PSY 117 - Statistická analýza dat Jaro 2019 VyuČující Mgr. Stanislav Ježek, PhD. – garance kurzu, přednášky, semináře, jezek@fss.muni.cz, tel. 549494616, konzultační hodiny: středa 14–16, FSS 2.47 Mgr. Hynek Cígler – semináře, hynek.cigler@mail.muni.cz, konzultace po dohodě emailem, FSS 2.47 Mgr. Vít Gabrhel – semináře, vit.gabrhel@mail.muni.cz, konzultace po dohodě emailem Mgr. Adam Ťápal – semináře, 357607@mail.muni.cz Charakteristika kurzu Cílem kurzu je seznámit studenty se základy statistiky používané v psychologické praxi a výzkumu a běžném životě. Studenti získají statistickou gramotnost – porozumění základním statistickým a pravděpodobnostním myšlenkám a dovednost je aktivně i pasivně používat. Studenti získají dovednost připravit data pro statistické zpracování, spočítat základní statistiky, otestovat běžné typy hypotéz. Kurz klade důraz i na komunikaci, tj. slovní popis výsledků i schopnost porozumět takto popsaným výsledkům v empirických studiích. V rámci kurzu budou studenti seznamováni paralelně s českou i anglickou terminologií, aby byli po skončení kurzu schopni dále studovat a používat internetové zdroje. Návaznosti kurzu Kurz úzce souvisí s výukou metodologie. Mnoho problémů v metodologii má statistický základ, a naopak mnohé problémy či omezení statistiky je potřeba zohledňovat v metodologii. Studijním programem stanovené pořadí absolvování kurzů je statistika – metodologie a v souladu s tím je koncipován obsah těchto povinných kurzů. Toto propojení je nezbytné pro vypracování diplomové práce a je součástí požadavků při státní bakalářské zkoušce. Na statistice stojí také značná část psychometriky a tvoří tak přirozený základ pro studium psychodiagnostiky na magisterském stupni. Předpokladem pro studium základů statistiky je běžné středoškolské matematické vzdělání a funkční znalost kancelářského software (zejm. tabulkového kalkulátoru). Organizace kurzu Počet kreditů: 5 Ukončení kurzu: zkouška Přednášky: 2 hodiny týdně Semináře: 1 hodina týdně Do seminárních skupin se studenti zapisují prostřednictvím informačního systému MU. InformaČní systém MU V informačním systému MU části Studijní materiály k předmětu PSY117 umisťujeme podklady k tématům uvedeným v sylabu především v podobě prezentací z přednášek a odkazů na další zdroje informací. Na stejném místě jsou též k dispozici pokyny nezbytné k plnění písemných úkolů, popř. doplňky k tomuto sylabu. KOMUNIKACE S VYUČUJÍCíMI Preferovaným komunikačním kanálem pro osobní komunikaci týkající se kurzu je email. Používejte prosím „PSY117“ v předmětu svých emailů. Urychlíte tím jejich vyřízení. Administrativní emaily letos adresujte Adamovi Ťápalovi. Pouze v případě záležitostí, které se týkají specificky seminářů, pište přímo vedoucím seminářů. Pro dotazy týkajících se látky kurzu využívejte prosím v maximální míře Facebookovou diskuzní skupinu „Statistika, metodologie, psychometrika“ http://goo.gl/Mt95eT. Je pravděpodobné, že odpověď na Váš dotaz by mohla zajímat i Vaše spolužáky, a byla by proto škoda uzavřít takovou komunikaci do soukromí emailů. Vyučující kurzu skupinu sledují a přispívají do ní. Požadavky na ukonČení kurzu Úspěšné zvládnutí kurzu předpokládá samostatné studium ze základní literatury popsané v tomto sylabu, vyřešení všech úloh k procvičování, které jsou ve studijních materiálech PSY117 a splnění následujících hodnocených aktivit: Seminární práce V průběhu semestru mají studenti za úkol pracovat na níže uvedených úkolech. Jejich realizace je podmínkou pro to, aby se student mohl přihlásit ke zkoušce. Seminární úkoly jsou zadávány na seminářích a v případě potřeby doplňovány informacemi v IS. Práce se se