Grand Strategy Session One Introduction to Grand Strategy and Unit and Systemic Influences 20 March 2017

Professor Bradley A. Thayer, Ph.D. Course: Grand Strategy Department of International Relations and European Studies Masaryk University Spring 2017

Objectives

- Introduction to grand strategy
- Why is it important
- Grand strategic options for the U.S.
- Systemic Influences
- Unit Level Influences

What is grand strategy?

- How a state defines its
 - Interests
 - Fundamental interests of the state
 - the threats to those interests
 - Internal threats
 - External Threats
 - The means to address threats
 - Diplomatic
 - Economic
 - Military

Interests

- Essential Interests
 - Protection from external and internal threats
 - Economic growth
 - Coherence of society, culture
 - Spreading ideology, democracy?
- Desirable Interests
 - Environmental
 - Humanitarian

Threats

- External Threats
 - Peer competitors, e.g. China
 - Major state threats, e.g. Russia
 - Nuclear proliferators, other WMD, e.g. Iran
 - Terrorism
- Internal Threats
 - Terrorism
 - Domestic Unrest

Means to address threats

- Diplomatic (State Department)
- Economy (Commerce and State Department)
- Ideology (State Dept., Hollywood, popular culture)
- Military
 - Airpower (Air Force)
 - Seapower (Navy)
 - Landpower (Army and Marines)
 - Covert Action/Forces (Special Operations Command-CIA)
 - Conventional vs. strategic forces (nuclear weapons, missile defense)
- Intelligence Community
 - CIA-Central Intelligence Agency
 - DIA-Defense Intelligence Agency
 - NSA-National Security Agency, the biggest intelligence agency
 - NRO-National Reconnaissance Office
 - NGA-National Geospatial-Intelligence Agency
- Allies (NATO)

Why Is Grand Strategy Important

- Big Impact on International Politics—Makes War or Peace More Likely
- Fundamental Issues
 - What Motivates the United States to Act as It Does
 - With Whom Does U.S. Ally
 - When Does U.S. Fight Wars, Use Force, Intervene
 - How Much Force (Including Nuclear Weapons)
- Big Impact on Your Life—Terrorism, Iraq, maybe Iran, Possibility of Nuclear War with China
- So, You May Not Be Interested in Grand Strategy but Grand Strategy May Be Interested in You

Grand Strategic Options

- Primacy
 - Emphasis on maximizing power, every area of the world matters, and military commitments there
- Selective Engagement (and Offshore Balancing)
 - Emphasis on sufficient power, only areas of economic power matter, military commitments there (no landpower commitment for offshore balancing)
- Isolationism
 - Emphasis on power for physical security of U.S., no military commitments

- Levels of Analysis
 The car crash—the driver (individual), the car (state), or environment, road conditions (system)
- First level of analysis—The individual
 - Psychological approaches, great men theories
- Second level of analysis—The state
 - Attributes of states—ideology, economic system
- Third level of analysis—The international system
 - The result of anarchy in international politics

State (Unit Level) Interests

- Interests
 - Security
 - Debate over how to achieve security—power sufficiency or power maximization
 - Kenneth Waltz, defensive neorealism, sufficiency, selective engagement
 - John Mearsheimer, offensive neorealism, maximization, hegemony, primacy

State Threats

- Depends on Interests
 - Fewest threats for isolationism—America fundamentally secure
 - Fewer threats for selective engagement—
 America and Allies relatively easy to defend
 - More threat for hegemony—interests are universal, many threats, great concern for credibility, e.g. Iraq, Vietnam

• Big Impact on grand strategy

- Anarchy causes the security dilemma
 - Under anarchy, the steps a state takes to make itself secure (arming, alliances) cause other states to arm: making all states armed but not secure
 - Influenced by geography (New Zealand) and military technology (nuclear weapons)
- Concern for security requires arming (creating militaries, intelligence communities) and forging alliances
- Constant security competition and sometimes war

System Causes Dominant State to be Concerned over Rising Powers

- The Theory of Hegemonic War
 - 4 aspects: Hegemonic war, stability, divergent growth rates, increased security competition, hegemonic war
 - Athens and Sparta, Rome and Carthage,
 Germany and Russia, Britain and Germany
 - U.S. and China

Systemic Problems of Alliances

- The Abandonment Problem
 - Weaker state's concern that the stronger will abandon it
 - Poland, Georgia, today
- The "Chain Gang" Problem
 - A state's security depends on its ally
 - Germany, Austria-Hungary in World War One
- The "Buck Passing" Problem
 - States want others to address the threat
 - France and Great Britain in World War Two

