

A RECOGNIZED INDEPENDENT CENTRE OF THE UNIVERSITY OF OXFORD

Cost Analysis

James Henderson April 2018

The Economics of Energy Corporations (2)

Key Cost Elements

Main assumptions

- Capital expenditure (initial investment)
- Operating expenditure (ongoing cost of operations)
- Transportation (getting the product to market)
- Taxes (operating taxes and profit tax)
- CAPEX, OPEX, Transport and Tax

Capital Expenditure - CAPEX

Key parameters

- Size of field
- Difficulty of geology
- Location of field
- Quality of oil/gas
- Competition for contractors / availability of local companies

Breakdown of costs for US onshore fields

Source: IHS Oil and Gas Upstream Cost Study commissioned by EIA

• Different contractors for each element, can costs will vary by region and level of competition

Complex models are used by engineers

Project: SCEP Sample System							Project ID: rSSAMPLE							
Component	Name: Root				-	Comp	onent ID:	000	000000	0000000	00			
component T	ype Comp	onent Cost Dri	ver Attrib	utes —										
New	RELY	nominal 💌	DATA	nominal	*	CPLX	nominal	*	TIME	nominal				
Modified Exis	ting				_		-	_			_			
0 % Design	Mod. STOR	nominal 💌	VIRT	nominal	•	TURN	nominal	*	ACAP	nominal				
0 % Code I	ADD AEXP	nominal	PCAP	nominal	-	VEXP	nominal	-	LEXP	nominal				
0 % Test M	lod. HODE	nominal		ominal	-	CCED	nominal	-		-82				
ctual Compone	nt DSI:	Inominai 💽	TTOOL	IUIIIIIai		SUED	Inoninai							
mments:				-					OHR	ale. 10.00				
mments: s is the root comp	onent of the SCEP Sam	ple System.			_	2	Pr	ojec	он в <i>1 Маи</i> 1 Фи	igation	,			
mments: s is the root comp Phase	onent of the SCEP Sam Man-Months	ple System Cost (K\$)	м	onths	St	aff	Pr	ojec A GO	он в <i>1 Nav</i>	Find Compo	nent			
mments: s is the root comp Phase PD	onent of the SCEP Sam Man-Months 6.3	ple System Cost (K\$) 32.4	M	onths	St 2	aff .4	Pr ↓	ojec A GO	OH R	Find Compo	nent ling			
Phase PD DD	onent of the SCEP Sam Man-Months 6.3 9.1	Cost (K\$)	M	onths	St 25	aff .4	Pr	ojec A GO	H Nav	igation Find Compo	nent			
Phase PD DD CUT IT	onent of the SCEP Sam Man-Months 6.3 9.1 9.8 9.8 9.8 9.8	Die System Cost (K \$) 32.4 38.1 37.3 46.7	M	2.7 1.6 2.6	St 25.64	aff .4 .8 .3 .8	Pr	ojec A GO ¥		Find Compo	nent			
Phase PD DD CUT IT Total	Man-Months 6.3 9.1 9.8 9.8 35.1	Cost (K\$) 32.4 38.1 37.3 46.7 154.5	M	2.7 1.6 1.6 2.0 7.8	St 2 5 6 4	aff 4 8 3 8		ojec A GO ¥ ew Cł	oh R A Nav.	igation Find Compo	, nent			

- Cost estimates based on historical precedent and prices of key inputs today
- Steel price a key input, for example