odevzdávají do odevzdávárny ve studijních materiálech předmětu. Jméno vkládaného souboru s první seminární prací je S1.doc (resp. S2.doc pro případnou druhou) a nic víc; IS k němu automaticky přidá jméno vkládajícího studenta. Seminární práce jsou hodnoceny na následující škále: přijata (10b), nepřijata (0b). „Nepřijetím“ je míněno vrácení k přepracování. Na přepracování má autor týden ode dne vrácení. Vynikajícím pracím může být uděleno ještě 5 bodů jako bonus. Opravené práce vkládejte do ISu do stejné odevzdávárny jako práce původní. Jako jméno vkládaného souboru nyní použijte S1o.doc. Přijaté opravené práce budou hodnoceny 5 body. Stanovené rozsahy prací jsou záměrné a závazné. Práce nedosahující minima i práce překračující maximum mohou být vráceny bez komentářů jako nepřijaté. Seminární práce: Popularizační sdělení (detaily budou ještě doplněny) Cílem úkolu je prohloubit porozumění běžným statistikám tím, že informaci v nich obsaženou komunikujeme čtenářům, u nichž nepředpokládáme žádné statistické vzdělání. Sekundárně se tento benefit může projevit i v porozumění psychologickým konstruktům a jevům, pro které jsou komunikované statistiky počítány. Tento úkol vyžaduje zamyslet se nad tím, jak jednotlivým statistikám rozumí obecně středoškolsky a vysokoškolsky vzdělaní lidé a jak je vnímají. Úkolem studenta je zvolit si jeden z dodaných výzkumných článků a na jeho základě vytvořit krátké sdělení, jaké by se mohlo objevit na blogu, ve sloupku v nedělní příloze novin apod. Mělo by být zachováno jádro zjištění a závěrů původní studie a čtenář by měl dostat do rukou i informace, které by mu umožnily kriticky přemýšlet o předkládaných zjištěních (tj. vybrané a vhodně prezentované statistiky; minimálně jedno grafické zobrazení výsledků). Často je vhodné si o dané studii a tématu zjistit více. To proto, že bývá zvykem výsledky prezentované studie přiblížit laickému čtenáři i vhodnou aplikací do praxe/života: „Kdyby to byla pravda, pak…“. Seminární práci lze zpracovat i na jiné téma, např. z oblasti historické provázanosti statistiky a psychologie, vizualizace dat či kontroverzí kolem statistického testování hypotéz. Lze uvažovat i o jiném formátu sdělení, než eseji či úvaze. Pokud chcete zpracovávat nějaké takové téma, učiňte prosím písemnou nabídku emailem svému vedoucímu seminární skupiny, a to do 31.3. Nabídka by měla na několika řádcích obsahovat základní tezi a navrhovaný způsob/formát zpracování. Zvolené téma lze zpracovat pouze po odsouhlasení vedoucím seminární skupiny. Závazný rozsah práce je 3500 - 4500 znaků vč. mezer. Termín: 8.5. Průběžné hodnocení V průběhu semestru budou na semináře zařazeny tři krátké průběžné desetiminutové testy. V každém bude možné získat 10b. Předběžné termíny průběžných testů jsou: 20.3.; 10.4.; 24.4. Množství bodů z průběžných písemek, které se bude počítat do celkového hodnocení, se počítá podle následujícího excelovského vzorce: =ZAOKROUHLIT((SUMA(P1;P2;P3)-MIN(P1;P2;P3))*1,5;0). Tento výpočet eliminuje jedno zakolísání směrem dolů (včetně případné absence). Na průběžné testy se náhradní termíny neposkytují. Zkouška Kurz je zakončen zkouškou. Zkouška má písemnou podobu (papír-tužka-kalkulačka) a je možné za ni získat 50b. K úspěšnému složení zkoušky je nutné získat minimálně 30b. Zkouší se v rozsahu látky, který je vymezen v tomto sylabu k předmětu PSY117. Celkové hodnocení Celkem lze v průběhu kurzu získat 40b; za závěrečnou zkoušku lze získat 50b. Celkové hodnocení bude používat následující stupnici A: 90 - 82b B: 81 – 75b C: 74 – 70b D: 69 – 65b E: 64 – 60b F: 59 a méně bodů. Uznávání dříve absolvovaných kurzů statistiky 1. Ekvivalentní kurzy dříve absolvované na katedře psychologie FSS budou uznávány v plné míře. Své žádosti o uznání v takovém případě směřujte sekretářce katedry psychologie. 