Unit Level Influences

- Ideology
- Culture/Strategic Culture
- History
- Economic System
- Nationalism
- Technology
- Interest Groups
- Military Effectiveness
- Type of military power—Conventional or Strategic (Nuclear, Biological or Chemical [NBC] Weapons, also called Weapons of Mass Destruction [WMD])

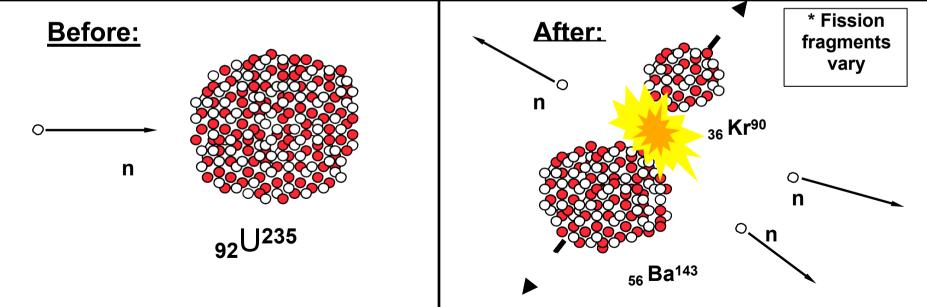
Unit Level Influences: Nuclear Weapons

- Deterrence may be nuclear or conventional
- Three theories of nuclear deterrence (1-mutual assured destruction [Jervis], 2-counterforce [Kahn], 3-manipulation of risk [Schelling])
- Primacy requires counterforce capabilities
- Nuclear deterrence
 - Secure second strike capabilities allow deterrence to obtain
 - Nuclear forces
 - Survivable Triad
 - Nuclear command and control
 - Detection of attack, dissemination of orders, connectivity
 - Low risk of nuclear inadvertence

Nuclear Forces

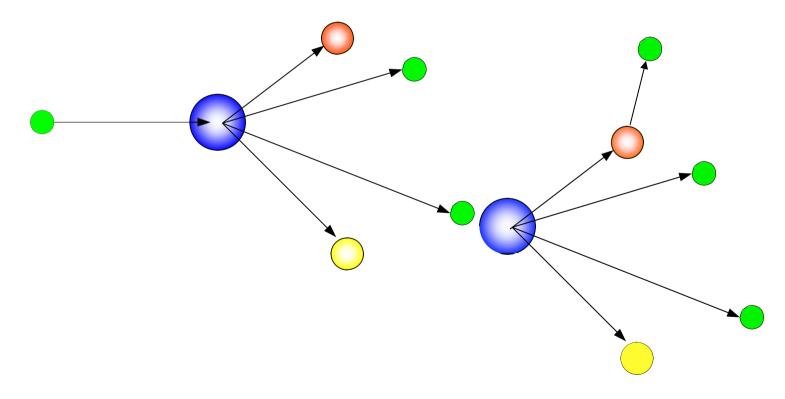
- Multiple delivery systems—Triad
 - Intercontinental ballistic missiles (ICBMs)
 - Submarine launched ballistic missiles (SLBMs)
 - Bombers, cruise missiles
- Accuracy vs. Survivability
- Counterforce vs. Countervalue
- New Triad—Triad plus defenses and responsive infrastructure

Command and Control

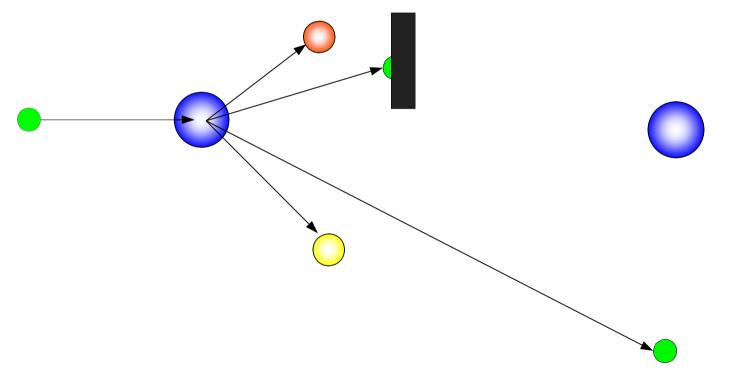

- Always/Never Dilemma
 - Nuclear must always be able to be used with proper authority but never otherwise
- Possibility of decapitation
 - Destroying the command and control system to prevent ability to detect and respond to attack
- To prevent decapitation, advanced detection (BMEWS, DSP) and command (Looking Glass, E-6 aircraft, ELF, much redundancy)

