Reading statistical texts

Lukáš Lehotský & Petr Ocelík

Reliability and validity

Validity

- Analysis leads to true conclusions
- Internal validity
 - Construct
 - Concept
- External/ecological validity

Reliability

- Repeating research steps yields same outcomes
- Replicable research
 - Reinhart, C. M., & Rogoff, K. S. (2010). Growth in a Time of Debt (Working Paper Series). http://doi.org/10.3386/w15639
 - Herndon, T., Ash, M., & Pollin, R. (2014). Does high public debt consistently stifle economic growth? A critique of Reinhart and Rogoff. *Cambridge Journal of Economics*, 38(2), 257. http://doi.org/10.1093/cje/bet075

Beyond description

Distribution

Description vs. inference

- What if collecting real data not feasible?
 - Attitude of Czech population to building NPP
 - Influence of distance from NPP to NPP acceptance
 - •
- Rely on sampling
 - How can we be sure we can generalize from sample to population?
- Central limit theorem
 - If we take a sample from population which large enough, it approximates the mean of population

Central limit theorem

Central limit theorem

Standard error of the mean

- Don't know the mean, just approximate
- Standard error of the mean
 - Approximation how close our sample mean \bar{x} is to the true population mean μ
- Ratio of standard deviation of the sample and number of sample observations
- $SEM = \frac{s}{\sqrt{n}}$
- More observations \rightarrow smaller *SEM*
- *s* shows dispersion of sample data, *SEM* describes quality of the sample

Standard error of the mean

Confidence intervals

Confidence interval

- Some dots further, some closer to the real mean of population
- Confidence interval over parameter
 - Interval of confidence that random samples will contain the real mean of the population
 - E.g. 95% confidence interval for μ in 95% of cases, mean will lie between lower and upper bound of the interval
 - E.g. 99% confidence interval for σ in 99% of cases, population standard deviation lies within the interval

Confidence interval

- How likely is our sample mean \bar{x} equal to the population mean μ ?
- But we don't know the real mean!
- However, we assume
 - Normal distribution of data
 - Normal distribution of data samples
- We can calculate confidence interval of the sample mean \bar{x} thanks to knowledge of the SEM
- 95% confidence interval "industry standard"

Confidence interval

Distribution

Null hypothesis

Null hypothesis

- We can't prove any hypothesis based on the sample
- We may only prove there is little chance the relation is random
- Null hypothesis observed relation is result of random variation
- Thus, we aim to prove that it is highly unlikely the relationship between variables is generated by chance – reject the null hypothesis

Statistical significance

Statistical significance

- Probability that the sample comes from the population where the effect happens by chance
- E.g. probability the null hypothesis is valid
- Denoted as p
 - $p \leq 0.05 95\%$ statistical significance (1 in 20)
 - $p \leq 0.01 99\%$ statistical significance (1 in 100)
 - $p \leq 0.001 99.9\%$ statistical significance (1 in 1000)

- Same with sum of different numbers
 - a + b + c + d = 100
 - If c = 5, than a + b + 5 + d = 100
- Number of observations $n \in \{a, b, c, d\}$
- Number of variables $k \in \{c\}$
- Degrees of freedom n k 1

Why so complicated?

Reliability and validity!

Dolan et. al. – "big 5"

- 500 observations 500 first year psychology students
- Measurement of the Dutch translation of the NEO-PI-R – NEO Personality Inventory
- Big 5 personality traits
 - Agreeableness
 - Neuroticism
 - Conscientiousness
 - Extraversion
 - Openness

Pearson Correlations

		Openness	Neuroticism
Openness	Pearson's r	_	-0.010
Openness	p-value	_	0.817
Nouroticism	Pearson's r		_
INEULOLICISIII	p-value		—

Pearson Correlations

		Extraversion	Openness
Extravorsion	Pearson's r	_	0.267
EXITAVEISION	p-value	—	< .001
Openpass	Pearson's r		_
Openness	p-value		—

N7		Attitude [%]			Value of
Variable		Convinced pro-coal	Reserved	Anti-coal	correlation ¹
Posidonco	Horní Jiřetín	7	32	61	0.250**
Residence	Janov	19	32	49	0.555
	Low	22	34	44	
Place attachment	Medium	15	30	55	0.262*
	High	0	31	69	
Condor	Males	15	34	51	D C
Genuer	Females	14	31	55	11.5.
	<20	0	50	50	
	20–29	20	13	67	
4.50	30–39	18	27	55	D C
Age	40–49	20	30	50	11.5.
	50–59	11	44	45	
	60+	10	35	55	
	Elementary	10	35	55	
Education	Secondary	16	34	50	n.s.
	Tertiary	7	29	64	
Employment	Yes	25	67	8	0.465**
in coal industry	No	4	32	64	U.403
Total		14	32	54	

Geographical and sociodemographic differences in attitudes to coal mining.