2. Kurzy absolvované jinde než na katedře psychologie FSS budou uznávány tou formou, že jejich absolventi nebudou povinni plnit požadavky na práci v semestru (seminární práce, průběžné zkoušky) a bude jim za ně započítán plný počet bodů (50b). I nadále jsou však povinni absolvovat závěrečnou zkoušku. Žádosti o uznání v tomto případě zasílejte na mail jezek@fss.muni.cz. V předmětu zprávy použijte „uznani PSY117“ (bez diakritiky). V textu stačí uvést kód absolvovaného předmětu na FSS (typicky SOC108). V případě žádosti o uznání kurzů z jiné fakulty či univerzity, uveďte též odkaz na sylaby absolvovaných kurzů, popř. sylaby přímo přiložte. Žádosti zasílejte do konce 2. týdne semestru. Později zaslaným žádostem nebude vyhověno. 3. Specificky, absolventi kurzu SOC108 mohou žádat o úplné uznání PSY117, pokud ukončili SOC108 s hodnocením „A“. Omluvy Omluvy jsou přijímány pouze předem. Pozdější omluvy budou akceptovány, pouze pokud šlo o nepředvídatelné případy. Víte-li o tom, že budete mít ze závažných důvodů problémy s dodržením některého z termínů, informujte nás o tom co nejdříve. Omluvenky za nepřítomnost na seminářích, zejména pro nemoc, odevzdávejte prosím na Studijním oddělení FSS – jeho pracovnice omluvenku zavedou do IS. ÚČAST NA VÝZKUMU V RÁMCI KURZU V rámci účasti kurzu mohou být studenti požádáni o účast na výzkumech jak pro zlepšení kvality kurzu samotného, tak i pro další účely spojené s výzkumným zaměřením katedry. Účast v těchto výzkumech je ryze dobrovolná a nemá vliv na úspěšné ukončení kurzu či získané hodnocení. LITERATURA Základní zdroje Howell, David C. [DH] Statistical methods for psychology. 8th ed. Belmont, CA: Wadsworth Cengage Learning, 2013. Články a výňatky: Cohen, J.: The Earth is round (p<.05). American psychologist, 1994 (49), 12, 997 – 1003.^ Cohen, J.: A Power primer. Psychological Bulletin, 1992 (112), 1, 155 – 159. Baron, J.[1]: Hypotheses testing. Kapitola 7 v J. Baron: Thinking and deciding, 4^th, s. 161- 182. Cambridge: CUP, 2008. Baron, J.[2]: Judgement of correlation and contingency. Kapitola 8 v J. Baron: Thinking and deciding, 4^th, s. 183 - 198. Cambridge: CUP, 2008. Morgan, G. A. et al: Chapter 2 - Data coding, entry and checking. In G. A. Morgan et al: SPSS for introductory statistics. Use and interpretation, 2^nd ed, 15 – 22. LEA, 2004. Savage, S., Wainer, H.: Until Proven Guilty: False Positives and the War on Terror. Chance, 2008 (21), 1, 59 – 62. Tversky, A., Kahneman, D.: Belief in the law of small numbers. In D. Kahneman, P. Slovic, A. Tversky (Eds.), Judgment under uncertainty: Heuristics and biases, 23 – 31. Oxford: Oxford University Press, 1982. Více též v přednášce při přebírání Nobelovy ceny na http://nobelprize.org/nobel_prizes /economics/laureates/2002/kahneman-lecture.html . Urbánek, T., Denglerová, D., Širůček, J.[UDŠ]: Psychometrika - měření v psychologii. Praha: Portál 2011. Utts, J.: What educated citizens should know about statistics and probability. American Statistician, 2003 (57), 2, 74 – 79. de Vaus, D.: How to prepare data for analysis. In D. de Vaus, Analyzing social science data: 50 key problems in data analysis, 1 – 16. Sage, 2002 Wainer, H.: The most dangerous equation: Ignorance of how sample size affects statistical variation has created havoc for nearly a millenium. American Scientist, 2007, 95 (3), 249 – 256. Alternativní učebnice Hendl, J. [JH]: Přehled statistických metod zpracování dat. Analýza a metaanalýza dat. 4. vydání. Brno: Portál 2012. Hendl, J. a kol.: Statistika v aplikacích. Brno: Portál, 2014. Howitt D., Cramer, D.