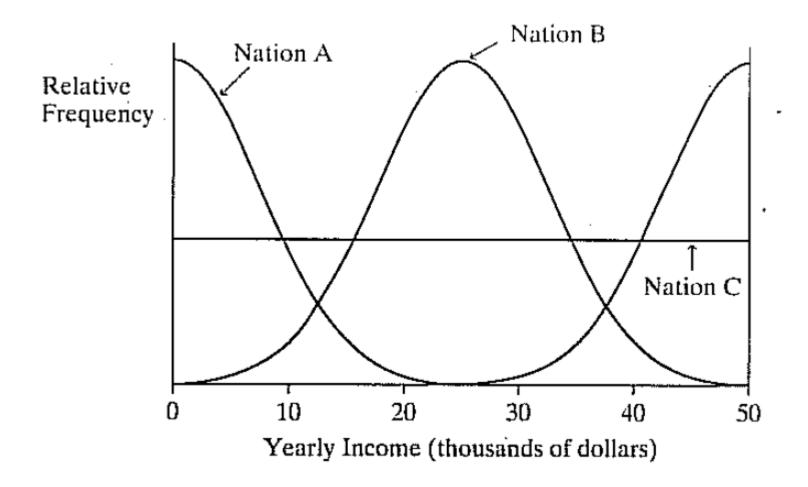
Finlan & Agresti 2009: 46

## Variability: range

- **Range:** difference between largest and smallest value.
- The simplest measure of variability.
- Does not describe deviations from the mean.

{**1**, 1, 2, 2, 3, 3, 5, 6, 6, 6, 7, 10, **39**} Range = 39 – 1 = 38

## Variability



Finlan & Agresti 2009: 47

## Variability: deviation

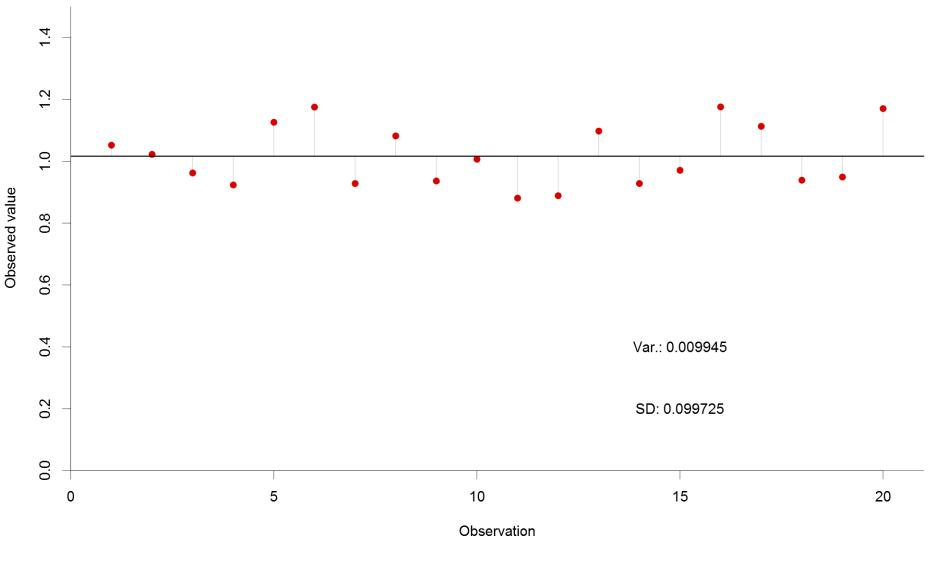
Deviation

Difference between value of observation and mean.

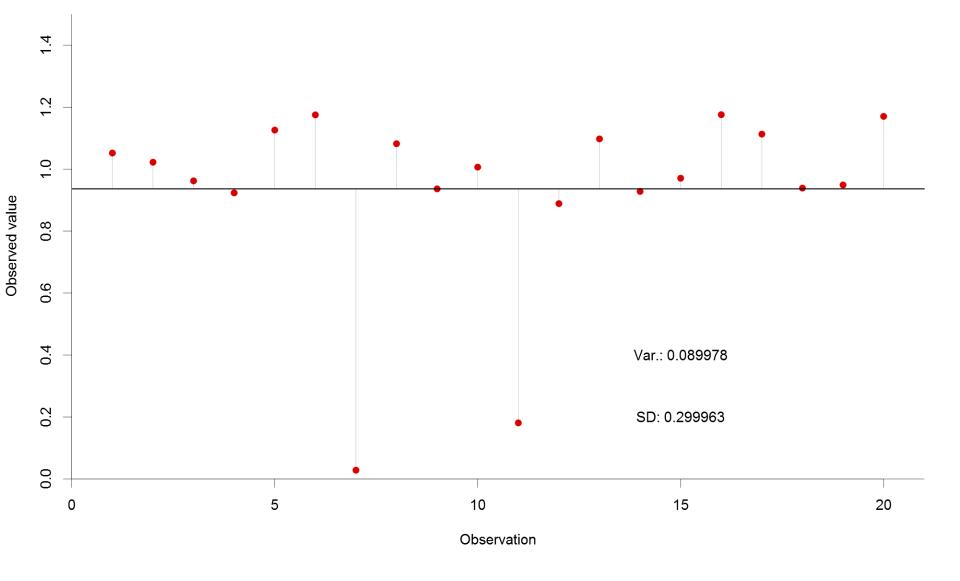
$$\frac{(x_i - \mu)}{(x_i - \overline{x})}$$

