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Outline

• Refresh: Pearson’s r correlation 

• (Simple) linear regression



Refresh: Pearson’s r

• Pearson’s rho product-moment correlation coefficient (r). 

• Pearson’s r measures the strength and direction of the 
linear relationship between two variables. 

• Ranges within <-1,1>

– Perfect positive linear relationship = 1

– Perfect negative linear relationship = -1

– No linear relationship = 0

• Value does not depend on variables’ units. 

• It is a sample (aggregative) statistic. 





Pearson’s r: assumptions

• Normal distribution of X and Y
• Histograms and descriptive statistics

• Linear relationship between X and Y
• Scatterplot

• Histogram of residuals

• Homoscedasticity
• Same as with linear relationship 



• Correlation = covariance / combined total variance.



Association vs. causation

Association does not imply causation!

xkcd.com/552/



Correlation vs. causation

– X causes Y  and Y causes X (bidirectional causation):

• Democracies trade more, therefore trade increases 
democracy. 

– Y causes X (reverse causation):

• The more firemen is sent to a fire, the more damage is done.  

– X and Y are consequences of common cause:

• There is a correlation between ice cream consumption and 
street criminality (both more prevalent during summer).

– There is no connection between X and Y (coincidence):

• Number of meaningless “funny correlations”. 

– More examples here: http://tinyurl.com/85jfu6y

http://tinyurl.com/85jfu6y


Models 

• All models are wrong; some models are useful (Box 1976). 

• Models (not only mathematical!) reduce and represent the 
real-world phenomena. 



Mean as a model 



Statistical models 

• We need a mathematical function for statistical prediction.

Function changes input (values of predictor variable) to an 
output (value of outcome variable) according to specific 
rule(s).  

Y = f(X); Y = 2*X

if X = 2, then Y = 4

• For different relationships between quantities, different 
functions might be used. 

wikimedia commons



(Linear) regression

• Regression is a statistical method used to predict 
scores on an outcome variable based on scores of 
one ore more predictor variables.

• Linear regression: models linear relationship. 

• Bivariate (simple) linear regression: uses only one 
predictor variable. 

• Multivariate (multiple) linear regression: uses more 
than one predictor variable. 



Regression: terminology / notation

X Y

cause effect

independent variable dependent variable

predictor variable outcome variable

explanatory variable response variable

α, a, b, β0, B0, m β, B, b ε, e

intercept slope error / 
residual

constant coefficient

alpha Beta



Linear relationship

• A relationship where two variables are related in the first 
degree; i.e. the power of variables is 1. 

• Linear relationship is represented by formula:

outcome (dep. var.) = constant + coefficient*predictor + error

Y = β0 + β1X + ε ; population regression function

Y = a + bX + e ; sample regression function

Y’ = 0.75 + 0.425*X + 2.791; sample regression line

• Linear relationship is graphically represented by a straight line.  



Linear regression: assumptions

• Independence of observations (random sampling). 

• Normal distribution of Y. 

• Linear relationship between X and Y. 

• Normal distribution of residuals. 

• Homoscedasticity. 

• Independence of residuals (over time). 

• Applicable to metric level of measurement. 

• Sensitive to outliers. 



The standard normal distribution

Lehotský 2016



wikimedia commons



stats.stackexchange.com



statistics.leard.com



Normal distribution of residuals

Draper & Smith 1998



Independence of residuals

OriginLab 2015



Linear relationship

• A relationship where two variables are related in the first 
degree; i.e. the power of variables is 1. 

• Linear relationship is represented by formula:

outcome (dep. var.) = constant + coefficient*predictor + error

Y = β0 + β1X + ε ; population regression function

Y = a + bX + e ; sample regression function

Y’ = 0.75 + 0.425*X + 2.791; sample regression line

• Linear relationship is graphically represented by a straight line.  



Fitting a straight line



Fitting a straight line



Fitting a straight line



Fitting a straight line



Ordinary least squares

• Ordinary least squares (OLS): estimates parameters 
(intercept and slope) in a linear regression model.

• Minimizes squared vertical distances between the 
observations (Y) and the straight line (predicted value 
of Y = Y’). 

• Residual = (Y - Y’) 

• ∑ (Y - Y’) = 0 ; ∑ (Y - Y’)^2 >= 0

• OLS: Y’ = min ∑ (Y - Y’)^2



Ordinary least squares

• Comparison of mean and OLS estimation.

wikimedia commons



Linear regression: example

• Assume we have two variables: X and Y.

• To what extent X explains Y? 

X Y

1 1

2 2

3 1.3

4 3.75

5 2.25



Linear regression: example

• Statistics for calculating regression line:

• The slope (b): r(x, y) * (s(Y)/s(X)) ; same as 

• The slope (b): ∑(x – m(x))*(y – m(y)) / ∑((x – m(x))^2)

• The intercept (a): m(Y) – b*m(X)

• b = 0.627 * 1.072 / 1.581 = 0.425

• a = 2.06 – 0.425 * 3 = 0.75

m(X) m(Y) s(X) s(Y) r(X, Y)

3 2.06 1.581 1.072 0.627



Linear regression: example

• Fitting a straight line by using OLS.



Total / unexplained / explained variation

n.a.



Linear regression: example

• Residual: difference between observed values 
Y and predicted values Y’ . 

