Linear regression

Lukáš Lehotský & Petr Ocelík

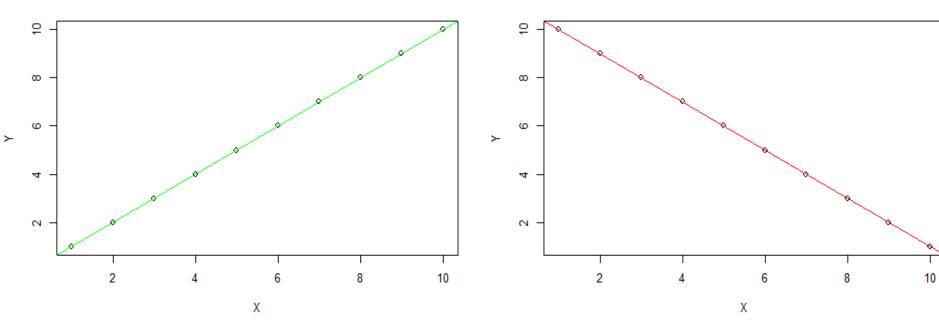
ESS401 Social Science Methodology / MEB431 Metodologie sociálních věd 6th February 2017

Outline

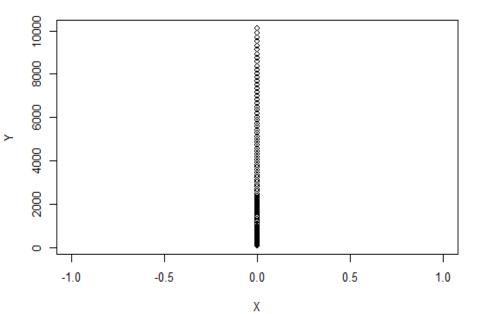
- Refresh: Pearson's r correlation
- (Simple) linear regression

Refresh: Pearson's r

- Pearson's rho product-moment correlation coefficient (r).
- Pearson's r measures the strength and direction of the linear relationship between two variables.
- Ranges within <-1,1>
 - Perfect positive linear relationship = 1
 - Perfect negative linear relationship = -1
 - No linear relationship = 0
- Value does not depend on variables' units.
- It is a **sample** (aggregative) **statistic**.



r = 0

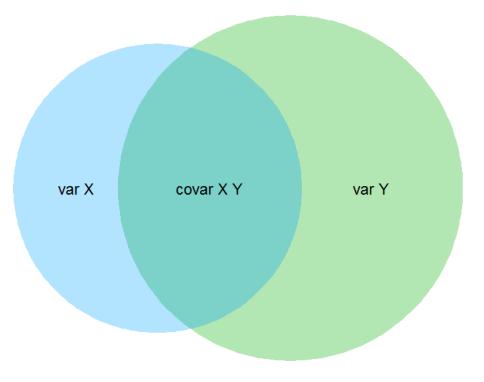




Pearson's r: assumptions

- Normal distribution of X and Y
 - Histograms and descriptive statistics
- Linear relationship between X and Y
 - Scatterplot
 - Histogram of residuals
- Homoscedasticity
 - Same as with linear relationship

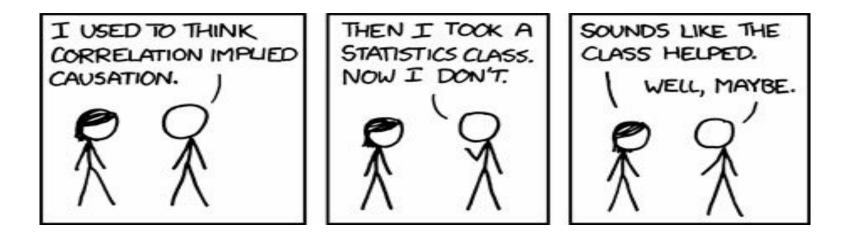
• Correlation = covariance / combined total variance.



$$r = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \times \sum (y_i - \overline{y})^2}}$$

Association vs. causation

Association does not imply causation!



