Nuclear Fuel Cycle II

PhDr. Tomáš Vlček, Ph.D.

International Relations and Energy Security Department of International Relations and European Studies

Nuclear Fuel Cycle

The 3-Step Fuel Fabrication Process

When and where took the first chain reactions in nuclear reactor place?

When and where was the first nuclear reactor connected to the electricity grid?

When and where took the first chain reactions in nuclear reactor place?

December 20, 1951, at the Experimental Breeder Reactor EBR-I in Arco, Idaho, USA

When and where was the first nuclear reactor connected to the electricity grid?

June 26, 1954, at Obninsk, Russia, the nuclear power plant APS-1 with a net electrical output of 5 MW

World reactor fleet 2017

- 413 operating reactors
- 31 countries
- 50 under construction
 - 16 in China, 5 in Russia, 7 in India
 - 4 in S. Korea, 4 in UAE

Nuclear power plants

Nuclear Generation by Country 2015

Nuclear power plants in commercial operation

Reactor type	Main Countries	Number	GWe	Fuel	Coolant	Moderator
Pressurised Water Reactor (PWR)	US, France, Japan, Russia, China	271	270.4	enriched UO ₂	water	water
Boiling Water Reactor (BWR)	US, Japan, Sweden	84	81.2	enriched UO ₂	water	water
Pressurised Heavy Water Reactor 'CANDU' (PHWR)	Canada	48	27.1	natural UO ₂	heavy water	heavy water
Gas-cooled Reactor (AGR & Magnox)	UK	17	9.6	natural U (metal), enriched UO ₂	CO ₂	graphite
Light Water Graphite Reactor (RBMK & EGP)	Russia	11 + 4	10.4	enriched UO ₂	water	graphite
Fast Neutron Reactor (FBR)	Russia	1	0.6	PuO_2 and UO_2	liquid sodium	none
	TOTAL	436	399.3			

Nuclear Fission

PWR Reactor

Loop = Reactor + Main Circulation Pump + Steam Generator

Compensators = electric heaters + water showers

PWR Reactor

How does a pressurized water reactor work?

ventilation system for discharging radioactivity in regulare use

secondary coolant circuit

pressure vessel with fuel rods and control rods (the radioactivity taht equals one Hiroshima bomb per MW originates here annually)

steam generator crossover from the radioactive primaray cooland circuit to the less radioactive secondary coolant circuit

turbine

sewage pipes discharge heated and tritium enriched water into a stream or cooling tower primaray cooling circuit with pumps water at hight temperature (~300 °C) and high pressure (158 atm)

Chernobyl NPP, UKR

Dukovany NPP, CZE

Zwentendorf NPP, AUT

Novovoronezh NPP, RF

Obninsk NPP, RF

BWR Reactor

The workings of a BWR reactor

BWR stands for Boiling Water Reactor.

All six reactors at the Fukushima I nuclear power plant are of this type

PHW Reactor

- Generally the same structure as PWR
- Heavy water (nor radioactive) absorbs less neutrons, thus is able both to moderate nuclear reaction and secure criticality = non-enriched fuel can be used

Back End

- Fission chain reaction consumes only uranium isotope 235U.
- Used fuel contains approximately a quarter of the original value of this isotope, thus still remains enriched to about 1% 235U.
- The fuel consists of more

than 96% uranium dioxide (UO2)

and newly developed plutonium dioxide (PuO2) in an amount of about 1%, and other compounds (3%), while most of the fission products are radioactive isotopes.

MOX Fuel

- Mixed oxide (MOX) fuel provides almost 5% of the new nuclear fuel used today.
- MOX fuel is manufactured from plutonium recovered from used reactor fuel, mixed with depleted uranium.
- MOX fuel also provides a means of burning weapons-grade plutonium (from military sources) to produce electricity.

MOX Fuel

	World mixed oxide fuel fabrication capacities (t/yr)					
		2009	2020			
	France, Melox	195	195			
MOX Fuel	Japan, Tokai	10	10			
	Japan, Rokkasho	0	130			
	Russia, Mayak, Ozersk	5	5			
	Russia, Zheleznogorsk	0	60?			
	UK, Sellafield	40	0			
	Total for LWR	250	400			
ASSOCIATION	Reaction in MOX	fuel				
Pu (65% fissile) 7%	U-238 93%					
3%	Pu 3%					
Fission Products 5%	4% 1% Pu (55% fissile) 5% U-238 90%					
Basis: 45,000 MWd/t burn-up, ignores minor actinides	s					