Safeguard against nuclear inadvertence

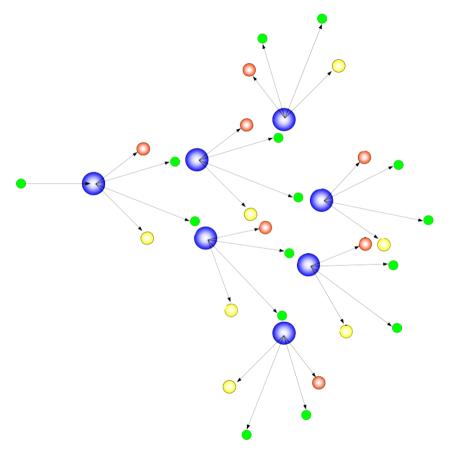
- Ensure always/never dilemma
- Risks of stolen nuclear weapons, accidents, and unauthorized launch
- Environmental Safety Devices (ESDs)
- Permissive Action Links (Pals)


Basic Neutron Reactions

- Fission
 - the splitting of a nucleus into two parts (called fission products), accompanied by the release of energy and neutrons
 - Fission fragments are intensely radioactive and tend to have excess neutrons
 - Most neutrons are "prompt," some are "delayed"


Chain Reactions

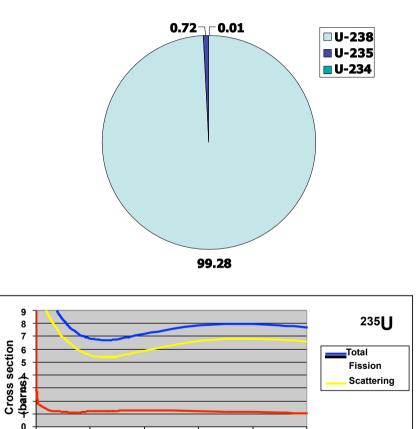
• Neutrons produced in the fission reaction can go on to cause more fissions.


Chain Reactions -

• If the neutron escapes the system or is captured by another process, the chain reaction terminates.

Chain Reactions - Branching

- If more than one neutron from each fission goes on to produce more fissions, the chain reaction can grow rapidly.
- Delayed neutrons make control of this rate of branching possible.



Chain Reactions

- To maintain a critical state, must balance neutron production with losses (from leakage and capture)
 - To increase branching, limit termination
 - Remove materials that compete for the neutrons
 - Reflect escaping neutrons back into the system
 - Increase the density of the nuclear fuel
 - Increase the probability that the target material will capture the neutron and then fission (e.g., use a moderator to slow the neutrons down to energy where the fission cross section is larger).
 - To limit branching, increase termination
 - Introduce materials that absorb neutrons
 - Arrange the system to allow more neutrons to escape to the outside

Uranium

- U-235 is the only naturally occurring fissile isotope.
- However, it is less than 1% of naturally occurring uranium.
- U-238 competes with U-235 for neutrons, thus interfering with the chain reaction.
 - enrichment separates these isotopes to increase the proportion of U-235.
- U-238 can absorb neutrons to produce Pu-239, which is also fissile.

2

Energy (MeV)