xkcd.com/552/

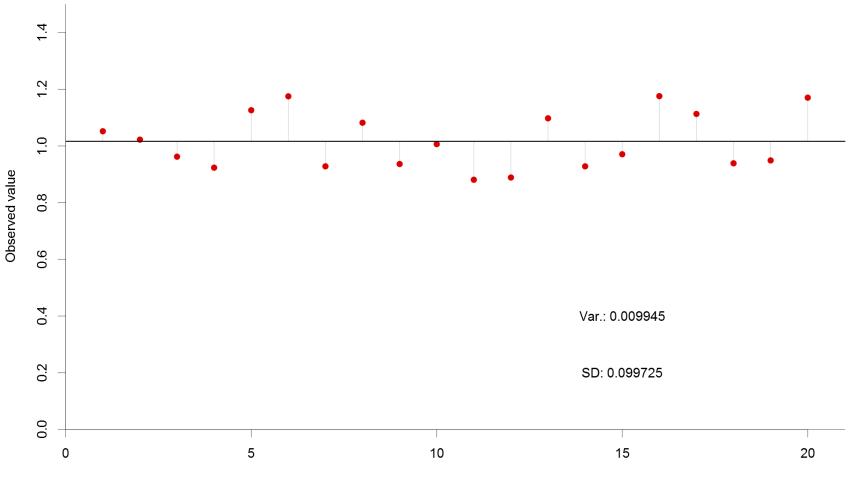
Correlation vs. causation

- X causes Y and Y causes X (bidirectional causation):
 - Democracies trade more, therefore trade increases democracy.
- Y causes X (reverse causation):
 - The more firemen is sent to a fire, the more damage is done.
- X and Y are consequences of common cause:
 - There is a correlation between ice cream consumption and street criminality (both more prevalent during summer).
- There is no connection between X and Y (coincidence):
 - Number of meaningless "funny correlations".
- More examples here: <u>http://tinyurl.com/85jfu6y</u>

Models

- All models are wrong; some models are useful (Box 1976).
- Models (not only mathematical!) reduce and represent the real-world phenomena.

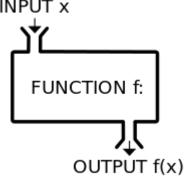
Mean as a model



Observation

Statistical models

- We need a mathematical function for statistical prediction.
- → Function changes input (values of predictor variable) to an output (value of outcome variable) according to specific rule(s).



• For different relationships between quantities, different functions might be used.

wikimedia commons

(Linear) regression

- Regression is a statistical method used to predict scores on an outcome variable based on scores of one ore more predictor variables.
- Linear regression: models linear relationship.
- Bivariate (simple) linear regression: uses only one predictor variable.
- Multivariate (multiple) linear regression: uses more than one predictor variable.

Regression: terminology / notation

X	Υ
cause	effect
independent variable	dependent variable
predictor variable	outcome variable
explanatory variable	response variable

α, a, b, β0, B0, m	β, B, b	ε, e
intercept	slope	error / residual
constant	coefficient	
alpha	Beta	

Linear relationship

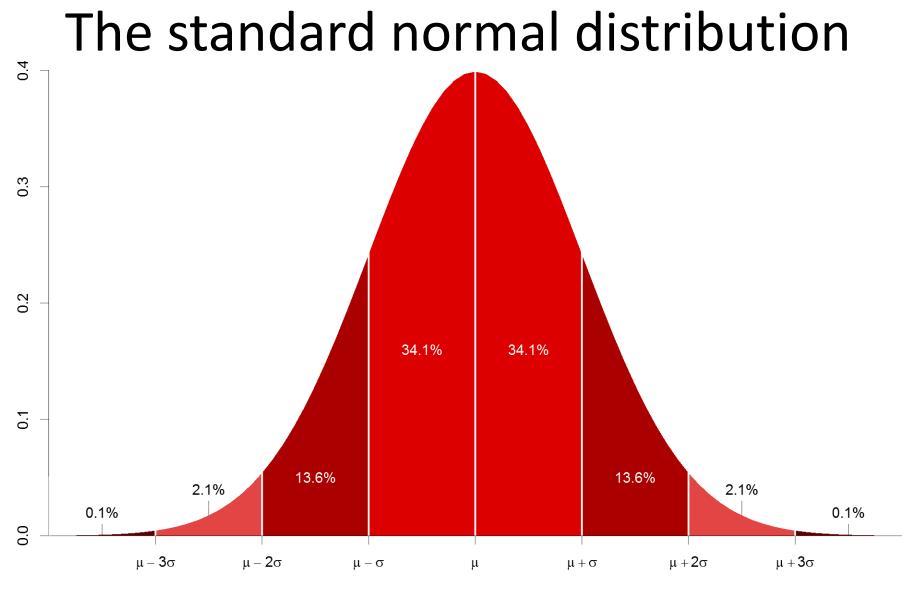
- A relationship where two variables are related in the first degree; i.e. the power of variables is 1.
- Linear relationship is represented by formula:
 outcome (dep. var.) = constant + coefficient*predictor + error

 $Y = \beta 0 + \beta 1X + \varepsilon ; population regression function$ Y = a + bX + e ; sample regression functionY' = 0.75 + 0.425*X + 2.791; sample regression line

• Linear relationship is graphically represented by a straight line.

Linear regression: assumptions

- Independence of observations (random sampling).
- Normal distribution of Y.
- Linear relationship between X and Y.
- Normal distribution of residuals.
- Homoscedasticity.
- Independence of residuals (over time).
- Applicable to metric level of measurement.
- Sensitive to outliers.

