

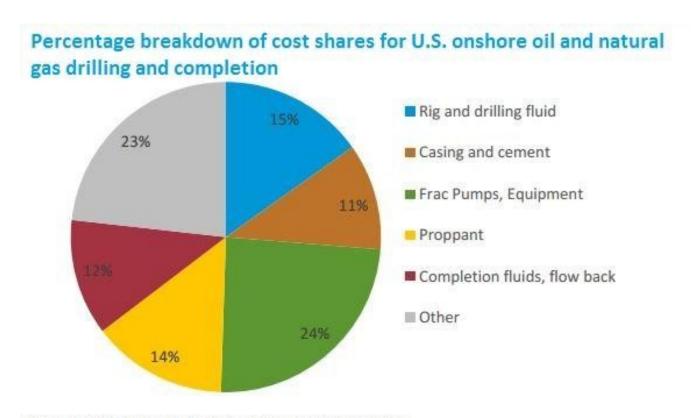
Cost Analysis

James Henderson April 2019

Key Cost Elements

Main assumptions

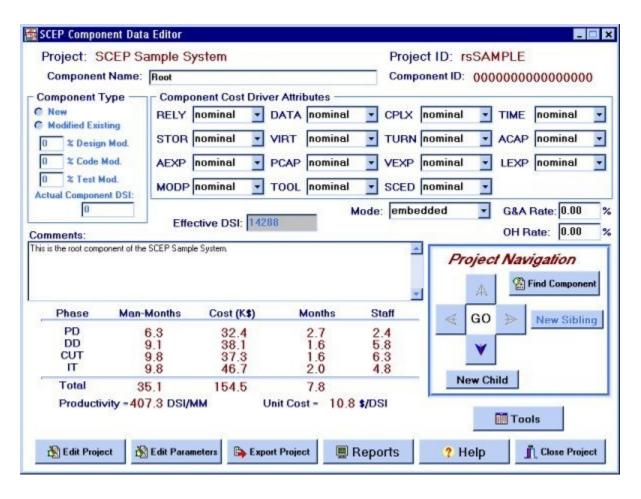
- Capital expenditure (initial investment)
- Operating expenditure (ongoing cost of operations)
- Transportation (getting the product to market)
- Taxes (operating taxes and profit tax)
- CAPEX, OPEX, Transport and Tax


Capital Expenditure - CAPEX

Key parameters

- Size of field
- Difficulty of geology
- Location of field
- Quality of oil/gas
- Competition for contractors / availability of local companies

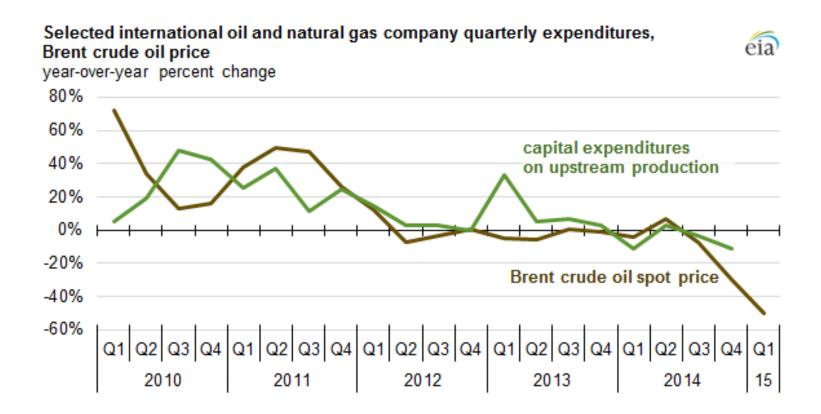
Breakdown of costs for US onshore fields



Source: IHS Oil and Gas Upstream Cost Study commissioned by EIA

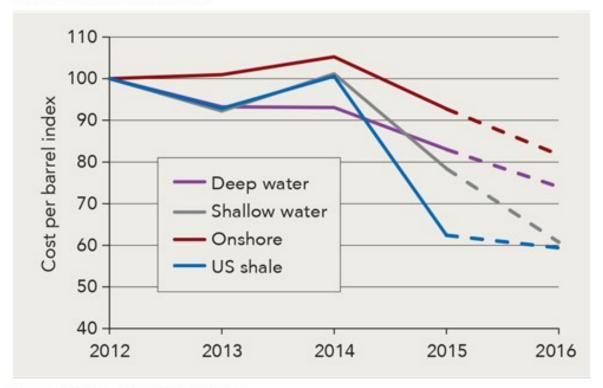
 Different contractors for each element, can costs will vary by region and level of competition