[HC]: Introduction to statistics in psychology, 6th. Pearson, 2013. Rozšiřující zdroje Abelson, R.: Statistics as a principled argument. Hillsdale: LEA, 1995. Arbuthnott, J.: An argument for Divine Providence taken from the constant regularity observ’d in the birth of both sexes. Philosophical Transactions, 1710 (27), 186 – 190. Cowles, M.: Statistics in psychology. An historical perspective, 2^nd Ed. Mahwah: LEA, 2001. Field, A.: Discovering statistics using SPSS, 4^th Ed. Sage, 2013. (popř. předchozí vydání)[1] Freeman, J., Walters, S.J., Campbell, M.J.: How to display data. Blackwell, 2008.[2] Gaito, J.: Measurement Scales and Statistics: Resurgence of an Old Misconception. Psychological Bulletin, 1986, 87 (3), 564 – 567. Glass, G. V., Hopkins, K. D. [GH]: Statistical methods in education and psychology, 3rd Ed. Allyn and Bacon, 1996.[3] Good, P. I., Hardin, J. W.: Common errors in statistics (and how to avoid them). Wiley-Interscience 2003. Huck, S.: Reading statistics and research, 6^th. Pearson, 2012. Lord, F. M.: On the statistical treatment of football numbers. American Psychologist, 1953, 8, s. 750-751. Morgan, S. E., Reichert, T., Harrison, T. R.: From numbers to words. Reporting statistical results for the social sciences. Allyn & Bacon, 2002. Nickerson, R. S.: Null hypothesis significance testing: a review of an old and continuing controversy. Psychological methods, 2000 (5), 2, 241 – 301. Osecká, L., Osecký, P.: Receptář jednoduchých metod statistické indukce. Brno, AV ČR 1996.[4] Scholten, A. Z., Borsboom, D.: A reanalysis of Lord's statistical treatment of football numbers. Journal of Mathematical Psychology, 2009 (53), 69 – 75. Stone, J. V.: Bayes’ rule: a tutorial introduction to bayesian analysis. Sebtel Press, 2013. Statistický populár pro rozšíření obzorů Swoboda, H.: Moderní statistika. Praha: Svoboda, 1977.[5] Mlodinow, L.: Život je jen náhoda. Jak náhoda ovlivňuje naše životy. Praha: Slovart, 2009. Best, J.: Damn lies and statistics: untangling numbers from the media, politicians and activists. Berkeley and Los Angeles: University of California Press, 2001. Best, J.: More damn lies and statistics: how numbers confuse public issues. Berkeley and Los Angeles: University of California Press, 2004. Cowles, M.: Statistics in psychology – an historical perspective, 2^nd. LEA, 2001[6]. Huff, D.: How to lie with statistics. New York: W.W. Norton & Company, Inc., 1954. Hooke, R.: How to tell the liars from the statisticians. New York: Marcel Dekker, 1983. [7] Salsburg, D.: The lady tasting tea: how statistics revolutionized science in the twentieth century. W. H. Freeman and Company, 2001. Woolfson, M. M.: Everyday probability and statistics. Health, elections, gambling and war. London: Imperial College Press, 2008. Internetové zdroje Zdroj o zdrojích, online kalkulačkách apod.: http://statpages.org/ Bohatá doplňující stránka k Huck (2012): http://www.readingstats.com Vynikající zdroj o statistice, spíše pro pokročilé. http://www.statsoft.com/textbook/stathome.html Online učebnice: http://en.wikibooks.org/wiki/Statistics Facebookové skupiny: Statistika, metodologie, psychometrika (ta naše), Psychological Methods Discussion Group (zlá skupina o replikaci), PsychMAP (hodná metodologická skupina)… a další Software Pro procvičování statistiky je nutná zejména zručnost v používání tabulkového kalkulátoru, např. MS Office Excel či OpenOffice.org Calc. Většinu základních statistik je možné spočítat v tabulkovém kalkulátoru. Stejně tak správa dat je v malých výzkumných projektech podstatně pohodlnější v