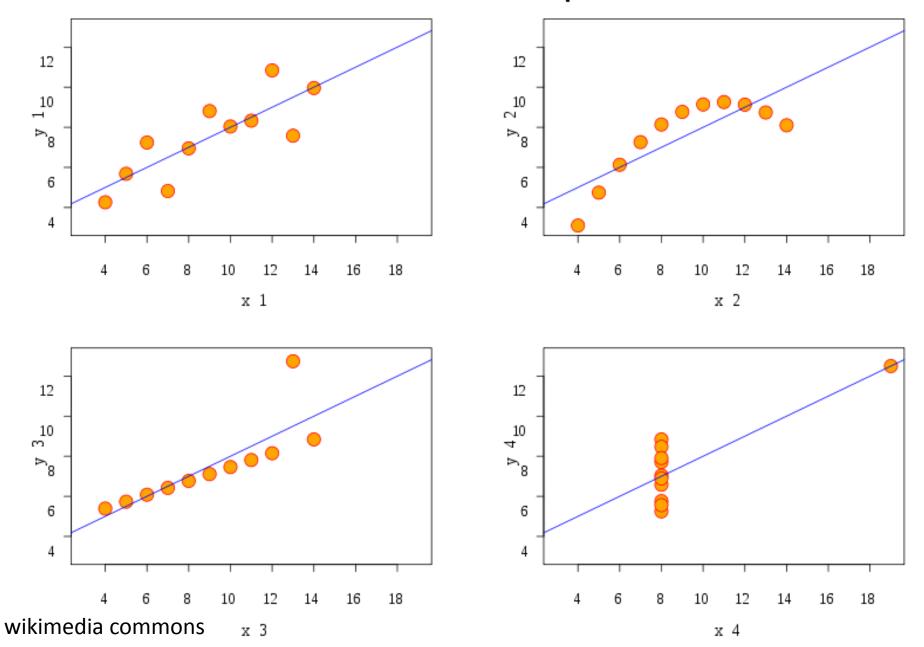


Frequency

Distribution

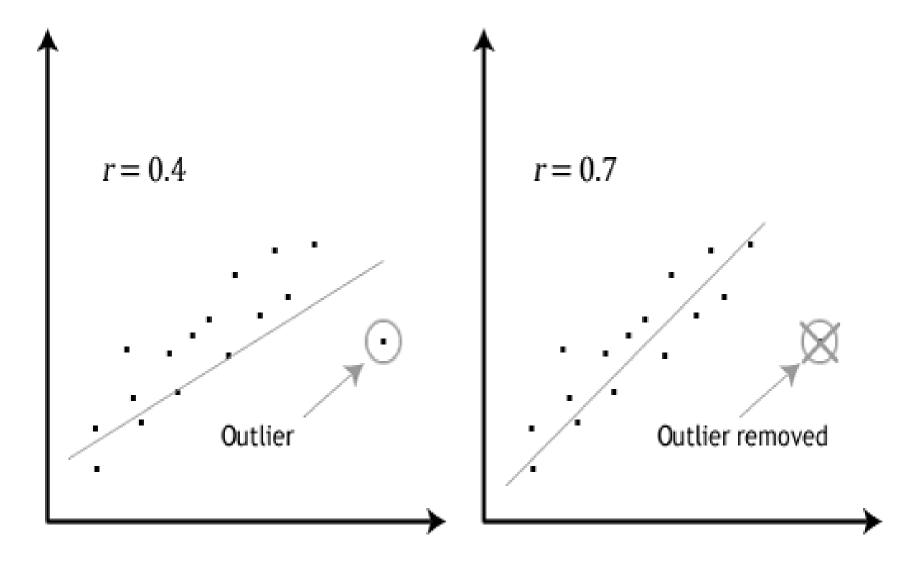
Lehotský 2016

Anscombe's quartet



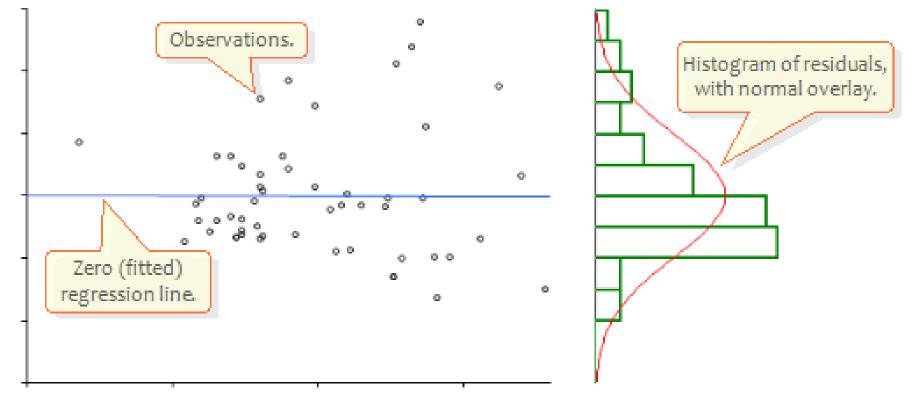


stats.stackexchange.com



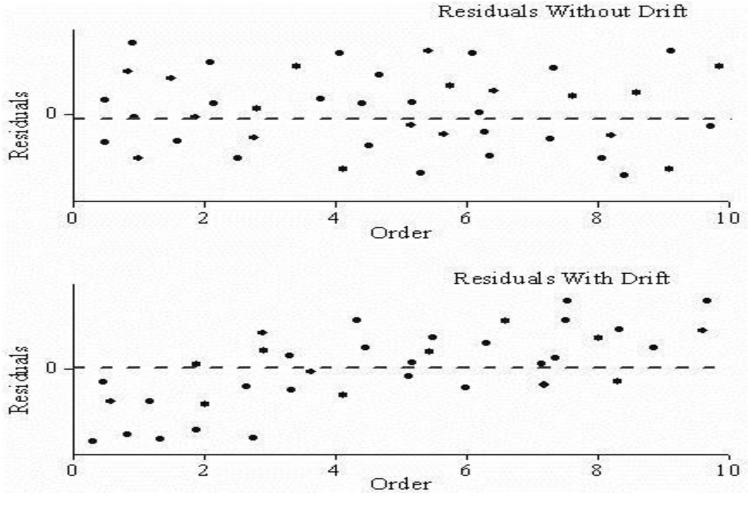
statistics.leard.com

Normal distribution of residuals



Draper & Smith 1998

Independence of residuals



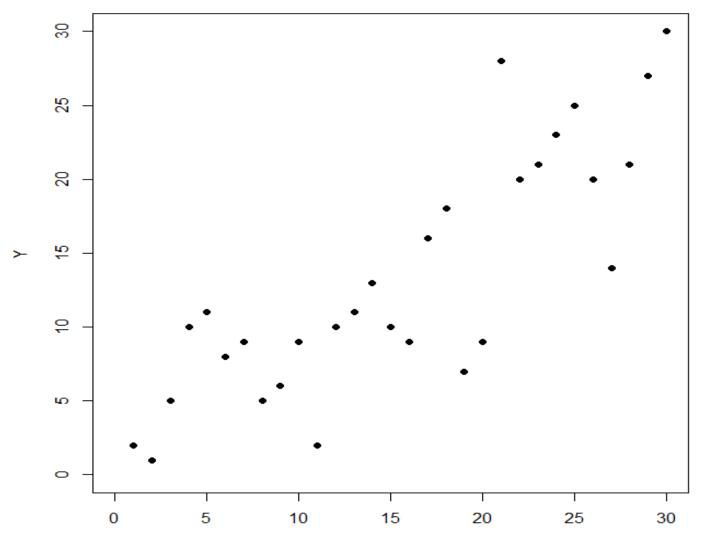
OriginLab 2015

Linear relationship

