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Outline

e Refresh: Pearson’s r correlation
* (Simple) linear regression



Refresh: Pearson’s r

Pearson’s rho product-moment correlation coefficient (r).

Pearson’s r measures the strength and direction of the
linear relationship between two variables.

Ranges within <-1,1>

— Perfect positive linear relationship =1

— Perfect negative linear relationship = -1
— No linear relationship =0

Value does not depend on variables’ units.
It is a sample (aggregative) statistic.
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Pearson’s r: assumptions

e Normal distribution of Xand Y

* Histograms and descriptive statistics

* Linear relationship between X and Y

e Scatterplot
e Histogram of residuals

* Homoscedasticity

* Same as with linear relationship



e Correlation = covariance / combined total variance.
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Association vs. causation

Association does not imply causation!
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Correlation vs. causation

— X causes Y and Y causes X (bidirectional causation):

e Democracies trade more, therefore trade increases
democracy.

— Y causes X (reverse causation):

* The more firemen is sent to a fire, the more damage is done.

— X and Y are consequences of common cause:

* There is a correlation between ice cream consumption and
street criminality (both more prevalent during summer).

— There is no connection between X and Y (coincidence):

* Number of meaningless “funny correlations”.

— More examples here: http://tinyurl.com/85jfuby



http://tinyurl.com/85jfu6y

Models

* All models are wrong, some models are useful (Box 1976).

 Models (not only mathematical!) reduce and represent the
real-world phenomena.
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Statistical models

* We need a mathematical function for statistical prediction.

= Function changes input (values of predictor variable) to an
output (value of outcome variable) according to specific
rule(s).

INPUT x
Xt
Y =1(X); Y=2%X FUNCTION f:
ifX=2,thenY=4 )L
OUTPUT f(x)

e For different relationships between quantities, different
functions might be used.
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(Linear) regression

Regression is a statistical method used to predict
scores on an outcome variable based on scores of
one ore more predictor variables.

Linear regression: models linear relationship.

Bivariate (simple) linear regression: uses only one
predictor variable.

Multivariate (multiple) linear regression: uses more
than one predictor variable.



Regression: terminology / notation

X Y

cause effect

independent variable | dependent variable

predictor variable outcome variable

explanatory variable |response variable

a,a, b,p0,BO, m|B,B,b g, e

intercept slope error /
residual

constant coefficient

alpha Beta




Linear relationship

* Arelationship where two variables are related in the first
degree; i.e. the power of variables is 1.

e Linear relationship is represented by formula:

outcome (dep. var.) = constant + coefficient*predictor + error
Y =B0 + B1X + € ; population regression function
Y=a+ bX+e;sample regression function

Y =0.75+ 0.425*X + 2.791; sample regression line

* Linear relationship is graphically represented by a straight line.



Linear regression: assumptions

Independence of observations (random sampling).
Normal distribution of Y.

Linear relationship between X and Y.
Normal distribution of residuals.
Homoscedasticity.

Independence of residuals (over time).
Applicable to metric level of measurement.
Sensitive to outliers.
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Anscombe's quartet
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Homoscedasticity u Heteroscedasticity e

stats.stackexchange.com
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Normal distribution of residuals

[ Observations. ]

—=

Histogram of residuals,
with normal overlay.
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Residuals

Restduals

Independence of residuals

Residuals Without Dnft
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Linear relationship

* Arelationship where two variables are related in the first
degree; i.e. the power of variables is 1.

e Linear relationship is represented by formula:

outcome (dep. var.) = constant + coefficient*predictor + error
Y =B0 + B1X + € ; population regression function
Y=a+ bX+e;sample regression function

Y =0.75+0.425*X + 2.791; sample regression line

* Linear relationship is graphically represented by a straight line.



Fitting a straight line
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Fitting a straight line
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Fitting a straight line
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Fitting a straight line




Ordinary least squares

Ordinary least squares (OLS): estimates parameters
(intercept and slope) in a linear regression model.

Minimizes squared vertical distances between the
observations (Y) and the straight line (predicted value
of Y =Y’).

Residual = (Y - Y’)

S(Y-Y)=0,;>(Y-Y')"2>=0
OLS: Y =min ) (Y-Y')"2



Ordinary least squares

 Comparison of mean and OLS estimation.
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Linear regression: example

e Assume we have two variables: X and Y.

X | Y
. .

2 | 2 |
3 |13 -
4 |375| -
5 [225| - |

* To what extent X explains Y?



Linear regression: example

e Statistics for calculating regression line:

m(X) m(Y) s(X) s(Y) r(x, Y)
3 2.06 1.581 1.072 0.627

* The slope (b): r(x, y) * (s(Y)/s(X)) ; same as 2

* The slope (b): 3(x — m(x))*(y — m(y)) / Z((x — m(x))"2)
* The intercept (a): m(Y) — b*m(X)

* b=0.627 *1.072 /1.581 =0.425
* a=2.06—-0.425*3=0.75



Linear regression: example

* Fitting a straight line by using OLS.
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Total / unexplained / explained variation

Ogsenred Data Point

tUnexplained variation (random)
Total

| Explained variation (from model) _ Variation

Regression Line

X

n.a.



 Residual: difference between observed values

Linear regression: example

Y and predicted values Y’ .