Complex models are used by engineers


- Cost estimates based on historical precedent and prices of key inputs today
- Steel price a key input, for example

Timing and planning is vital, with any slippage being potentially very expensive

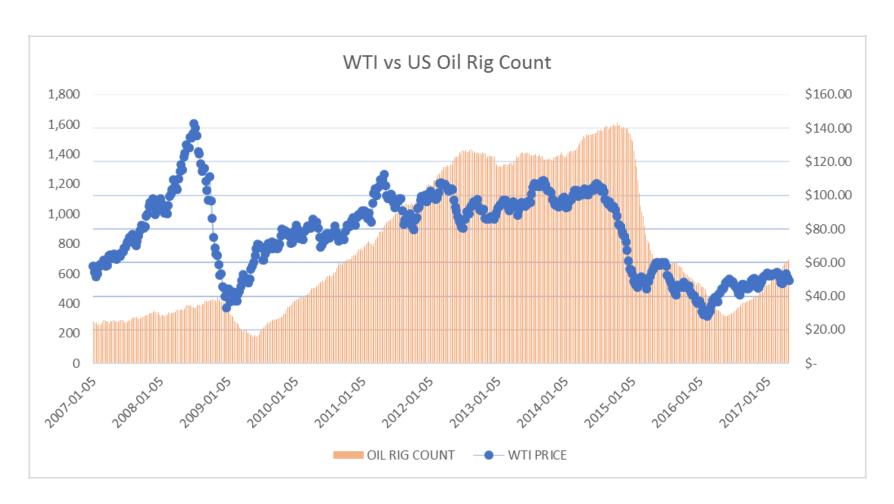
I.S.		Tool No.	D	011	F:-:	D											
ID		Task Name	Duration	Start	Finish	Predecessors			Feb 2	23, '03		Mai	r 2, '03	II = 1		Mar 9	9, '03
1	0	MSE PROJECT	329 days?	Mon 1/20/03	Thu 4/22/04		W T	F S	S N	1 T W	T F	SS	M T	W T	F S	SIN	4 T W
	-																
2	<u></u>	Background Reading & Research	12 days?	Mon 1/20/03	Tue 2/4/03												
3	0	Timelog Update	321 days	Mon 1/27/03	Mon 4/19/04												
69		Phase 1: Overview & Requirements	239 days?	Tue 2/11/03	Fri 1/9/04	2											
70		Project Overview Document	1 day	Thu 2/20/03	Thu 2/20/03			Ganti									
71	111	Initial Program Analysis	4 days	Tue 2/11/03	Fri 2/14/03												
72	111	Initial Object Model	1 day?	Mon 2/24/03	Mon 2/24/03					Ganti							
73	III	Software Requirement Specification	4 days	Thu 2/27/03	Tue 3/4/03	72				Ĭ				Ganti	3		
74	111	Software Quality Assurance Plan	4 days	Wed 3/5/03	Mon 3/10/03	73											Ganti
75	TI .	Cost Estimation	4 days	Mon 3/10/03	Thu 3/13/03												
76	111	Architecture Elaboration Plan	1 day?	Mon 12/15/03	Mon 12/15/03												
77	111	Demonstration	3 days	Tue 12/16/03	Thu 12/18/03	72											
78	III	Presentation 1	1 day?	Fri 1/9/04	Fri 1/9/04	70,71,74,75,76,73											
79		Phase 1 Complete	0 days	Fri 1/9/04	Fri 1/9/04	78											
80		Phase 2: Design and Specifications	21 days	Mon 1/12/04	Mon 2/9/04	79									3		
81	111	Implementation Plan	4 days	Mon 1/12/04	Thu 1/15/04												
82	111	Architecture Design	5 days	Tue 1/13/04	Mon 1/19/04										3		
83	111	Test Plan	6 days	Mon 1/19/04	Mon 1/26/04										3		
84	111	Formal Requirement Specification	6 days	Mon 1/26/04	Mon 2/2/04												
85	111	Design Documentation	4 days	Tue 2/3/04	Fri 2/6/04												
86	111	Presentation 2	1 day	Mon 2/9/04	Mon 2/9/04	81,82,83,84,85											
87		Phase 2 Complete	0 days	Mon 2/9/04	Mon 2/9/04	86											
88		Phase 3: Implementation	28 days?	Tue 3/16/04	Thu 4/22/04	87											
89	111	Implementing the project	10 days	Tue 3/16/04	Mon 3/29/04												
90		Testing	7 days	Tue 3/30/04	Wed 4/7/04	89											
91		Documentation	10 days	Thu 4/8/04	Wed 4/21/04	87,89,90											
92	111	Final Presentation	1 day?	Thu 4/22/04	Thu 4/22/04	91											
93		Phase 3 Complete	0 days	Thu 4/22/04	Thu 4/22/04	92											
									C-111111						888888	XII	/>


