

PhDr. Tomáš Vlček, Ph.D.

International Relations and Energy Security Department of International Relations and European Studies

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Content

- Basic Quantities and Units
- Energy Transformation
- Basics of Electricity
- Electricity System
- AC/DC History and Differences
- Transfer and Distribution of Electricity
- Pricing and Market
- Regulation of Electricity
- Electricity Trading

What is Electricity?

http://www.youtube.com/watch?v=8gvJzrjwjds

What is Electricity?

Electricity has many advantages

- easy to handle
- simple transfer
- it is clean and non-polluting
- it is elegant and inexpensive

Basic Quantities and Units

- U (V) Voltage unit 1 volt
- I unit 1 ampere Current
- unit 1 ohm (Ω) Resistance R
- Installed capacity Ρ unit 1 watt
- Energy / work Ε
- Frequency f
- Efectivity η

- unit 1 joul (Ws), j Wh
- unit 1 hertz
 - dimensionless quantity (%)

Basic Quantities and Units

- fluorescent lamp 8–25 W
- lightbulb 25–200 W
- laptop (sleep) 12 W
- laptop 20 W
- PC + LCD monitor 80 W
- colour TV 100 W
- washing machine 500-2,000 W
- iron 1,000 W
- el. pan/hot-plate 1,200 W
- toaster 1,200 W
- * 9/2014 1,600+ W banned in EU; 1/2017 900+ W banned in EU

- dishwasher 1,500 W
- vacuum-cleaner 1,000–2,000 W*
- tea-kettle 1,200–2,000 W
- electric locomotive 2 MW
- electric induction furnace 40
 MW

Basics of Electricity

- Installed Capacity
- Electricity Production (work)
- Capacity Factor
- Efficiency and Energy Transformation

Installed Capacity in the Electricity Grid on 31 December 2012			
Type of Power Station	Installed Capacity (MWe)	Percentage (%)	
Thermal Power Station	10644	51.9	
Gas Combined Cycle Power Station	521	2.5	
Gas Fired Power Station	750	3.7	
Hydroelectricity	1069	5.2	
Pumped-storage Hydroelectricity	1147	5.6	
Nuclear Power Station	4040	19.7	
Wind Power	263	1.3	
Solar Power	2086	10.2	
Geothermal Power	0	0	
Total	20520	100	

Gross Electricity Production in 2012				
Type of Power Station	Electricity Production (GWh)	Percentage (%)		
Thermal Power Station	47 261.0	53.9		
Gas-fired and Gas Combined Cycle Power Station	4 435.1	5.1		
Nuclear Power Station	30 324.2	34.6		
Hydroelectricity (incl. Pumped- storage Hydroelectricity)	2 963.0	3.4		
Wind Power	417.3	0.5		
Solar Power	2 173.1	2.5		
Total brutto production	87 573.7	100		
Total netto production	81 088.4	92.6% of brutto production		
Source: Energetický regulační úřa	d, 2013; percentages by T. Vlček.	1		

Capacity Factor in 2012

Type of Power Station	Potential Eletricity Production (GWh)	Electricity Production (GWh)	Capacity Factor (%)	
Thermal Power Station	93 241.4	47 261.0	50.7	
Gas-fired and Gas Combined Cycle Power Station	11 133.9	4 435.1	39.8	
Nuclear Power Station	35 390.4	30 324.2	85.7	
Hydroelectricity (incl. Pumped-storage Hydroelectricity)	19 412.2	2 963.0	15.3	
Wind Power	2 303.9	417.3	18.1	
Solar Power	18 273.4	2 173.1	11.9	
Source: Energetický regulační úřad, 2013; percentages by T. Vlček.				

How did I calculate the Potential Electricity Production?

Boiler variants of Coal-fired power plants					
Туре	Pressure (MPa)	Temperature (°	Efficiency (%)		
		C)			
Sub-critical	12 – 20	510 – 560	35 on average		
Critical	23 – 25	510 – 560	35 – 47		
Super-critical	25 – 36	580 - 600	up to 47		
Ultra-super-critical	25 – 36	600 - 700	up to 54		
Source: Kolat, Roubíček, & Kozaczka, 2008, s. 20.					

Technical aspects of electricity production in different power stations				
Type of Power Station	Capacity factor (%)	Conversion		
		efficiency (%)		
Thermal	50 – 80	32 – 47		
Nuclear	80 – 95	27 – 33		
Gas Combined Cycle Power Station	11-60	38 – 60		
Solar	5 – 20	12 – 14 (25, 34)		
Wind Turbines	15 – 28	20 – 45		
Pumped-storage Water	10 – 15	85 – 95		
Water-flow	45 – 70	85 – 95		
Source: author				

Energy Transformation and Efficiency

Nuclear Energy

stored in the nucleus of an atom and released as nuclei are split

produced from the fission as kinetic energy of the fragments of the fission and the KE of free neutrons

used to heat water and produce steam that under pressure causes turbine blades to turn

Kinetic Energy

> The turning of the turbine makes the coil of wire turn in a magnetic field

Electrical Energy

Produced by electromagnetic induction and then tranmitted to the National Grid to be transported around the country.

Energy Transformation and Efficiency

EFFICIENCY is the sum of effectivity of all energy transformation processes, in the picture above it is calculated as $100 \times 0.85 \times 0.5 \times 0.95 = 40.375\%$

ELECTRICITY is an intermediate form of energy, we do not use electricity, but heat, light, mechanical energy = effectivity (losses) of downstream appliances is also in play

How much will I pay for 2 litres of tea, if I have a 1 l electric teapot (P = 1,500 We)? It takes 5 minutes to boil the water in the teapot and the electricity costs 4 CZK /1 kWh.

How much will I pay for 2 litres of tea, if I have a 1 l electric teapot (P = 1,500 We)? It takes 5 minutes to boil the water in the teapot and the electricity costs 4 CZK /1 kWh.

The teapot is used twice for 5 minutes

- = 10 minutes
- = 1/6 * 1,500 We
- = 250 Wh
- = 0.25 kWh = 1 CZK

You have a 2010 vacuum cleaner with the input of 1,500 We. Usually you use it once a week for an hour. In 2018 you decided to buy a new one, due to the EU regulations its output is only 750 We. Due to unexpected circumstances, you are forced to use the vacuum cleaner 5 times in a month for an hour. The price of electricity is 4 CZK /1 kWh. Are your monthly electricity expenditures lower than with the previous one? How much are they?

2010 vacuum cleaner

4 hours in a month x 1,500 We = 6,000 Wh = 6 kWh 6 kWh x 4 CZK = **24 CZK**

2018 vacuum cleaner

5 hours in a month x 750 We = 3,750 Wh = 3.75 kWh 3.75 kWh x 4 CZK = **15 CZK**

Does it make sense to buy a new vacuum cleaner to save money on electricity?