¹The values of correlation (Pearson's r) are significant at the level ** <0.01 or *<0.05; n.s. means a non-significant correlation.

(Frantál, 2016)

Bivariate correlations between outcome variables and predictor variables (N=248).

		1	2	3	4	5	6	7	8
1	General acceptance	-							
2	Local acceptance	.70***	-						
3	Affect	.45***	.45***	-					
4	Perceived risk	46***	41***	46***	_				
5	Perceived benefit	.64***	.43***	.36***	39***	-			
6	Support for renewables	09	16*	18**	.16*	08	-		
7	Acceptance of energy transition	08	16*	12	0.09	09	.63***	_	
8	House ownership (a)	0.12	.20**	.13*	09	02	.14*	.16*	_
9	Gender (b)	08	0.03	18**	0.07	18**	0.07	.15*	.23***

(a) House ownership was coded 1=yes, 2=no.

(b) Gender was coded 1=male, 2=female.

* p<.05, ** p<.01, *** p<.001

(Lienert - Suetterlin - Siegrist, 2015)

Linear regression

Linear regression

- Regression output
- Dolan et. al. "big 5"
- Let's test if "openness" → "agreeableness"

Linear regression output

Model Summary											
Model	R		R ²		Adjusted R ²		RM	RMSE			
1	0.159			0.02	5		0.023		0.3	0.346	
ANOVA											
Model		Sum of Squares		df		Mear	Square	F		р	
1	Regression	1.555		1		1.555		12.95		< .(001
	Residual	59.777		498		0.12					
	Total	61.332		499	I						
Coefficie	nts										
Model	Agreeab.	Unstand.	Standa Error	ard	Stand.	t	р		CI 2.5%	6	CI 97.5%
1	intercept	2.845	0.165			17.29	91 <	.001	2.522		3.169
	Openness	0.164	0.046		0.159	3.599) <	.001	0.075		0.254

Model Summary						
Model	R	R ²	Adjusted R ²	RMSE		
1	0.159	0.025	0.023	0.346		

ANOVA							
Model			Sum of Squares	df	Mean Square	F	р
1	Regression		1.555	1	1.555	12.95	<.001
	Residual		59.777	498	0.12		
	Total	\backslash	61.332	499			

- R^2 sum of squares of **explained** variation to **total** variation
- $R^2 = \frac{SS_{model}}{SS_{total}} = \frac{SS_{regression}}{SS_{total}}$
- From R^2 , we may get R comparable to Pearson's rho correlation between indep. and dep. variable
- R² explains how much of the variance of dependent variable can be explained by variance of independent variable

- F-test
- $F = \frac{MSS_{model}}{MSS_{residual}}$
- Mean sum of squares of the model vs. mean sum of squares of residuals
- F explains the average increase of the prediction of the model compared to average model error
- F tells us if regression is of **any** use if we can reject null hypothesis at all

Model Summary						
Model	R	R ²	Adjusted R ²	RMSE		
1	0.159	0.025	0.023	0.346		

ANOVA						
Model		Sum of Squares	df	Mean Square	F	р
1	Regression	1.555	1	1.555	12.95 🔨	< .001
	Residual	59.777	498	0.12		
	Total	61.332	499			
				F =	$=\frac{MSS_{model}}{MSS_{residue}}$	

Model Summary						
Model	R	R ²	Adjusted R ²	RMSE		
1	0.159	0.025	0.023	0.346		

ANOVA							
Model		Sum of Squares	df	Mean Square	F		p
1	Regression	1.555	1	1.555	12.95		< .001
	Residual	59.777	498	0.12		$\overline{\ }$	
	Total	61.332	499				