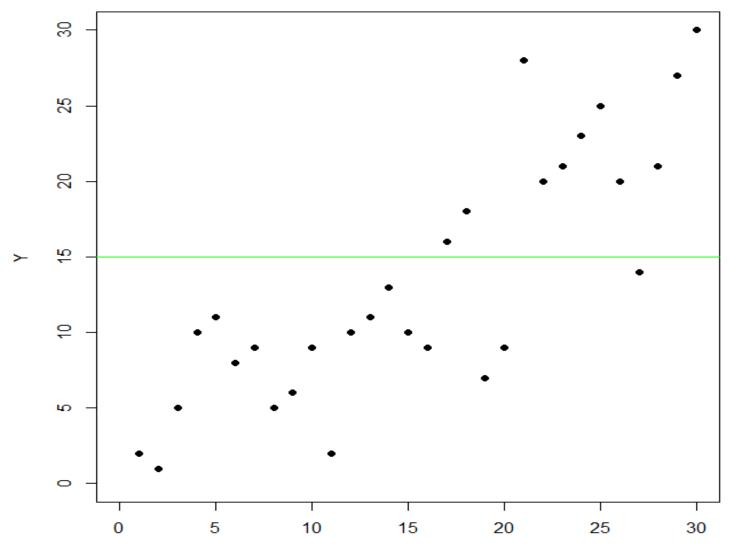
- A relationship where two variables are related in the first degree; i.e. the power of variables is 1.
- Linear relationship is represented by formula:
 outcome (dep. var.) = constant + coefficient*predictor + error

 $Y = \beta 0 + \beta 1X + \varepsilon$; population regression function Y = a + bX + e; sample regression function Y' = 0.75 + 0.425*X + 2.791; sample regression line