## Variability: deviation

- Deviation
  - Difference between value of observation and mean.
  - Positive deviation: observation value > mean
  - Negative deviation: observation value < mean</p>
  - **Zero** deviation: observation value = mean.
  - Since sum of deviations = 0, the absolute values or the squares are used in measures that use deviations.



Lehotský 2016



Lehotský 2016

## Variability: variance

• Mean is usually not very indicative for data dispersion:

{4, 4, 6, 6}; mean = 5; s^2 = 1.33 {0, 0, 10, 10}; mean = 5; s^2 = 33.33

Therefore we need other measures such as variance (s^2).

#### Variability: variance

• Variance

- Squared mean deviation from mean.

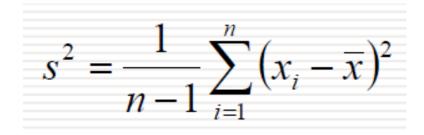
$$\frac{1}{n}\sum_{i=1}^{n}(x_i-\mu)^2$$

population = {1, 3, 6, 10}  $\frac{1}{4} * ((1 - 5)^2 + (3 - 5)^2 + (6 - 5)^2 + (10 - 5)^2)$   $\frac{1}{4} * ((-4)^2 + (-2)^2 + 1^2 + 5^2)$  $\frac{1}{4} * (16 + 4 + 1 + 25) = \frac{1}{4} * 46 = 11.5$ 

### Variability: variance

• Variance

- Squared approximate mean deviation from mean.

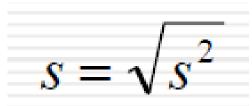


sample =  $\{1, 3, 6, 10\}$   $1/3 * ((1 - 5)^2 + (3 - 5)^2 + (6 - 5)^2 + (10 - 5)^2)$   $1/3 * ((-4)^2 + (-2)^2 + 1^2 + 5^2)$ 1/3 \* (16 + 4 + 1 + 25) = 1/3 \* 46 = 15.33

## Variability: standard deviation

#### Standard deviation

– Measure of average deviation. S =



- Typical distance of observation from the mean.
- Sensitive to outliers.

```
sample = \{1, 3, 6, 10\}
s^2 = 15.33
s = sqrt(15.33) = 3.92
```

## Variability: standard deviation

- Properties
  - *s >=* 0
  - -s = 0 only when all observations have same value.
  - The greater variability around mean, the larger s.
  - If data are rescaled, the s is rescaled as well.
  - E.g. if we rescale s of annual income in \$ = 34,000 to thousands of \$ = 34, the s also changes by factor of 1000 from 11,800 to 11.8.

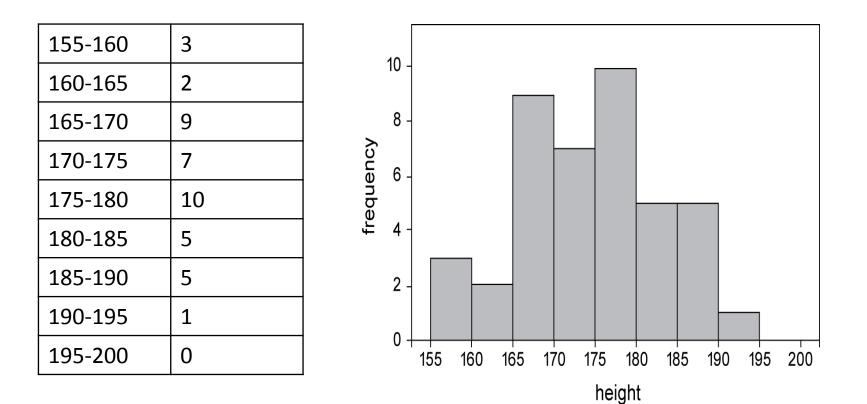
## Variability: standard deviation

#### Interpretation

- Scale dependent.
- E.g. assume that average amount of points received in this course is 35 points graded on a scale 0 to 40.
- s = 0 extremely unlikely (no differences in performance).
- As well as m = 20, s > 15 (huge differences in performance).