Total

61.332

Model Summary								
Model	R		R ²	Adjusted	l R ²	RMSE		
1	0.159		0.025	0.023		0.346		
ANOVA								
Model		Sum of Squares	df	Mean Square	F	р		
1	Regression	1.555	1	1.555	12.95	< .001		
	Residual	59,777	498	0.12				

499

- RMSE
- Mean square error of residuals
 - Mean error of each observation from the model average distance of observations from the model
- Useful to understand the model fit higher the RMSE, lower fit the model has

Model S	Model Summary									
Model	R		R ² Adjust		d R ²	RMSE				
1	0.159		0.025	0.023	0.346					
ANOVA										
Model		Sum of Squares	df	Mean Square	F	р				
1	Regression	1.555	1	1.555	12.95	< .001				
	Residual	59.777	498	0.12						
	Total	61.332	499							

Adjusted R^2

- Adding variables to the model might help with explanation
- R² increases with more variables more significant variables may occur to explain the variance of dependent variable

# of observations	# of predictors	R^2
10	4	0.7
10	5	0.71
10	6	0.73
10	7	0.79

Adjusted R^2

- R² asumes each independent variable has effect on the dependent variable
- Adj. R² explains variation by independent variables that actually affect the dependent variable
- Adj. R² penalizes adding independent variables not explaining the variation of dependent variable

# of obs.	# of predictors	R ²	df	Adj. R^2
10	4	0.7	5	0.46
10	5	0.71	4	0.3475
10	6	0.73	3	0.19
10	7	0.79	2	0.055

Model S	Model Summary										
Model	R		R ²		Adjusted	l R²	RN	/ISE			
1	0.159		0.025	0.025		0.023		346			
ANOVA											
Model		Sum of Squares	df	Mean	Square	F		р			
1	Regression	1.555	1	1.555		12.95		< .001			
	Residual	59.777	498	0.12							
	Total	61.332	499								

Linear regression

- Fitting a straight line the model
- Line of best fit ordinary least squares (OLS)

•
$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n + \varepsilon$$

• Test if "openness" \rightarrow "agreeableness"

-	~~.		-
CO	ottu	CIOI	ntc
	CIII	LICI	IILD

Mod	el 🔽 Agreeab.	Unstand.	Standard Error	Stand.	t	р	CI 2.5%	CI 97.5%
1	intercept	2.845	0.165		17.291	< .001	2.522	3.169
	Openness <	0.164	0.046	0.159	3.599	< .001	0.075	0.254

 $\bullet y = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n + \varepsilon$

Coefficients												
Model	Agreeab.	Unstand.	Standard Error	Stand.	t	р	CI 2.5%	CI 97.5%				
1	intercept	2.845	0.165		17.291	< .001	2.522	3.169				
	Opennes	0.164	0.046	0.159	3.599	< .001	0.075	0.254				
	$y = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n + \varepsilon$											

Coefficie	ents							
Model	Agreeab.	Unstand.	Standard Error	Stand.	t	р	CI 2.5%	CI 97.5%
1	intercept	2.845	0.165		17.291	< .001	2.522	3.169
	Openness	0.164	0.046	0.159	3.599	< .001	0.075	0.254
		Agreeableness						
			0 1	2 Openness	3 4	5		

Coefficie	ents							
Model	Agreeab.	Unstand.	Standard Error	Stand.	t	р	CI 2.5%	CI 97.5%
1	intercept	2.845	0.165		17.291	< .001	2.522	3.169
	Openness	0.164 —	0.046	0.159	3.599	< .001	0.075	0.254
		Agreeableness		2	3 4	5		
				Openness				

- At x = 0, intercept (line start) is y = 2.845
 - Intercept does not necessarily have a real-life explanation
- For each x = 1, y = 0.164x
- Each additional x will yield additional y = 0.164
- Allows us to do predictions!