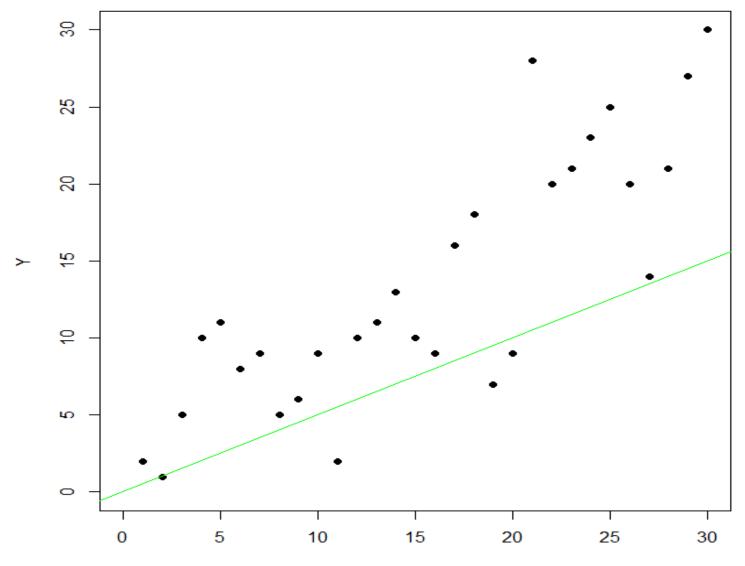
• Linear relationship is graphically represented by a straight line.



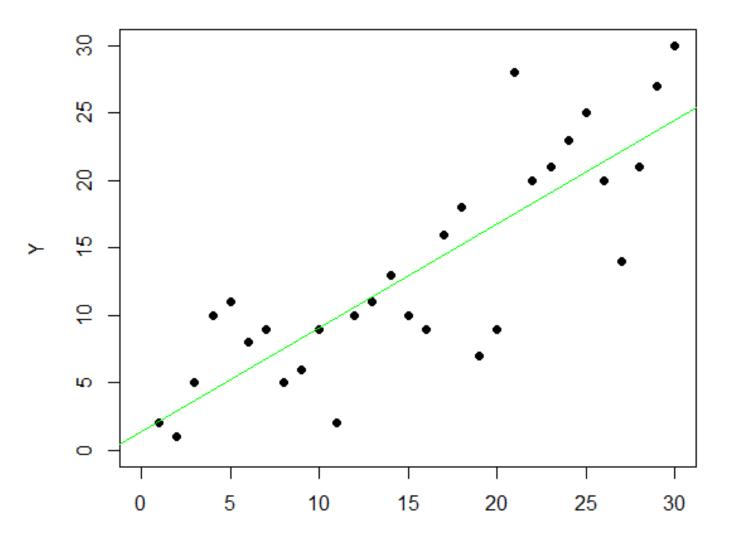
х



х



х



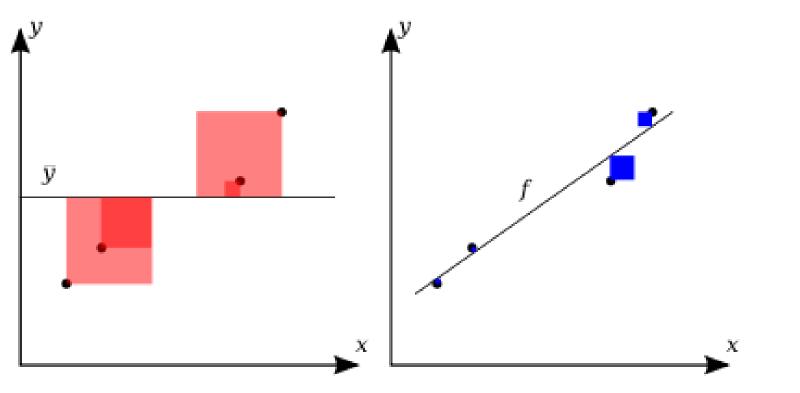
Х

Ordinary least squares

- Ordinary least squares (OLS): estimates parameters (intercept and slope) in a linear regression model.
- Minimizes squared vertical distances between the observations (Y) and the straight line (predicted value of Y = Y').
- Residual = (Y Y')
- $\sum (Y Y') = 0; \sum (Y Y')^2 >= 0$
- OLS: $Y' = \min \sum (Y Y')^2$

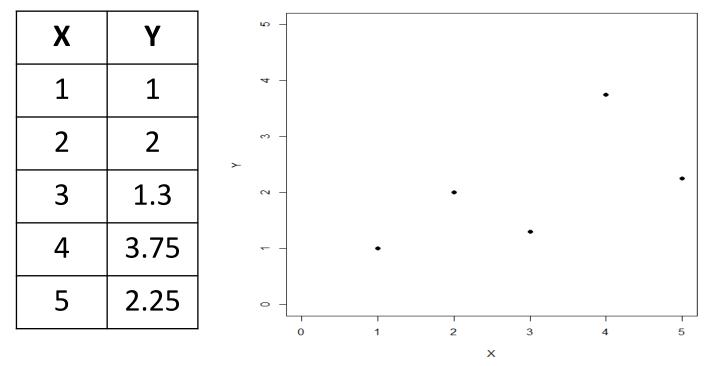
Ordinary least squares

• Comparison of mean and OLS estimation.



wikimedia commons

• Assume we have two variables: X and Y.