X Y Y’ Y – Y’ (Y – Y’)^2

1 1 1.21 -0.210 0.044

2 2 1.653 0.365 0.133

3 1.3 2.060 -0.760 0.578

4 3.75 2.485 1.265 1.600

5 2.25 2.910 -0.660 0.436

sum 0 2.791



Linear regression: example

• Model is a representation of the relationship 
between variables. Linear regression model 
predicts (models) values of Y based on values of X. 

• Model is represented by formula in a form of 
linear equation: Y’ = a + bX + e.

• Model in example: Y’ = 0.75 + 0.425*X + 2.791.

• R command: lm()



Linear regression: interpretation

• Model in example: Y = 0.78 + 0.425*X

• Intercept: value of Y when value of X = 0.

• Slope: change in Y when X increases by 1 unit.

• Error: unexplained variance of Y.

• What is the Y’ for X = 2?

• Y’ = 0.75 + (0.425)*2 

• Y’ = 0.75 + 0.850 = 1.6



Coefficient of determination

• CoD (R^2) indicates proportion of Y explained variation 
(SSM) to Y total variation (SST) = SSM / SST.

• SST = SSM (explained var.) + SSR (unexplained var.)



Coefficient of determination

• Unexplained variation = difference between observed 
values of Y and predicted values of Y’ (regression line) = 
sum of squares of residuals (SSR).  

• Explained variation = difference between predicted values 
of Y’ and mean of Y = sum of squares of model (SSM).

• Total variation = difference between observed values of Y 
and mean of Y = SSE + SSR = sum of squares of total 
variation (SST).

• Explained variation (%) = SSM / SST =                             
coefficient of determination = R^2



Coefficient of determination: example

• SST = SSM + SSR = 1.81 + 2.791 = 4.59

• R^2 = SSM / SST = 1.81 / 4.59 = 0.39 = 39 %

Y’ mean Y (Y’ – mY) (Y’ – mY)^2

1.210 2.06 -0.850 0.72

1.653 2.06 -0.425 0.18

2.060 2.06 0 0

2.485 2.06 0.425 0.18

2.910 2.06 0.850 0.72

sum (SSM) 1.81

Y Y’ Y – Y’ (Y – Y’)^2

1 1.210 -0.210 0.044

2 1.653 0.365 0.133

1.3 2.060 -0.760 0.578

3.75 2.485 1.265 1.600

2.25 2.910 -0.660 0.436

sum (SSR) 2.791



Coefficient of determination

• CoD (R^2) indicates proportion of Y explained variation 
(SSM) to Y total variation (SST) = SSM / SST.

• SST = SSM (explained var.) + SSR (unexplained var.)





Rationale for multiple regression

• But: What if the outcome variable is influenced by more 
than one predictor variable?

• (Always the case...)

• E.g.: Income can be predicted by completed years of 
education and gender. 

 Idea of statistical control



Statistical control: confounding effect

• Confounding effect: third variable affects the relationship 
between predictor(s) and outcome variable.

• A confounder is a variable that correlates both with predictor(s) 
and outcome variable. 

• E.g.: Relationship between income (predictor) and risk of heart 
attack (outcome) may be confounded by age (confounder). 

Wu 2010



Multiple regression: assumptions

• Independence of observations (random sampling)

• Normal distribution of Y

• Linear relationship between X and Y 

• Normal distribution of residuals 

• Homoscedasticity (variance of error is constant)

• Independence of residuals (over time) 

• No high collinearity between predictors



Collinearity

• Collinearity (multicollinearity) = two or more predictors are 
correlated. 

rXZ = 0 rXZ > 0.9

ZX
Y

X

Z

Y



• Correlation matrix of IVs as a simple diagnostic



Multiple linear relationship

• We add further coefficient*predictor terms into the formula: 

outcome (dependent variable) = 

constant + coefficient1*predictor1 + coefficient2*predictor2 + error

Y = β0 + β1X1 + β2X2 + ε ; population regression function

Y = a + b1X1 + b2X2 + e ; sample regression function

Y’ = 0.75 + 0.425*X1 + 0.132*X2 + 2.791; sample regression line



Fitting a plane

www.ck12.org



Slope in multiple regression

• Slope gives us information about the change of the outcome variable 
caused by the predictor while controlling for other predictors in the 
model. 

• E.g.: what is the effect of education (predictor) on income (outcome 
variable) when we control for age (predictor)?

income <- 6000 + 500*education + 100*age

• Interpretation: for each change in one unit of education (e.g. year), 
the average unit change of income is 500 unit (i.e. 500 Kč) if age is not 
changing. 



Interpretations

• If the coefficients are statistically significant:

• If X and Z uncorrelated  reduction to bivariate slopes (X and Z 
are independent on each other)

• If X correlates with Y more than Z  effect of X is stronger 
(while controlling for Z)

• If Z correlates with Y more than X  effect of Z is stronger 
(while controlling for X)

• If X and Z (almost) perfectly correlated  denominator close to 
0, resulting values approach infinity (non-interpretable) 
problem of collinearity (reduction to one variable) 



Conclusions

• Linear regression allows us to go beyond associations measurement
– Prediction

– Statistical control 

• Models are always imprecise!
– Reduction as well as measurement

• Extensions of regression framework
– Logistic regression (binary category outcome variable)

– Multinomial logistic regression (multiple category outcome variable)

– Ordinal regression (ordinal outcome variable)

– etc.