Fast Neutron Reactors

- About 400 reactor-years of operating experience have been accumulated to the end of 2010.
- A fast neutron reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons.
- Such a reactor needs no neutron moderator, but must use fuel that is relatively rich in fissile material when compared to that required for a thermal reactor.
- Fuel consists of U-235, Pu-239 (products of fission with higher radiation) that produce more fast neutrons = waste from Gen II and III reactors is used

Fast Neutron Reactors (BN 800)

Fast Neutron Reactors

World Fast Neutron Reactor status

Current FNRs

Reactor	Type, coolant	Power thermal/elect	Fuel (future)	Country	Notes
BOR-60	Experimental, loop, sodium	55/10	oxide	Russia	1969-
BN-600	Demonstration, pool, sodium	1470/600	oxide	Russia	1980-
BN-800	Experimental, pool, sodium	2100/864	oxide	Russia	2014-
FBTR	Experimental, pool, sodium	40/-	oxide & carbide (metal)	India	1985-2030
PFBR	Demonstration, pool, sodium	1250/500	oxide (metal)	India	(2015)
CEFR	Experimental, pool, sodium	65/20	oxide	China	2010-
Joyo	Experimental, loop, sodium	140/-	oxide	Japan	1978-2007, maybe restart 2021
Monju	Prototype, loop, sodium	714/280	oxide	Japan	1994-96, 2010, Decommissioned

FNR designs for near- to mid-term deployment - active development

Reactor	type, coolant	Power thermal/elect	Fuel (future)	country	notes
PRISM	Demonstration, pool, sodium	840/311	metal	USA	From 2020s
Astrid	Demonstration, pool, sodium	1500/600	oxide	France, with Japan	From 2024
Allegro	Experimental, loop?, gas	50-100 MWt	oxide	France	About 2025
MYRRHA	Experimental, Pb-Bi	57/-	oxide?	Belgium, with China	Early 2020s
ALFRED	Prototype, lead	300/120	oxide	Romania, with Italy & EU	From 2025
BN-1200	Commercial, pool, sodium	2800/1220	oxide, nitride	Russia	From mid-2020s
BREST-300	Demonstration, loop, lead	700/300	nitride	Russia	From 2020
SVBR-100	Demonstration, pool, Pb-Bi	280/100	oxide (variety)	Russia	From 2019
MBIR	Experimental, loop, sodium (Pb-Bi, gas)	100-150 MWt	oxide	Russia	From 2020
CDFR-1000	Demonstration, pool, sodium	/1000	oxide	China	From 2023
CDFBR-1200	Commercial, pool, sodium	/1200	metal	China	From 2028
PGSFR	Prototype, pool, sodium	/150	metal	South Korea	From 2028
JSFR	Demonstration, loop, sodium	/500	oxide	Japan	From 2025?
TWR	Prototype, sodium	/600	metal	China, with USA	From 2023?

Generations of Nuclear Energy

Generation IV

Back-end of Nuclear Fuel Cycle

- In the <u>first phase</u>, the fuel is actively cooled in a pool next to the reactor. After five-ten years they are put into dry containers and passively cooled in interim storages.
- Dukovany NPP annually produces less than one container of spent fuel. Temelin NPP annually produces two full containers of used fuel.
- The dry interim storage facility is constructed to store fuel for about 80 years.
- The <u>second phase</u>, i.e. transport phase, is/will be provided by rail.
- The **third phase** is the underground geological repository

Back-end of Nuclear Fuel Cycle

Is it safe to swim in the spent fuel pool?

Is it safe to swim in the spent fuel pool?

https://what-if.xkcd.com/29/

Open vs. Closed Cycle

Types of waste

- (1) negligibly hazardous waste (not considered a risk to humans or the environment, e.g. material after the demolition of nuclear power plants)
- (2) slightly hazardous waste (produced for example in hospitals, pharmacies, some manufacturing processes, and in some parts of the nuclear fuel cycle, this waste does not require casing and can be placed into surface storages)
- (3) moderately hazardous wastes (e.g. contaminated material after the demolition of the reactor of the NPP, the waste may require cladding and shielding)
- (4) highly hazardous waste (spent fuel, it is essential to shield and cool it)

Surface storage is needed for at least 40-50 years, after which the temperature and the radioactivity drops to a level that is acceptable for underground geological repository with limited or no access of cooling.

Geological surveys and technical plans are fairly advanced in Sweden and Finland, which have a defined location. U.S. repository should be built at Yucca Mountain in Nevada, but the decision was postponed.

Variants of Storage

- Underground
- Space
- Long-term surface storage