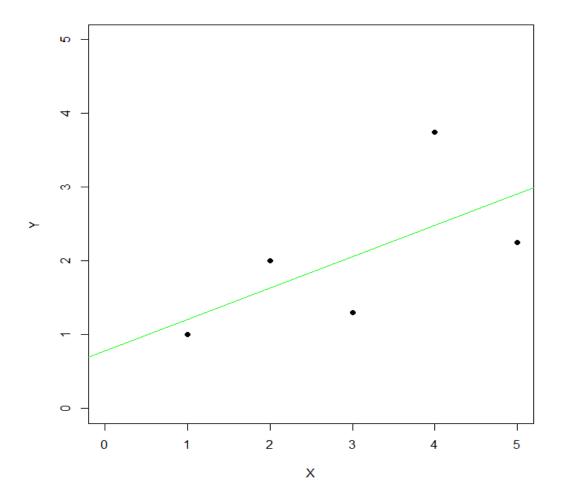
• To what extent X explains Y?

• Statistics for calculating regression line:

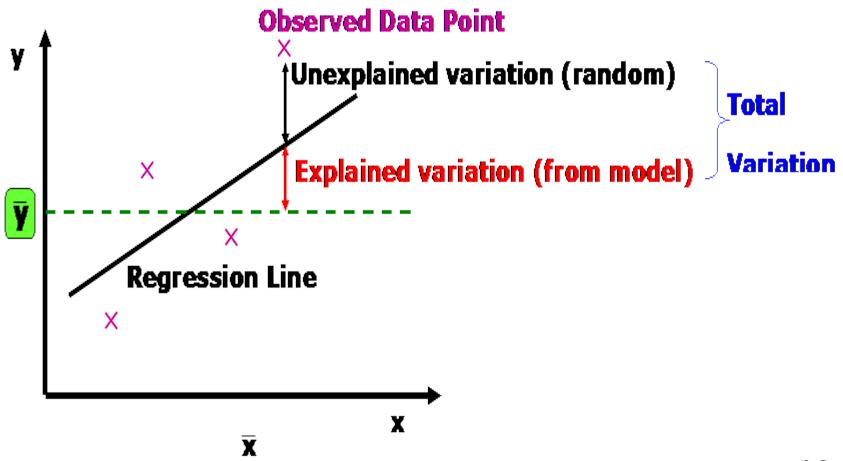
m(X)	m(Y)	s(X)	s(Y)	r(X, Y)
3	2.06	1.581	1.072	0.627

- The slope (b): r(x, y) * (s(Y)/s(X)); same as \rightarrow
- The slope (b): Σ(x − m(x))*(y − m(y)) / Σ((x − m(x))^2)
- The intercept (a): m(Y) b*m(X)
- **b** = 0.627 * 1.072 / 1.581 = **0.425**
- **a** = 2.06 0.425 * 3 = **0.75**

• Fitting a straight line by using OLS.



Total / unexplained / explained variation



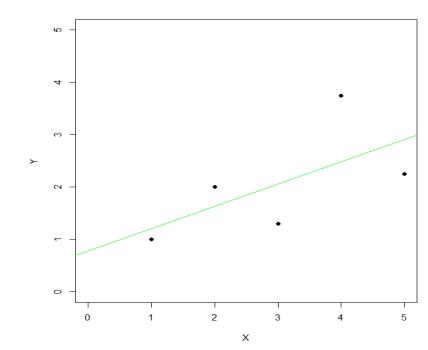
• **Residual:** difference between observed values Y and predicted values Y'.

X	Υ	Y'	Y – Y'	(Y – Y')^2
1	1	1.21	-0.210	0.044
2	2	1.653	0.365	0.133
3	1.3	2.060	-0.760	0.578
4	3.75	2.485	1.265	1.600
5	2.25	2.910	-0.660	0.436
sum			0	2.791

- Model is a representation of the relationship between variables. Linear regression model predicts (models) values of Y based on values of X.
- Model is represented by formula in a form of linear equation: Y' = a + bX + e.
- Model in example: Y' = 0.75 + 0.425*X + 2.791.
- R command: *lm()*

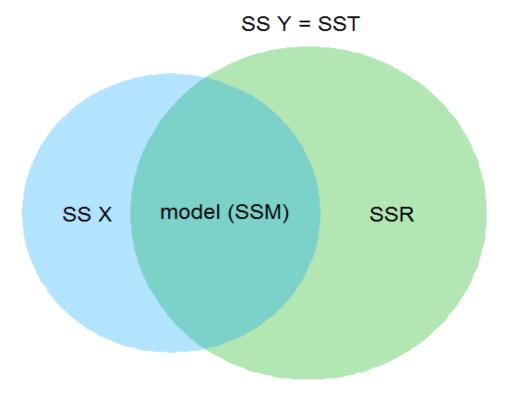
Linear regression: interpretation

- Model in example: Y = 0.78 + 0.425*X
- Intercept: value of Y when value of X = 0.
- Slope: change in Y when X increases by 1 unit.
- Error: unexplained variance of Y.
- What is the Y' for X = 2?
- Y' = 0.75 + (0.425)*2
- Y' = 0.75 + 0.850 = 1.6



Coefficient of determination

- CoD (R^2) indicates proportion of Y explained variation (SSM) to Y total variation (SST) = SSM / SST.
- SST = SSM (explained var.) + SSR (unexplained var.)