## Frequency distribution

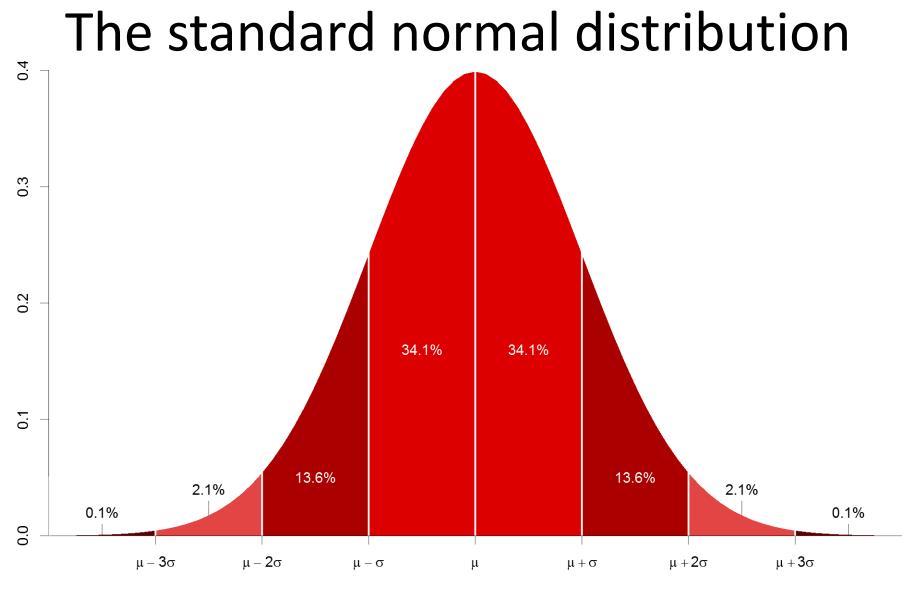
• Frequency distribution: table or visual display of the **frequency** of variable values.



## **Frequency distribution**

- Absolute frequency: # of the observations of a category.
- **Relative frequency:** proportion of the observations of a category over total # of observations.
- **Percentage:** proportion multiplied by 100.

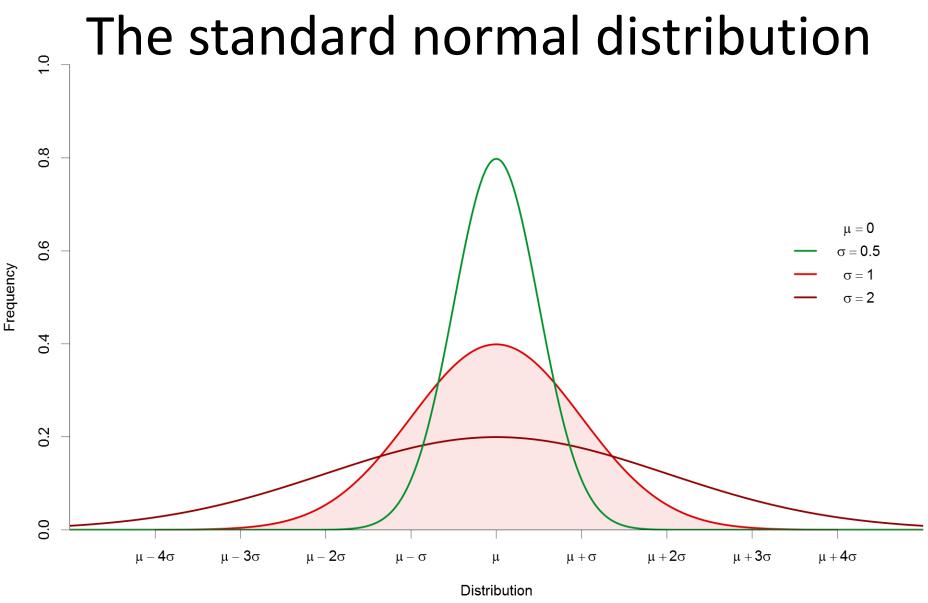
| 155-160 | 3  | 0.07 | 7%  |
|---------|----|------|-----|
| 160-165 | 2  | 0.05 | 5%  |
| 165-170 | 9  | 0.21 | 21% |
| 170-175 | 7  | 0.17 | 17% |
| 175-180 | 10 | 0.24 | 24% |
| 180-185 | 5  | 0.12 | 12% |
| 185-190 | 5  | 0.12 | 12% |
| 190-195 | 1  | 0.02 | 2%  |
| 195-200 | 0  | 0    | 0%  |