Spending trends tend to move with the oil price

- As prices and revenues rise, so companies are keen to spend more and contractors are able to charge more
- The oil industry is renowned for not being very cost efficient

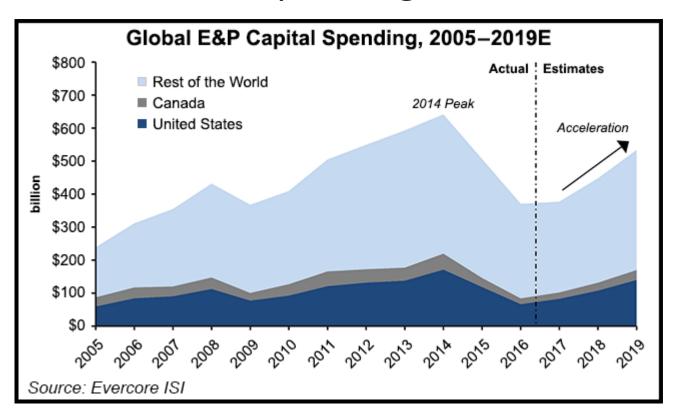
Recent low prices have forced a re-think on costs

F2: GLOBAL AVERAGE DEVELOPMENT COST PER BARREL INDEX

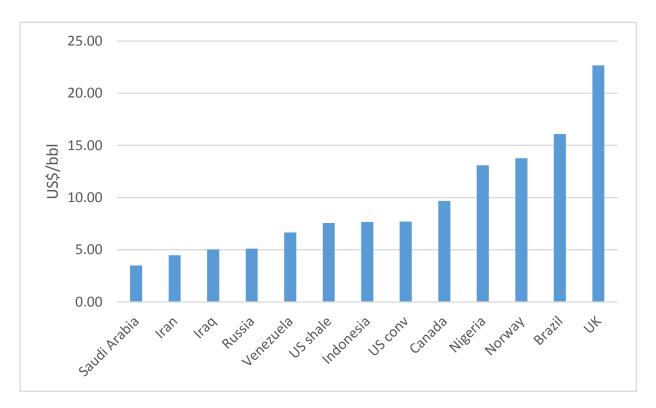


Source: DW250 - Capital Cost Briefing

- Upstream costs have been brought down by 30-40% in many countries
- Breakeven oil price for planning purposes now generally \$50 per barrel

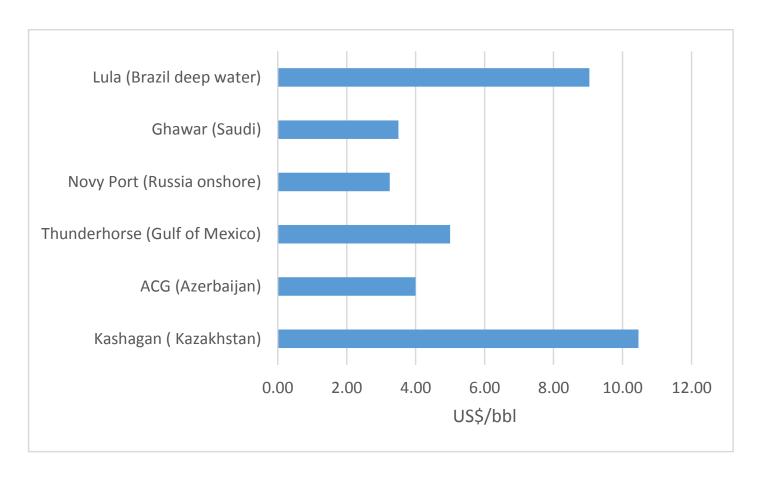

Availability of equipment also a key driver

- Competition for equipment drives prices up
- US shale rig count a key indicator
- Australian LNG project cost inflation in 2011-2015


The rebound in oil price has encouraged more spending

- Are we heading for another boon bust cycle?
- Can the oil industry control costs as oil prices rise?