Coefficients										
Model	Agreeab.	Unstand. Standard Error	Stand.	t	р	CI 2.5%	CI 97.5%			
1	intercept	2.845 0.165		17.291	< .001	2.522	3.169			
	Openness	0.164 0.046	0.159	3.599	< .001	0.075	0.254			

- T statistic
- $t = \frac{coefficient}{standard\ error}$
- The **higher** the *t*, the **more reliable/significant** the coefficient is - the more variation the coefficient explains

Coefficients											
Model	Agreeab.	Unstand.	Standard Error	Stand.	t	р	CI 2.5%	CI 97.5%			
1	intercept	2.845	0.165		17.291	< .001	2.522	3.169			
	Openness	0.164	0.046	0.159	3.599 🔨	< .001	0.075	0.254			
$t = \frac{coefficient}{standard\ error}$											

Coefficie	ents							
Model	Agreeab.	Unstand.	Standard Error	Stand.	t	p	CI 2.5%	CI 97.5%
1	intercept	2.845	0.165		17.291	< .001	2.522	3.169
	Openness	0.164	0.046	0.159	3.599	< .001	0.075	0.254

- t statistic is important to get the significance value of our coefficient
- Statistical significance shows us to what extent there is a probability of acquiring the value of t statistic as a result of a random chance
- Statistical significance p
 - $p \le 0.05 95\%$ (at most 1 in 20)
 - $p \le 0.01 99\%$ (at most 1 in 100)
 - $p \le 0.001 99.9\%$ (at most 1 in 1000)

Coefficients									
Model	Agreeab.	Unstand.	Standard Error	Stand.	t	р	CI 2.5%	CI 97.5%	
1	intercept	2.845	0.165		17.291	< .001	2.522	3.169	
	Openness	0.164	0.046	0.159	3.599	< .001	0.075	0.254	

Coefficie	ents							
Model	Agreeab.	Unstand.	Standard Error	Stand.	t	р	CI 2.5%	CI 97.5%
1	intercept	2.845	0.165		17.291	< .001	2.522	3.169
	Openness	0.164	0.046	0.159	3.599	< .001	0.075	0.254

- Point estimates are not best way how to report on regression line
- Confidence intervals should be taken into account
- Confidence interval of the regression line should not include 0
 - Otherwise, there may be a chance null hypothesis can't be rejected

Coefficients									
Model	Agreeab.	Unstand.	Standard Error	Stand.	t	р	CI 2.5%	CI 97.5%	
1	intercept	2.845	0.165		17.291	< .001	2.522	3.169	
	Openness	0.164	0.046	0.159	3.599	< .001	0.075	0.254	

- Prediction
 - Suppose new observation x = 2.85
 - Point estimate is y = 2.845 + (0.164 * 2.85) = 3.3124
 - Taking into account confidence interval, the point estimate may be within range $y = \langle 3.2229 3.4019 \rangle$
 - E.g. point estimate of x = 2.85 should be reported as $y = 3.3124 \pm 0.0895$

Multiple regression

Model Summary									
R R ²				Adjusted R ²		RMSE			
0.164	0.164 0.027		0.023			0.336			
ANOVA									
	Sum of Square	es df		Mean Square	F		р		
Regression	1.552	2		0.776	6.865		0.001		
Residual	56.189	497		0.113					
Total	57.742	499							
Coefficients									
Openness	Unstand.	Standard Error	Stand.	t	р	0.025	0.975		
intercept	3.153	0.18		17.498	< .001	2.799	3.507		
Conscientiousnes	s -0.035	0.039	-0.04	-0.886	0.376	-0.112	2 0.042		
Agreeableness	0.161	0.043	0.166	3.693	< .001	0.075	0.246		

Sources

- Lienert, P., Suetterlin, B., & Siegrist, M. (2015). Public acceptance of the expansion and modification of high-voltage power lines in the context of the energy transition. *Energy Policy*, 87, 573–583. <u>http://doi.org/10.1016/j.enpol.2015.09.023</u>
- Frantál, B. (2016). Living on coal: Mined-out identity, community displacement and forming of anti-coal resistance in the Most region, Czech Republic. *Resources Policy*, 49, 385–393. <u>http://doi.org/10.1016/j.resourpol.2016.07.011</u>
- Love, J., Selker, R., Marsman, M., Jamil, T., Dropmann, D., Verhagen, A. J., Ly, A., Gronau, Q. F., Smira, M., Epskamp, S., Matzke, D., Wild, A., Knight, P., Rouder, J. N., Morey, R. D., & Wagenmakers, E.-J. (2015). JASP (Version 0.7.5)[Computer software].
- Dolan, C. V, Oort, F. J., Stoel, R. D., & Wicherts, J. M. (2009). Testing Measurement Invariance in the Target Rotated Multigroup Exploratory Factor Model. *Structural Equation Modeling: A Multidisciplinary Journal*, 16(2), 295–314. <u>http://doi.org/10.1080/10705510902751416</u>