Frequency

Distribution

Lehotský 2016



Lehotský 2016

## Bar chart

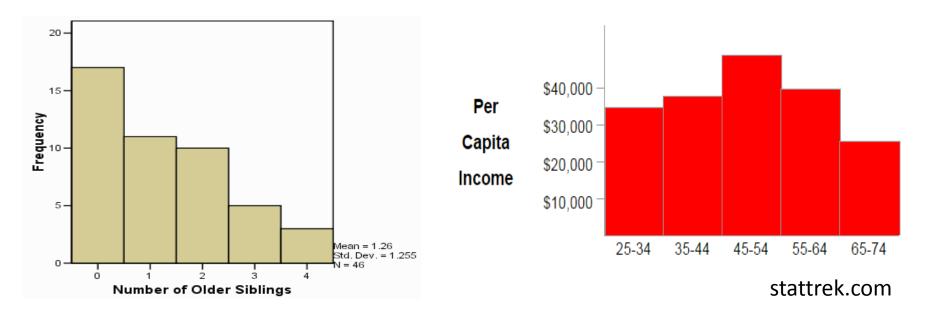
- The columns are positioned over values of categorical variable (U.S. states).
- The height of the column indicates the value of the variable (per capita income).



stattrek.com

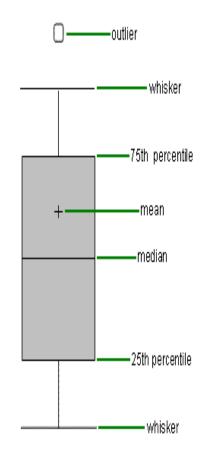
## Histogram

- The columns are positioned over a values of **quantitative variable.**
- The column label can be single value or range of values.
- The height of the column indicates the value of the variable.



## Boxplot

- Splits data into quartiles (position measure).
- Box: from Q1 to Q3.
- Median (Q2): line within the box.
- Whiskers: indicate the range from:
  - Q1 to smallest non-outlier.
  - Q3 to largest non-outlier.
- Outlier > 1.5 \* (Q3 Q1) from Q1 or Q3
- Outliers are represented separately.



## Measures of association (MA)

- Examination of a single variable (distribution)
   → univariate statistics.
- Examination of associations among variables (distributions)
   → bivariate (and multivariate) statistics.
- MA: variety of coefficients that measure the size (and/or direction) of associations between the variables of interest.
- MA typically range within <0,1> or <-1,1> intervals.

## Measures of association (MA)

| level of measurement      | coefficient     |
|---------------------------|-----------------|
| nominal                   | Jaccard's index |
| ordinal                   | Kendall's tau   |
| metric (interval & ratio) | Pearson's rho   |

## Measures of association (MA)

- There are many measures of association.
- Correlation coefficients represent just one of the subsets of the MA.

- Correlation is not causation.
- Causation can be based on different types of associations.

#### Pearson's rho correlation coefficient

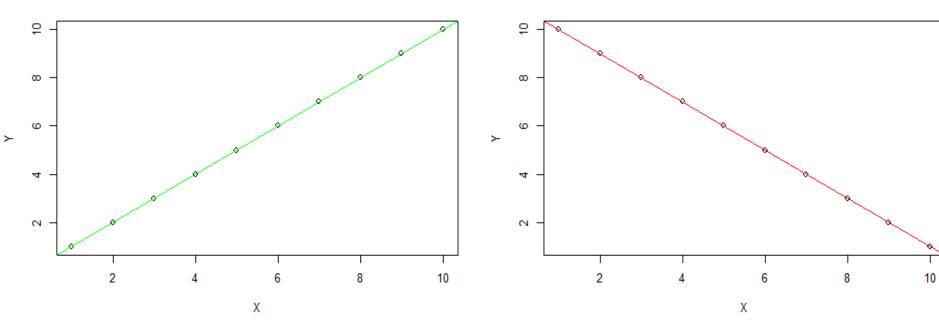
- Pearson's product-moment correlation coefficient (r).
- Pearson's r measures the strength and direction of the linear relationship between two variables.
- Ranges within <-1,1>
  - Perfect positive linear relationship = 1
  - Perfect negative linear relationship = -1
  - No linear relationship = 0
- Value does not depend on variables' units.
- It is a **sample statistic**.

### Pearson's r: description

| Pearson's r strength | Description |
|----------------------|-------------|
| 0.00–0.19            | very weak   |
| 0.20–0.39            | weak        |
| 0.40–0.59            | moderate    |
| 0.60–0.79            | strong      |
| 0.80-1.00            | very strong |