Timing and planning is vital, with any slippage being potentially very expensive

ID		Task Name	Duration	Start	Finish	Predecessors		Feb 23	. '03	Mar	2. '03		Mar	9, '03
	0						WTFS	S M	TWT	FSS	MTW	T F S	S	M T W
1		MSE PROJECT	329 days?	Mon 1/20/03	Thu 4/22/04									
2		Background Reading & Research	12 days?	Mon 1/20/03	Tue 2/4/03									
3	0	Timelog Update	321 days	Mon 1/27/03	Mon 4/19/04				1					
69		Phase 1: Overview & Requirements	239 days?	Tue 2/11/03	Fri 1/9/04	2								
70		Project Overview Document	1 day	Thu 2/20/03	Thu 2/20/03		Gant	1						
71		Initial Program Analysis	4 days	Tue 2/11/03	Fri 2/14/03									
72		Initial Object Model	1 day?	Mon 2/24/03	Mon 2/24/03				Ganti					
73		Software Requirement Specification	4 days	Thu 2/27/03	Tue 3/4/03	72			Ĭ.		Ga	nti		
74		Software Quality Assurance Plan	4 days	Wed 3/5/03	Mon 3/10/03	73					Ľ.			Ganti
75		Cost Estimation	4 days	Mon 3/10/03	Thu 3/13/03									
76		Architecture Elaboration Plan	1 day?	Mon 12/15/03	Mon 12/15/03									
77	==	Demonstration	3 days	Tue 12/16/03	Thu 12/18/03	72								
78	==	Presentation 1	1 day?	Fri 1/9/04	Fri 1/9/04	70,71,74,75,76,77								
79		Phase 1 Complete	0 days	Fri 1/9/04	Fri 1/9/04	78								
80		Phase 2: Design and Specifications	21 days	Mon 1/12/04	Mon 2/9/04	79								
81		Implementation Plan	4 days	Mon 1/12/04	Thu 1/15/04									
82		Architecture Design	5 days	Tue 1/13/04	Mon 1/19/04									
83		Test Plan	6 days	Mon 1/19/04	Mon 1/26/04									
84		Formal Requirement Specification	6 days	Mon 1/26/04	Mon 2/2/04									
85		Design Documentation	4 days	Tue 2/3/04	Fri 2/6/04									
86		Presentation 2	1 day	Mon 2/9/04	Mon 2/9/04	81,82,83,84,85								
87		Phase 2 Complete	0 days	Mon 2/9/04	Mon 2/9/04	86								
88		Phase 3: Implementation	28 days?	Tue 3/16/04	Thu 4/22/04	87								
89		Implementing the project	10 days	Tue 3/16/04	Mon 3/29/04									
90		Testing	7 days	Tue 3/30/04	Wed 4/7/04	89								
91		Documentation	10 days	Thu 4/8/04	Wed 4/21/04	87,89,90								
92		Final Presentation	1 day?	Thu 4/22/04	Thu 4/22/04	91								
93		Phase 3 Complete	0 days	Thu 4/22/04	Thu 4/22/04	92								

Spending trends tend to move with the oil price

- As prices and revenues rise, so companies are keen to spend more and contractors are able to charge more
- The oil industry is renowned for not being very cost efficient

Recent low prices have forced a re-think on costs

Source: DW250 – Capital Cost Briefing

- Upstream costs have been brought down by 30-40% in many countries
- Breakeven oil price for planning purposes now generally \$50 per barrel

Availability of equipment also a key driver

- Competition for equipment drives prices up
- US shale rig count a key indicator
- Australian LNG project cost inflation in 2011-2015

The rebound in oil price has encouraged more spending

- Are we heading for another boon bust cycle?
- Can the oil industry control costs as oil prices rise?

Comparison of capex by countries

Source: Rystad Energy

- Low investment costs in Middle East thanks to huge reserves and easy conditions
- Highest costs offshore, especially in deep water

Comparison of field capex

- Specific fields exemplify the country trends
- Offshore fields are more expensive (Lula), as are those with complex geology (Kashagan)
- Onshore conventional fields (Ghawar, Novy Port) are lower cost

Operating Costs

Key Assumptions

- Lifting costs getting the oil out of the ground
 - Electricity
 - Rig costs
 - Employment costs
- Transportation moving the oil to market
 - Pipeline distance and tariffs
 - Shipping costs and distance
 - Truck or rail freight
- Operating taxes
 - Royalties
 - Export tax
 - Production sharing agreement
 - Other local taxes

Lifting Costs

- Generally calculated by local experts with knowledge of specific environment
- If a general assumption is needed, then company or country metrics can be used

Contrasting operating costs

Saudi Arabia

- Huge reserves located in close proximity
- Potential for large synergy benefits
- Relatively benign operating environment
- Low costs per barrel

North Sea

- Tough environment
- Remote location
- Relatively small reserves
- Higher costs per barrel