Coefficient of determination

- Unexplained variation = difference between observed values of Y and predicted values of Y' (regression line) = sum of squares of residuals (SSR).
- Explained variation = difference between predicted values of Y' and mean of Y = sum of squares of model (SSM).
- Total variation = difference between observed values of Y and mean of Y = SSE + SSR = sum of squares of total variation (SST).
- Explained variation (%) = SSM / SST = coefficient of determination = R^2

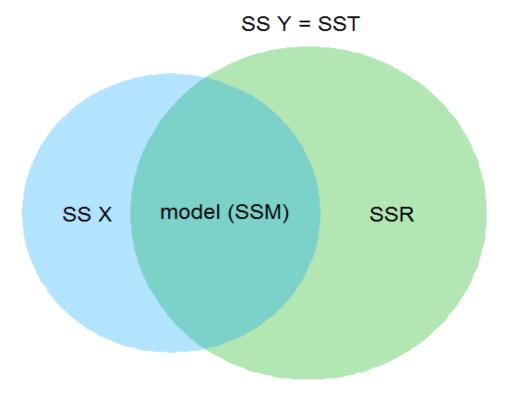
Coefficient of determination: example

Υ'	mean Y	(Y' – mY)	(Y' – mY)^2	Y	Y'	Y – Y'	(Y – Y')^2
1.210	2.06	-0.850	0.72	1	1.210	-0.210	0.044
1.653	2.06	-0.425	0.18	2	1.653	0.365	0.133
2.060	2.06	0	0	1.3	2.060	-0.760	0.578
2.485	2.06	0.425	0.18	3.75	2.485	1.265	1.600
2.910	2.06	0.850	0.72	2.25	2.910	-0.660	0.436
sum (SSM)			1.81	sum (SSR)			2.791

- SST = SSM + SSR = 1.81 + 2.791 = 4.59
- R^2 = SSM / SST = 1.81 / 4.59 = 0.39 = **39** %

Coefficient of determination

- CoD (R^2) indicates proportion of Y explained variation (SSM) to Y total variation (SST) = SSM / SST.
- SST = SSM (explained var.) + SSR (unexplained var.)



WHAT IFI TOLD YOU.

THAT OUTCOME IS INFLUENCED BY MORE THAN ONE PREDICTOR?

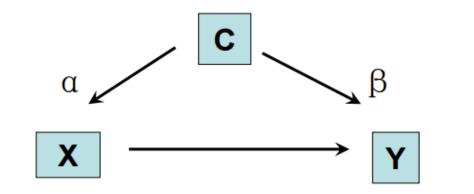
makeamemelorg

Rationale for multiple regression

- **But:** What if the outcome variable is influenced by more than one predictor variable?
- (Always the case...)
- E.g.: Income can be predicted by completed years of education **and** gender.
- → Idea of **statistical control**

Statistical control: confounding effect

- **Confounding effect:** third variable affects the relationship between predictor(s) and outcome variable.
- A confounder is a variable that correlates both with predictor(s) and outcome variable.
- E.g.: Relationship between income (predictor) and risk of heart attack (outcome) may be confounded by age (confounder).



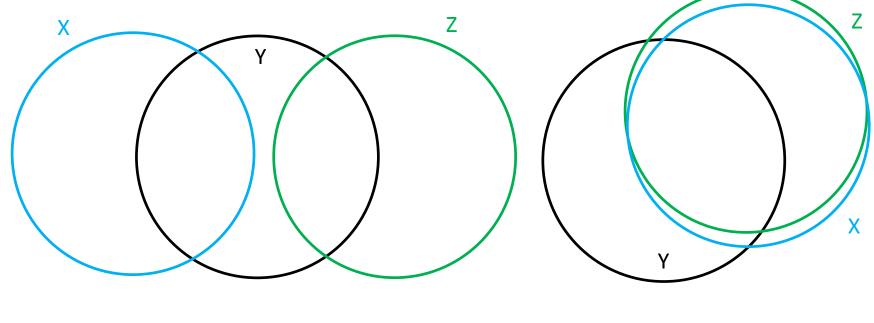
Wu 2010

Multiple regression: assumptions

- Independence of observations (random sampling)
- Normal distribution of Y
- Linear relationship between X and Y
- Normal distribution of residuals
- Homoscedasticity (variance of error is constant)
- Independence of residuals (over time)
- No high collinearity between predictors