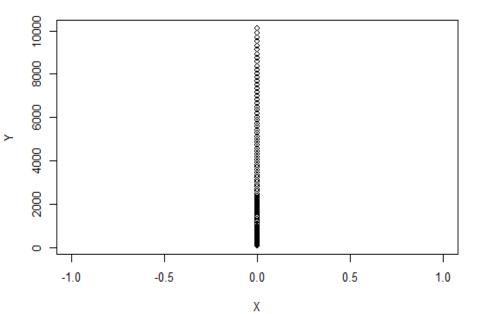






r = 0

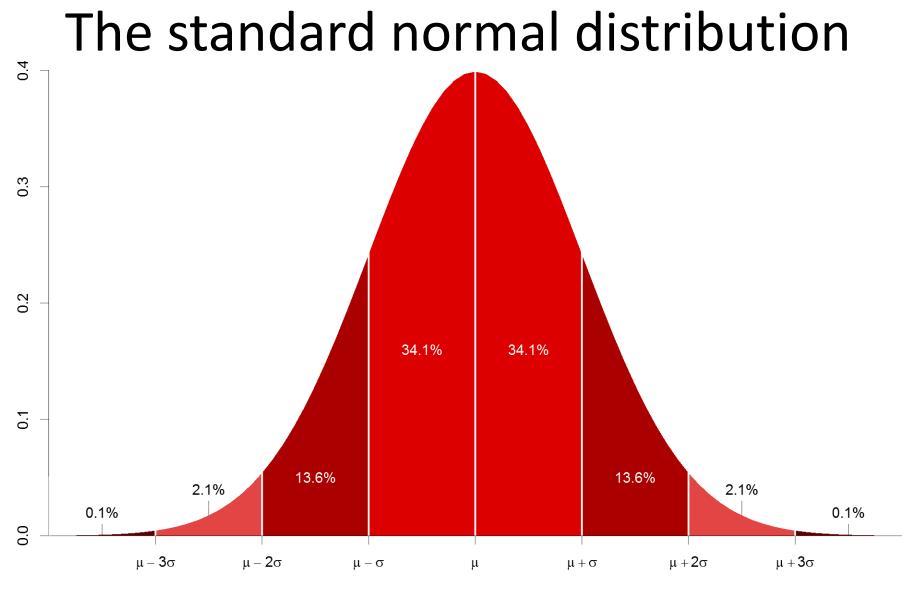






### Pearson's correlation

- Assumptions and limitations:
  - Metric (at least interval) level of measurement
  - Normal distribution of X and Y
  - Linear relationship between X and Y
  - Homoscedasticity
  - Sensitive to outliers