Comparison of capex by countries

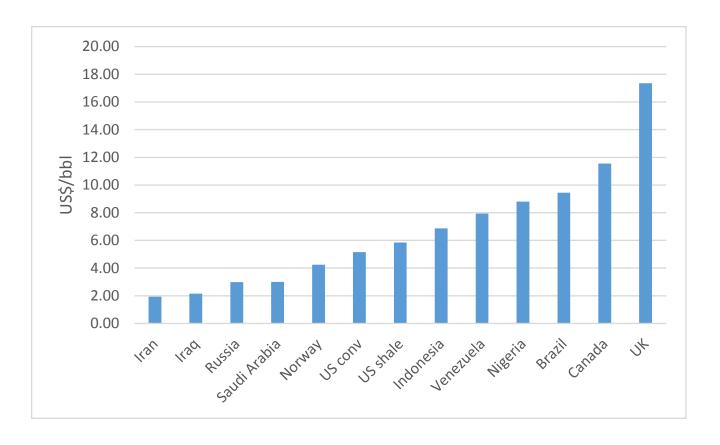


Source: Rystad Energy

- Low investment costs in Middle East thanks to huge reserves and easy conditions
- Highest costs offshore, especially in deep water

Comparison of field capex

- Specific fields exemplify the country trends
- Offshore fields are more expensive (Lula), as are those with complex geology (Kashagan)
- Onshore conventional fields (Ghawar, Novy Port) are lower cost


Operating Costs

Key Assumptions

- Lifting costs getting the oil out of the ground
 - Electricity
 - Rig costs
 - Employment costs
- Transportation moving the oil to market
 - Pipeline distance and tariffs
 - Shipping costs and distance
 - Truck or rail freight
- Operating taxes
 - Royalties
 - Export tax
 - Production sharing agreement
 - Other local taxes

Lifting Costs

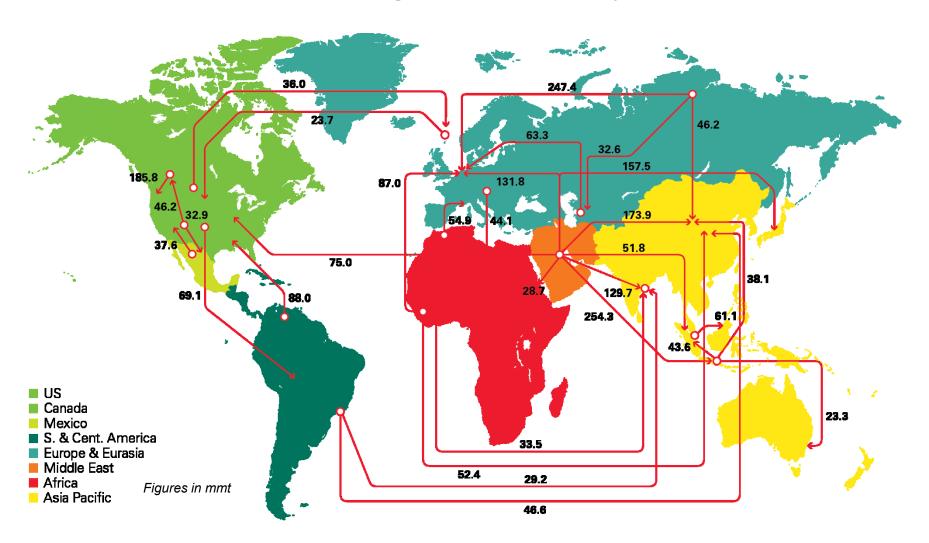
- Generally calculated by local experts with knowledge of specific environment
- If a general assumption is needed, then company or country metrics can be used

Contrasting operating costs

North Sea

- Tough environment
- Remote location
- Relatively small reserves
- Higher costs per barrel