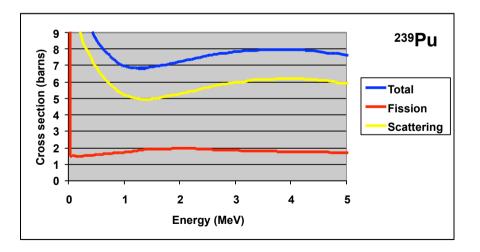
٥

1

3

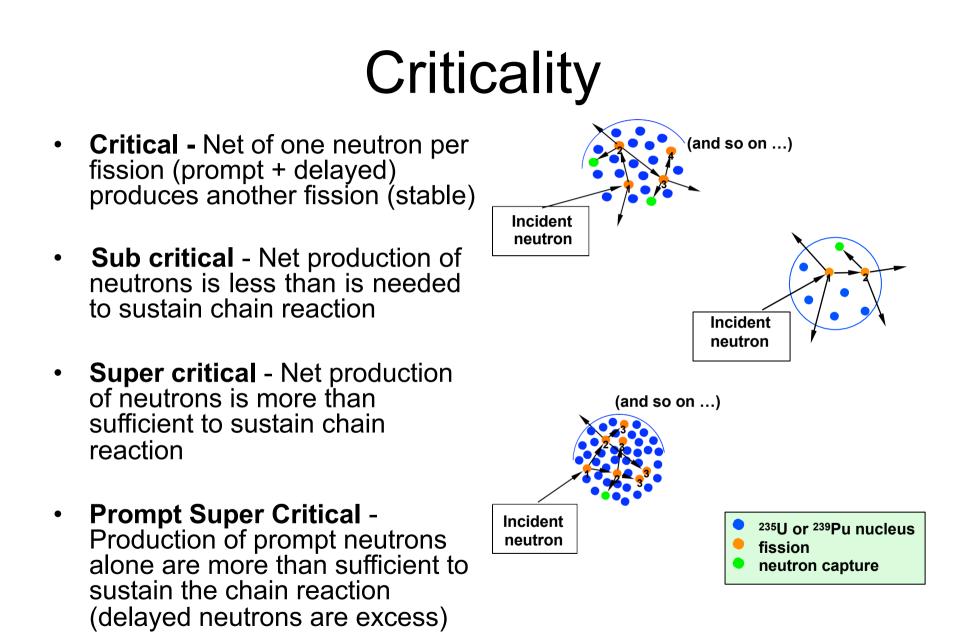
4

5


Plutonium

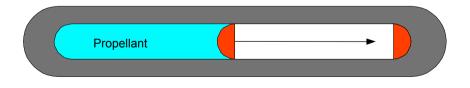
- U-238 absorbs a neutron, becoming U-239, which decays to Pu-239.
- When exposed to neutrons, some of the Pu-239 will fission and some will absorb neutrons to become Pu-240, which presents problems in a weapon.
- Therefore, to obtain relatively pure Pu-239, one must limit time in the reactor.

$${}^{1}_{0}n + {}^{238}_{92}U \rightarrow {}^{239}_{92}U + {}^{0}_{0}\gamma$$

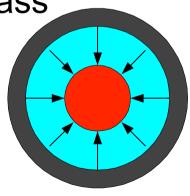

$${}^{239}_{92}U \rightarrow {}^{239}_{93}Np + {}^{0}_{-1}\beta + {}^{0}_{0}\nu^{*}$$

$${}^{239}_{93}Np \rightarrow {}^{239}_{94}Pu + {}^{0}_{-1}\beta + {}^{0}_{0}\nu^{*}$$

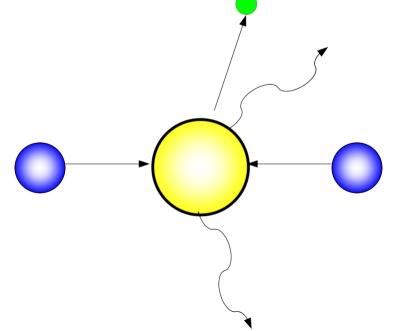
Fission Nuclear Materials - 2 Basic Choices


- Uranium Enrichment
 - To get fissile U-235, must enrich natural uranium.
 - Because all isotopes of Uranium are chemically identical, enrichment must utilize the slight mass difference.
- Plutonium Production & Reprocessing
 - Since all other fissile materials must be produced through neutron absorption, they can only be found in material previously irradiated in a reactor.
 - Reprocessing refers to chemical processing of irradiated material, which is needed to extract the fissile material.

Fission Weapon Concepts


• Gun Type

 rapidly bringing together two subcritical masses to achieve a prompt supercritical mass


• Implosion Type

 compressing a subcritical sphere of special nuclear material to form a prompt supercritical mass

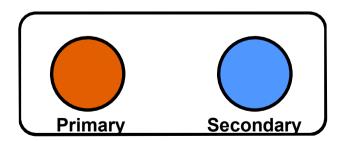
Fusion

 Process in which nuclei of lightweight elements combine to form a more tightly bound nucleus with the simultaneous release of energy



Fusion Fuels

- Deuterium (H-2, "D")
 - 0.015% of naturally occurring Hydrogen
 - separable from water as D₂O
- Tritium (H-3, "T")
 - produced by bombarding lithium with neutrons
 - half-life of 12.3 years
- Energy produced per kg of fuel in "D"-"T" fusion is four times that of U-235 fission ${}_{1}^{2}H+{}_{1}^{3}H\rightarrow{}_{2}^{4}He+{}_{0}^{1}n$


Fusion Reactions

- These reactions don't take place simply by mixing the ingredients together
 - The nuclei (not neutrons) must come together
 - Very strong electrostatic repulsion must be overcome
 - Thermonuclear reactions can be induced by high density and high thermal energy, requiring (temporatures pr) the order of 100,000 000 °K

Fusion Weapon Concepts

- A nuclear fission reaction is needed to produce the necessary temperatures for nuclear fusion to take place
- X-rays from the fission reaction are used to compress the secondary to cause fusion before the primary disassembles