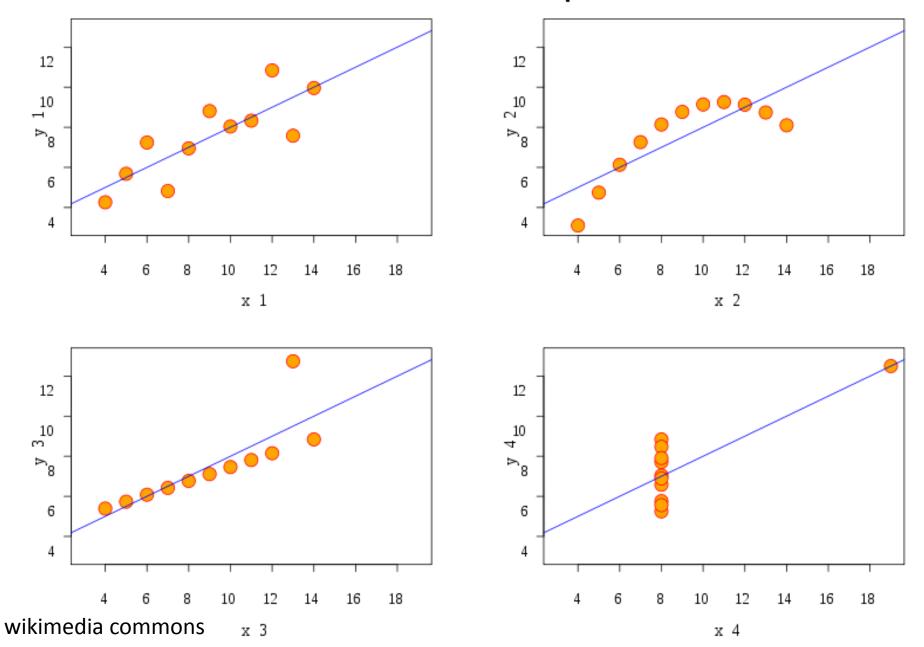


Frequency

Distribution

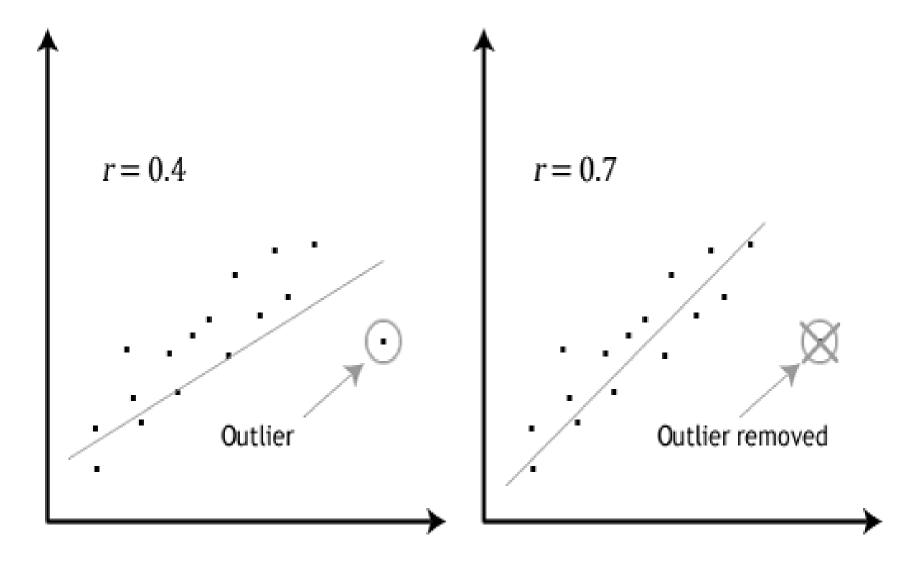
Lehotský 2016

#### Anscombe's quartet





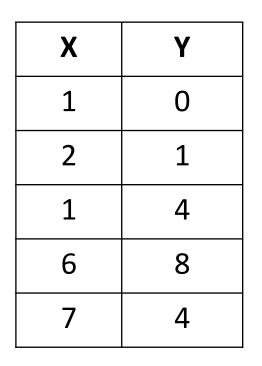
stats.stackexchange.com



statistics.leard.com

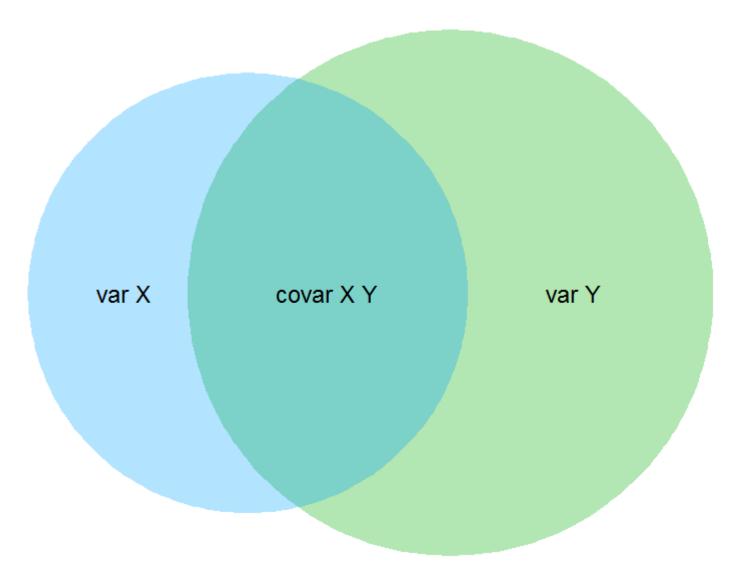
### Pearson's correlation: example

• Assume we have 2 variables: X and Y.



• What is correlation (r) of these two variables?

• r = covariance / combined total variance.



- First: we calculate variance of variables.
- mean(x) = 3.4; mean(y) = 3.4

| X   | (x – m)   | dev. | dev.^2 | Υ   | (y – m)   | dev. | dev.^2 |
|-----|-----------|------|--------|-----|-----------|------|--------|
| 1   | (1-3.4)   | -2.4 | 5.76   | 0   | (0-3.4)   | -3.4 | 11.56  |
| 2   | (2-3.4)   | -1.4 | 1.96   | 1   | (1 - 3.4) | -2.4 | 5.76   |
| 1   | (1-3.4)   | -2.4 | 5.76   | 4   | (4-3.4)   | 0.6  | 0.36   |
| 6   | (6-3.4)   | 2.6  | 6.76   | 8   | (8-3.4)   | 4.6  | 21.16  |
| 7   | (7 – 3.4) | 3.6  | 12.96  | 4   | (4-3.4)   | 0.6  | 0.36   |
| sum | 0         | 0    | 33.2   | sum | 0         | 0    | 39.2   |