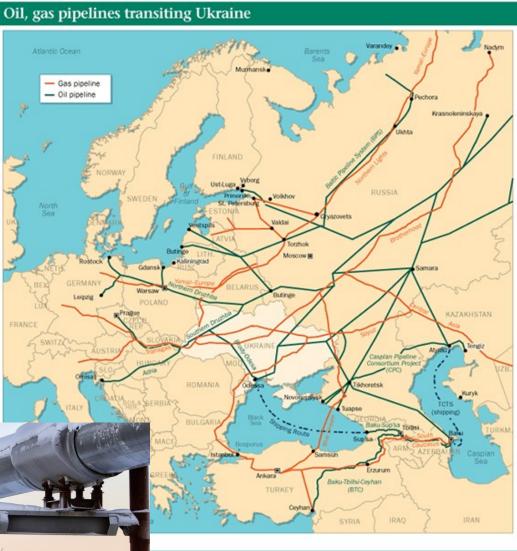
Saudi Arabia


- Huge reserves located in close proximity
- Potential for large synergy benefits
- Relatively benign operating environment
- Low costs per barrel

Long Run and Short Run Costs

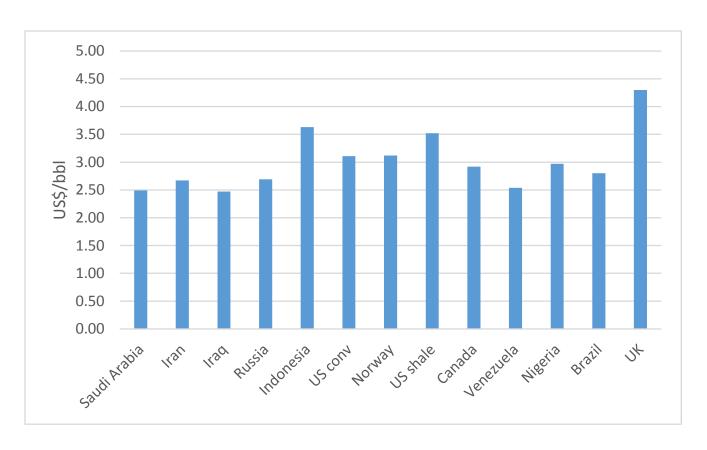
- Long Run Marginal Cost = total cost of oil extraction over life of field
- Short run Marginal Cost = cash cost of extracting a barrel of oil today
- LRMC of conventional oil (especially offshore) is high because of significant upfront capital costs
- However, SRMC is low because once costs have been incurred companies will extract oil as long as they can cover operating costs
- For unconventional (shale) oil LRMC is low because capital costs are low
- However, the bulk of costs are on-going operating costs (continuous drilling of new wells) so SRMC is high
- Shale oil more likely to react to low oil prices faster reaction time and higher short-run costs

Oil is a global commodity



- Oil is traded in multiple directions across the globe
- Much of the trade originates from the Middle East and flows West and East
- Prices are set relative to a set of global benchmarks

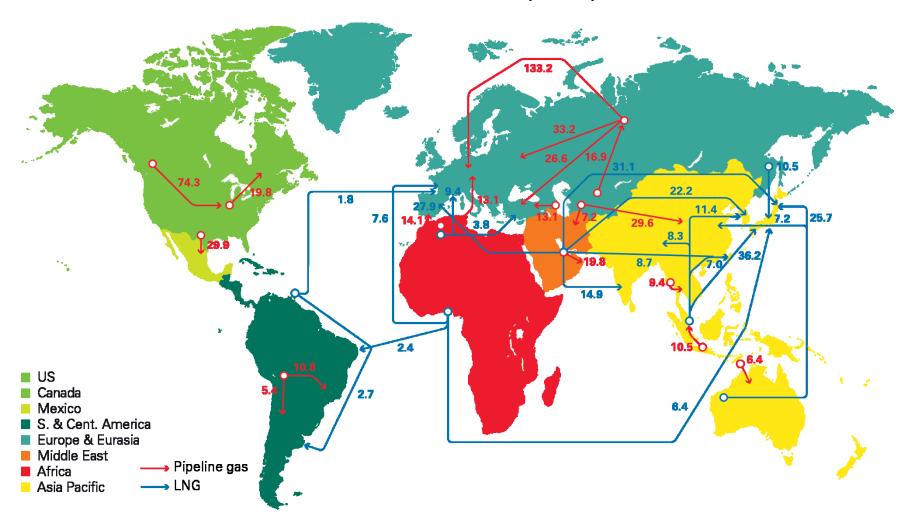
Russia's huge pipeline system



Oil tanker and the Panama Canal

Transportation Cost

- Main driver of cost is distance
- Mode of transport also important onshore pipelines versus offshore tankers
- Most expensive is rail or truck transport, due to lower individual volumes