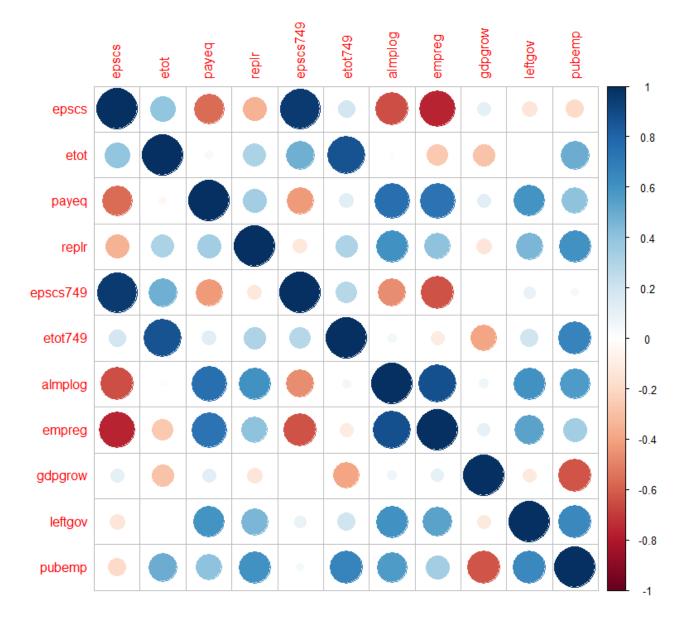
Collinearity

 Collinearity (multicollinearity) = two or more predictors are correlated.



r_{xz} > 0.9

• Correlation matrix of IVs as a simple diagnostic



Multiple linear relationship

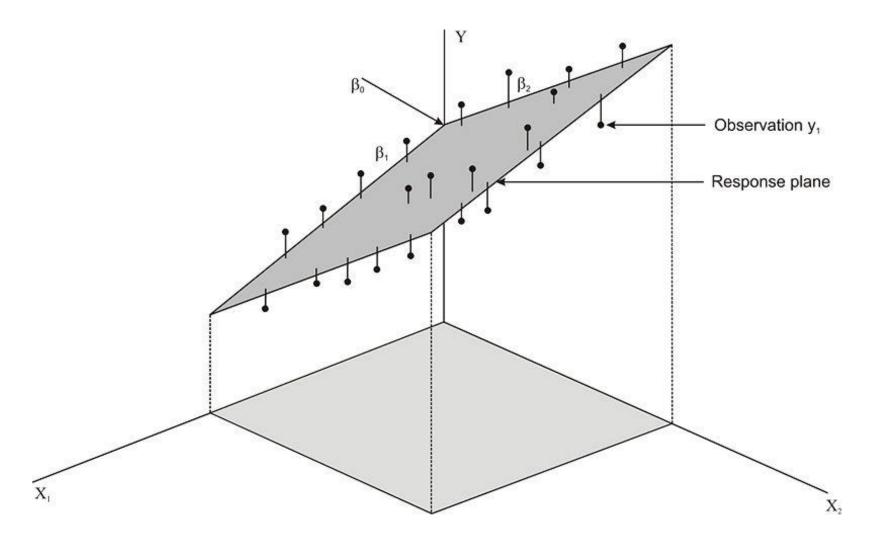
• We add further coefficient*predictor terms into the formula:

outcome (dependent variable) =

constant + coefficient1*predictor1 + coefficient2*predictor2 + error

Y = β 0 + β 1X1 + β 2X2 + ϵ ; population regression function Y = a + b1X1 + b2X2 + e; sample regression function Y' = 0.75 + 0.425*X1 + 0.132*X2 + 2.791; sample regression line

Fitting a plane



www.ck12.org

Slope in multiple regression

- Slope gives us information about the change of the outcome variable caused by the predictor while controlling for other predictors in the model.
- **E.g.:** what is the effect of education (predictor) on income (outcome variable) when we control for age (predictor)?

income <- 6000 + 500*education + 100*age

 Interpretation: for each change in one unit of education (e.g. year), the average unit change of income is 500 unit (i.e. 500 Kč) if age is not changing.

Interpretations

- If the coefficients are statistically significant:
- If X and Z uncorrelated → reduction to bivariate slopes (X and Z are independent on each other)
- If X correlates with Y more than Z → effect of X is stronger (while controlling for Z)
- If Z correlates with Y more than X → effect of Z is stronger (while controlling for X)
- If X and Z (almost) perfectly correlated → denominator close to 0, resulting values approach infinity (non-interpretable) → problem of collinearity (reduction to one variable)

Conclusions

- Linear regression allows us to go beyond associations measurement
 - Prediction
 - Statistical control
- Models are always imprecise!
 - Reduction as well as measurement
- Extensions of regression framework
 - Logistic regression (binary category outcome variable)
 - Multinomial logistic regression (multiple category outcome variable)
 - Ordinal regression (ordinal outcome variable)
 - etc.