 $s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$ 

• s^2(X) = 33.2 / 4 = 8.3; s^2(Y) = 39.2 / 4 = 9.8

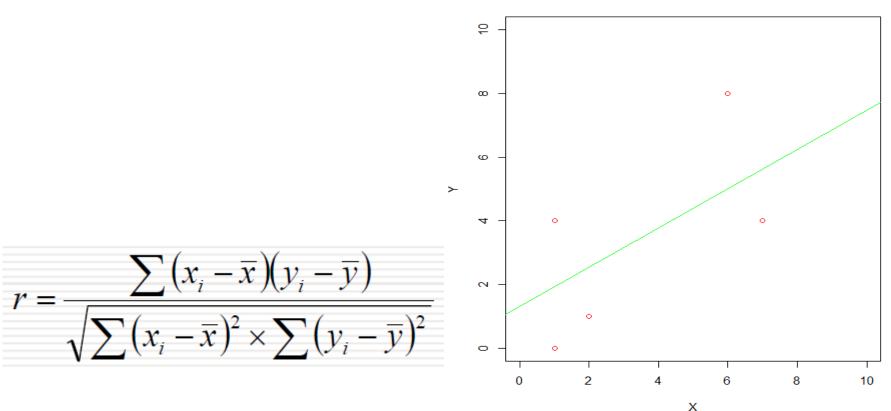
- Second: we calculate **covariance of variables**.
- Covariance is a sum of deviation products of two variables divided by n-1.  $\sum_{j=1}^{n} (x_j - \overline{x})(y_j - \overline{y})$  $COV(x, y) = \underbrace{\sum_{j=1}^{n} (x_j - \overline{x})(y_j - \overline{y})}{n-1}$

| (x – m)   | (y – m)   | cross-prod. |
|-----------|-----------|-------------|
| (1-3.4)   | (0-3.4)   | 8.16        |
| (2-3.4)   | (1-3.4)   | 3.36        |
| (1-3.4)   | (4 – 3.4) | -1.44       |
| (6-3.4)   | (8-3.4)   | 11.96       |
| (7 – 3.4) | (4 – 3.4) | 2.16        |
| 0         | 0         | 24.2        |

• Third: we divide X, Y covariance by square rooted product of X and Y variances.

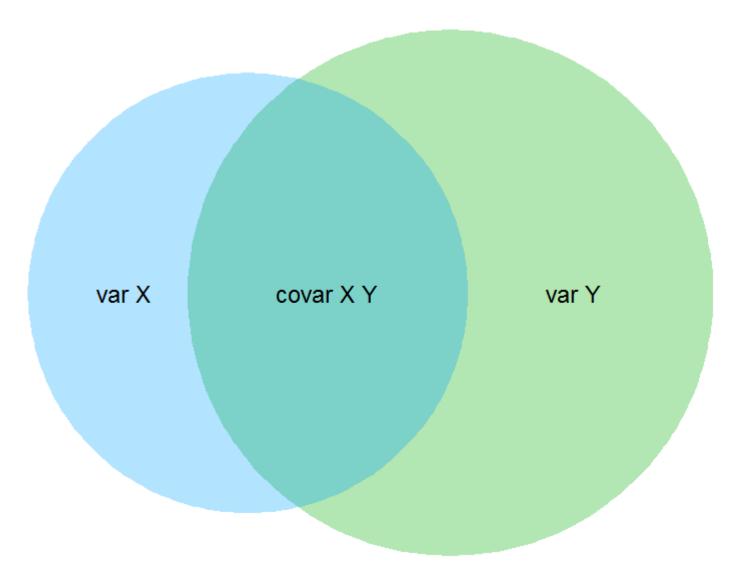
- r = cov(X, Y) / sqrt(var(X) \* var(Y))

- **r** = 6.05 / sqrt(8.3 \* 9.8) = **0.67** 



Correlation X and Y

• r = covariance / combined total variance.



## Kendall's tau correlation coefficient

- **Kendall's tau** (τ) used for ordinal data (e.g. attitude scales).
- A non-parametric measure of association between two ordinal variables.
- Accommodates also small samples and many values with the same order/ranking.
- Ranges within <-1,1>
  - Perfect agreement (variables are identically ordered) = 1
  - Perfect inversion (variables are ordered in exactly reversed way) = -1
  - No ordered relationship = 0
- KT represents the degree of concordance between two ordinal variables.
  - $\tau_a$  does not correct for tied values
  - $\tau_b$  corrects for tied values
- **E.g.:** is there an ordered association between the income level and attitudes towards climate change?

| cases (N) | X: income  | Y: attitude  |                                                   |
|-----------|------------|--------------|---------------------------------------------------|
| А         | 1 (low)    | 1 (disagree) | - 5                                               |
| В         | 2 (middle) | 1 (disagree) | <ul> <li>○</li> <li>- :0</li> <li>- :0</li> </ul> |
| С         | 2 (middle) | 2 (neutral)  | بن –<br>بن –                                      |
| D         | 3 (high)   | 3 (agree)    |                                                   |