X Y Y’ Y=Y [(Y=-Y')r2
1 1 1.21 |-0.210 |0.044
2 2 1.653 [0.365 |0.133
3 1.3 [2.060 |-0.760 |[0.578
4 3.75 12.485 |1.265 |1.600
5 2.25 12.910 |-0.660 [0.436
sum 0 2.791




Linear regression: example

Model is a representation of the relationship
between variables. Linear regression model
predicts (models) values of Y based on values of X.

Model is represented by formula in a form of
linear equation: Y =a + bX +e.

Model in example: Y =0.75 + 0.425*X + 2.791.

R command: Im()



Linear regression: interpretation

Model in example: Y =0.78 + 0.425*X
Intercept: value of Y when value of X =0.
Slope: change in Y when X increases by 1 unit.
Error: unexplained variance of Y.

What is the Y’ for X =27
Y’ =0.75 + (0.425)*2
Y =0.75+0.850=1.6




Coefficient of determination

 CoD (R"2) indicates proportion of Y explained variation
(SSM) to Y total variation (SST) = SSM / SST.

e SST =SSM (explained var.) + SSR (unexplained var.)

SSY =S8S8T

SS X model (SSM) SSR



Coefficient of determination

Unexplained variation = difference between observed
values of Y and predicted values of Y’ (regression line) =
sum of squares of residuals (SSR).

Explained variation = difference between predicted values
of Y’ and mean of Y = sum of squares of model (SSM).

Total variation = difference between observed values of Y
and mean of Y = SSE + SSR = sum of squares of total
variation (SST).

Explained variation (%) = SSM / SST =
coefficient of determination = R"2



Coefficient of determination: example

Y’ meany | (Y —mY) (Y — mY)r2 Y Y’ Y-Y (Y=-Y)r2
1.210 | 2.06 -0.850 0.72 1 1.210 |-0.210 0.044
1.653 | 2.06 -0.425 0.18 2 1.653 |0.365 0.133
2.060 | 2.06 0 0 1.3 2.060 |-0.760 0.578
2.485 | 2.06 0.425 0.18 3.75 2.485 | 1.265 1.600
2.910 | 2.06 0.850 0.72 2.25 2.910 |-0.660 0.436
sum (SSM) 1.81 sum (SSR) 2.791

* SST=S5M +SSR=1.81+2.791=4.59
e RAR2=SSM /SST=1.81/4.59=0.39=39%




Coefficient of determination

 CoD (R"2) indicates proportion of Y explained variation
(SSM) to Y total variation (SST) = SSM / SST.

e SST =SSM (explained var.) + SSR (unexplained var.)

SSY =S8S8T

SS X model (SSM) SSR
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Rationale for multiple regression

e But: What if the outcome variable is influenced by more
than one predictor variable?

* (Always the case...)

 E.g.: Income can be predicted by completed years of
education and gender.

— ldea of statistical control



Statistical control: confounding effect

* Confounding effect: third variable affects the relationship

between predictor(s) and outcome variable.

* A confounder is a variable that correlates both with predictor(s)

and outcome variable.

e E.g.: Relationship between income (predictor) and risk of heart
attack (outcome) may be confounded by age (confounder).
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Multiple regression: assumptions

Independence of observations (random sampling)
Normal distribution of Y

Linear relationship between X and Y

Normal distribution of residuals
Homoscedasticity (variance of error is constant)
Independence of residuals (over time)

No high collinearity between predictors



Collinearity

e Collinearity (multicollinearity) = two or more predictors are
correlated.

(DO



Correlation matrix of Vs as a simple diagnostic
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Multiple linear relationship

 We add further coefficient*predictor terms into the formula:

outcome (dependent variable) =

constant +|[coefficientl*predictorl + coefficient2*predictor2|+ error

Y =B0+ B1X1 + B2X2 + € ; population regression function
Y=a+blX1l+b2X2 +e; sample regression function
Y =0.75+0.425*X1 + 0.132*X2 + 2.791; sample regression line



Fitting a plane
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Response plane
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Slope in multiple regression

* Slope gives us information about the change of the outcome variable
caused by the predictor while controlling for other predictors in the
model.

 E.g.: what is the effect of education (predictor) on income (outcome
variable) when we control for age (predictor)?

income <- 6000 + 500*education + 100*age

* Interpretation: for each change in one unit of education (e.g. year),
the average unit change of income is 500 unit (i.e. 500 K¢) if age is not
changing.



Interpretations

If the coefficients are statistically significant:

If X and Z uncorrelated = reduction to bivariate slopes (X and Z
are independent on each other)

If X correlates with Y more than Z - effect of X is stronger
(while controlling for Z)

If Z correlates with Y more than X - effect of Z is stronger
(while controlling for X)

If X and Z (almost) perfectly correlated - denominator close to
0, resulting values approach infinity (non-interpretable) 2
problem of collinearity (reduction to one variable)



Conclusions

Linear regression allows us to go beyond associations measurement

— Prediction
— Statistical control

Models are always imprecise!

— Reduction as well as measurement

Extensions of regression framework

— Logistic regression (binary category outcome variable)

— Multinomial logistic regression (multiple category outcome variable)
— Ordinal regression (ordinal outcome variable)

— etc.