Long Run and Short Run Costs

- Long Run Marginal Cost = total cost of oil extraction over life of field
- Short run Marginal Cost = cash cost of extracting a barrel of oil today
- LRMC of conventional oil (especially offshore) is high because of significant upfront capital costs
- However, SRMC is low because once costs have been incurred companies will extract oil as long as they can cover operating costs
- For unconventional (shale) oil LRMC is low because capital costs are low
- However, the bulk of costs are on-going operating costs (continuous drilling of new wells) so SRMC is high
- Shale oil more likely to react to low oil prices faster reaction time an higher short-run costs

Oil is a global commodity

- Oil is traded in multiple directions across the globe
- Much of the trade originates from the Middle East and flows West and East

Russia's huge pipeline system

Oil, gas pipelines transiting Ukraine Varandey Barents Mumanska Gas pipeline - Oil pipeline uchora Krasnoleninsi FINLAND Ust-Luga Valdai Torzhok Moscow B Kaliningrad Gdansk Worknes Leipzig Butinge Casplan Pipelir ROMANIA khoretsk Erzurum Ankara Baku-Tbillsi-Ceyhan (BTC) IRAN

Oil tanker and the Panama Canal

Transportation Cost

- Main driver of cost is distance
- Mode of transport also important onshore pipelines versus offshore tankers
- Most expensive is rail or truck transport, due to lower individual volumes

Gas transportation can get complex

- Gas is also transported by pipeline and ship
- Pipelines have dominated, but LNG is globalising the gas market
- Liquefaction and regasification then become an integral part of the value chain
- Costs are increased, but new markets can be accessed
- From a modelling perspective, LNG plants are included in capex, while shipping and regas costs are generally included in transport
- Shipping tariffs are based on journey time (days) multiplied by freight rates, which can vary significantly over time

Gas trade flows (bcm)

- Gas trade flows via two transport methods pipeline and LNG
- Historically pipeline flows have dominated, leading to regionalisation
- LNG is now turning gas into a more global commodity

Long Distance Pipeline

Yemen Liquefaction Facility

LNG Tankers

LNG tanker freight rates

• Significant volatility driven by LNG demand and ship-building investment

LNG Import and Regas Terminal Jurong Island, Singapore

Taxation

Tax and Royalty Regime

- The most common tax regime includes operating taxes and profit tax
- Operating taxes are normally taken from revenues
 - Export tax (on export revenues only)
 - Royalty (on all production)
 - Specific local or regional taxes (for regional government support)
- Revenue taxes are simple to collect, but can be penal because they do not take investment costs into account
- Sometimes governments alleviate the risks of revenue taxes by introducing a sliding scale relative to the oil price

Types of taxes

• Export Tax

- Normally a % of export revenues
- Occasionally banded by oil price ranges
- Focus tax on premium market and prices
- Royalty
 - Ensures that government gets a minimum amount of revenue
 - Can be a % of overall revenues or a fixed amount per barrel of production
 - Very regressive, as takes no account of cost recovery, but very easy to collect to favoured in countries with dubious accounting regulation
- Regional taxes
 - Levied by local governments to support regional infrastructure
 - Often used to fund schools, hospitals etc.
 - Can be open to significant negotiation
- Corporate Tax (Profit Tax)
 - Levied after all costs have been taken into consideration (including other taxes)
 - Often a complex calculation, but does allow for reclaiming of expenses

The Key is Cost Recovery

- Can you get your money back before you start paying higher taxes
- The sooner you recover your money the better for your project economics
- Revenue taxes do not allow for cost recovery
- Depreciation offers some element of cost recovery in a tax and royalty scheme
- Another term for it is "cost oil", which is used in Production Sharing Agreements (PSAs)

Depreciation

- Depreciation is an allowance against profit tax
- An accounting calculation to reduce "pre-tax profits"
- Has no cash impact
- Reduces corporation (profit) tax and effectively allows cashflow to the company to be increased
- Encourages a faster recovery of costs, although not perfect
- PSA Cost oil has the same impact, and is a subject of fierce negotiation

Production Sharing Agreements

- Specific tax and legal regimes for individual projects
- Negotiated with government before first investment is made
- Legally guaranteed for the life of a project (although this is not always the case)
- Normally based on a split of **cost oil** and **profit oil**, although can also include a royalty payment
- Cost oil allows the company a larger share of revenues until costs are recovered
- Profit oil is the split of revenues after costs have been taken into account it tends to increase in importance once costs have been recovered
- Governments sometimes also demand a royalty in order to guarantee a minimum amount of revenue immediately

text

• text