Х

- We have n\*(n 1)/2 pair combinations; i.e. 4\*(4-1)/2 = 6.
- Specifically: (A,B), (A,C), (A,D), (B,C), (B,D), (C,D).
- Concordance:  $X_i > X_j$  AND  $Y_i > Y_j$ ; or:  $X_i < X_j$  AND  $Y_i < Y_j$
- **Discordance:**  $X_i > X_j$  AND  $Y_i < Y_j$ ; or:  $X_i < X_j$  AND  $Y_i > Y_j$
- Neither (tied values):  $X_i = X_j \text{ OR } Y_i = Y_j$ 
  - Pair (A,B) = neither (tied);  $Y_A = Y_B$
  - Pair (A,C) = concordant;  $X_A < X_C \& Y_A < Y_C$
  - Pair (A,D) = concordant;  $X_A < X_D \& Y_A < Y_D$
  - Pair (B,C) = neither (tied);  $X_B = X_C$
  - Pair (B,D) = concordant;  $X_B < X_D \& Y_B < Y_D$
  - Pair (C,D) = concordant;  $X_C < X_D \& Y_C < Y_D$

| cases (N) | X: income  | Y: attitude  |                  |  |
|-----------|------------|--------------|------------------|--|
| А         | 1 (low)    | 1 (disagree) | - <sup>5</sup> . |  |
| В         | 2 (middle) | 1 (disagree) | - in ≺           |  |
| С         | 2 (middle) | 2 (neutral)  | τς –             |  |
| D         | 3 (high)   | 3 (agree)    |                  |  |

Х

- We have n\*(n 1)/2 pair combinations; i.e. 4\*(4-1)/2 = 6.
  - Pair (A,B) = neither (tied)
  - Pair (A,C) = concordant
  - Pair (A,D) = concordant
  - Pair (B,C) = neither (tied)
  - Pair (B,D) = concordant
  - Pair (C,D) = concordant

 $\tau_a = (\# \text{ of concordant pairs} - \# \text{ of discordant pairs}) / \# \text{ of all pairs}$  $\tau_a = n_c - n_d / (n * (n - 1))$  $\tau_a = 4 - 0 / (4 * (4 - 1)) = 4 / 6 = 0.66$ 

- We have n\*(n 1)/2 pair combinations; i.e. 4\*(4-1)/2 = 6.
  - Pair (A,B) = neither (tied)
  - Pair (A,C) = concordant
  - Pair (A,D) = concordant
  - Pair (B,C) = neither (tied)
  - Pair (B,D) = concordant
  - Pair (C,D) = concordant

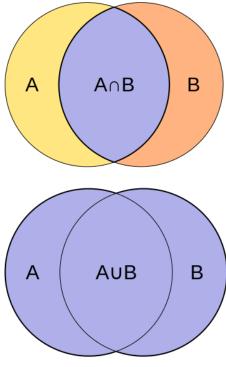
 $\tau_{b}$  = (# of concordant pairs – # of discordant pairs) / # of all pairs

$$\begin{aligned} \mathbf{\tau_b} &= (\mathbf{n_c} - \mathbf{n_d}) / \operatorname{sqrt}((\mathbf{N} - \mathbf{n_1}) * (\mathbf{N} - \mathbf{n_2})) \\ \mathbf{N} &= (n * (n - 1))/2; \text{ total } \# \text{ of pairs} \\ n_1 &= t_1 * (t_1 - 1))/2; t_1 &= \# \text{ of tied values in the first set/variable} \\ n_2 &= t_2 * (t_2 - 1))/2; t_2 &= \# \text{ of tied values in the second set/variable} \\ n_1 &= 2 * (2 - 1)/2 &= 1 (\text{income var: middle/middle}) \\ n_2 &= 2 * (2 - 1)/2 &= 1 (\text{attitude var: disagree/disagree}) \\ \mathbf{\tau_b} &= (4 - 0) / \operatorname{sqrt}((6 - 1)^*(6 - 1)) &= 4 / \operatorname{sqrt}(25) &= 4 / 5 &= \mathbf{0.8} \end{aligned}$$

# Jaccard (similarity) index

- J used for **categorical binary data** (e.g. gender).
- Measures similarity between two samples.

|          |         | sample B  |        |
|----------|---------|-----------|--------|
|          |         | present   | absent |
| sample A | present | a (A ∩ B) | b      |
|          | absent  | С         | d      |



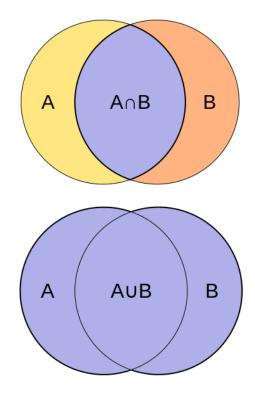
- J = the size of the intersection (a = A ∩ B)
   by the size of the union (a + b + c = A ∪ B) of the samples.
- J = a / (a + b + c)
- Does not account for observations missing in both samples (d).

wikimedia commons

## Jaccard (similarity) index: example

• Similarity of the CR and Germany based on presence/absence of int. environ. NGOs.

| IENGOs  |         | Czech Republic |         |
|---------|---------|----------------|---------|
|         |         | present        | absent  |
| Germany | present | 21 (a)         | 56 (b)  |
|         | absent  | 13 (c)         | 101 (d) |



- J = a / (a + b + c)
- J = 21 / (21 + 56 + 13) = 21 / 90 = **0.23** = 23%

wikimedia commons