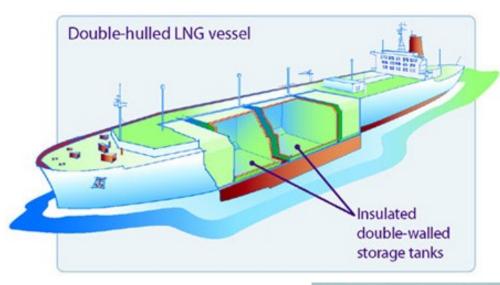
Gas transportation can get complex

- Gas is also transported by pipeline and ship
- Pipelines have dominated, but LNG is globalising the gas market
- Liquefaction and regasification then become an integral part of the value chain
- Costs are increased, but new markets can be accessed
- From a modelling perspective, LNG plants are included in capex, while shipping and regas costs are generally included in transport
- Shipping tariffs are based on journey time (days) multiplied by freight rates, which can vary significantly over time

Gas trade flows (bcm)

- Gas trade flows via two transport methods pipeline and LNG
- Historically pipeline flows have dominated, leading to regionalisation
- LNG is now turning gas into a more global commodity

Long Distance Pipeline



Yemen Liquefaction Facility


LNG Tankers

LNG tanker freight rates

Significant volatility driven by LNG demand and ship-building investment

LNG Import and Regas Terminal Jurong Island, Singapore

Taxation

Tax and Royalty Regime

- The most common tax regime includes operating taxes and profit tax
- Operating taxes are normally taken from revenues
 - Export tax (on export revenues only)
 - Royalty (on all production)
 - Specific local or regional taxes (for regional government support)
- Revenue taxes are simple to collect, but can be penal because they do not take investment costs into account
- Sometimes governments alleviate the risks of revenue taxes by introducing a sliding scale relative to the oil price

Types of taxes

Export Tax

- Normally a % of export revenues
- Occasionally banded by oil price ranges
- Focus tax on premium market and prices

Royalty

- Ensures that government gets a minimum amount of revenue
- Can be a % of overall revenues or a fixed amount per barrel of production
- Very regressive, as takes no account of cost recovery, but very easy to collect to favoured in countries with dubious accounting regulation

Regional taxes

- Levied by local governments to support regional infrastructure
- Often used to fund schools, hospitals etc.
- Can be open to significant negotiation

Corporate Tax (Profit Tax)

- Levied after all costs have been taken into consideration (including other taxes)
- Often a complex calculation, but does allow for reclaiming of expenses

The Key is Cost Recovery

- Can you get your money back before you start paying higher taxes
- The sooner you recover your money the better for your project economics
- Revenue taxes do not allow for cost recovery
- Depreciation offers some element of cost recovery in a tax and royalty scheme
- Another term for it is "cost oil", which is used in Production Sharing Agreements (PSAs)

Depreciation

- Depreciation is an allowance against profit tax
- An accounting calculation to reduce "pre-tax profits"
- Has no cash impact
- Reduces corporation (profit) tax and effectively allows cashflow to the company to be increased
- Encourages a faster recovery of costs, although not perfect
- PSA Cost oil has the same impact, and is a subject of fierce negotiation

Production Sharing Agreements

- Specific tax and legal regimes for individual projects
- Negotiated with government before first investment is made
- Legally guaranteed for the life of a project (although this is not always the case)
- Normally based on a split of cost oil and profit oil, although can also include a royalty payment
- Cost oil allows the company a larger share of revenues until costs are recovered
- Profit oil is the split of revenues after costs have been taken into account –
 it tends to increase in importance once costs have been recovered
- Governments sometimes also demand a royalty in order to guarantee a minimum amount of revenue immediately

text

• text