tabulkových kalkulátorech než specializovaném statistickém software. Na univerzitách jsou běžně využívány obecné statistické softwarové balíky, u nás SPSS a Statistica. Ty jsou však velmi drahé a pro běžnou neakademickou praxi obsahují spoustu nepotřebných funkcí. Univerzální a drahý software lze dnes snadno nahradit použitím malých specializovaných aplikací na internetu. Jejich přehled naleznete např. na http://statpages.org/. V současnosti prudce roste popularita otevřeného systému pro statistické výpočty R (http://www.r-project.org/). I na naší katedře s ním přijdete do styku. Mezistupněm mezi R a SPSS je jamovi (https://www.jamovi.org/). I když práce se statistickým software není těžištěm tohoto kurzu, doporučujeme studentům, aby se SPSS, jamovi, či R v průběhu kurzu zkoušeli pracovat a naučili se pracovat s jejich výstupy. G*Power (http://www.psycho.uni-duesseldorf.de/aap/projects/gpower/) je program pro kalkulace související se silou testu. Zvláště vhodný pro odhad potřebné velikosti vzorku při plánování výzkumu. Problémové okruhy Níže uvedené problémové okruhy jsou součástí přednášek předmětu PSY117. Jedná se o relativně rozsáhlé okruhy, takže některé pojmy a přístupy uvedené v sylabu se na přednáškách objeví pouze v podobě odkazu na literaturu k samostudiu. 1. Proměnné, výzkumný kontext Data, proměnné, úrovně měření, kvalita měření, organizace dat, kontrola dat. Tvorba datové matice (formáty .xls, .csv, .sav), kódování proměnných. Literatura: [DH] kap 1; 43–50; [UDŠ] 59–66; [JH] 81-85; Morgan at al; de Vaus 2. Zobrazování dat, četnosti, distribuce Tabelace dat, šíře intervalů, minimum, maximum, odlehlá hodnota (outlier), absolutní a relativní četnosti (frekvence), kumulativní absolutní a relativní četnosti, rozložení (rozdělení) četností (dat), tvary rozložení (normální, bimodální, uniformní, pozitivně zešikmené, negativně zešikmené), normální (Gaussovo) rozložení, velikosti oblastí pod křivkou normálního rozložení, Poissonovo rozložení, graf absolutních a relativních četností, sloupcový graf, histogram, kernel density plot. Literatura: [DH] kap 2 s15-31 + kap 3; [JH] kap 3; Good, Hardin (2003) 107–125. 3. Míry centrální tendence a variability, transformace Modus, medián, průměr, vážený a ořezaný průměr, vhodnost použití různých měr centrální tendence, (variační) rozpětí, kvartilové rozpětí, směrodatná odchylka (populační, výběrová), rozptyl, vliv přičítání konstanty a násobení konstantou na m a s, z-skóry a další standardní skóry (T, IQ), normalizované skóry, percentily, šikmost, špičatost, krabicový graf s anténami Literatura: [DH] kap 2 s32-62; [JH] kap 3; [UDŠ] 245–254; [GH] 94. 4. Pravděpodobnost a pravděpodobnostní rozložení Pojetí pravděpodobnosti, počítání s pravděpodobnostmi, náhodné jevy, náhodné proměnné, podmíněné pravděpodobnosti, Bayesův teorém, pravděpodobnostní rozložení náhodné proměnné, (standardizované) normální pravděpodobnostní rozložení a další běžná rozložení. Literatura: [DH] kap 5, [JH] kap 4 (121–140), 139-145; [GH] kap. 6 a 9; 5. Vztahy mezi proměnnými, korelace Korelace – Pearsonův, Spearmannův, Kendallův koeficient a jejich vlastnosti. Tetrachorická a polychorická korelace. Koeficient determinace, kovariance. Kontingenční tabulka, marginální četnosti. Lineární vztah, monotónní vztah, pozitivní a negativní vztah. Těsnost vztahu. Bodový graf. Parciální a semiparciální korelace. Korelace mezi položkami, Cronbachova a. Literatura: [DH] kap. 9.1 - 9.5, kap. 10 [HC] kap 6, 7, 36 a v druhé půli semestru 10 ; [JH] 247–276; Baron[2] 6. Lineární regrese Statistická predikce, lineární vs. nelineární regrese, lineární a kvadratická funkce, odhad, modelování, regrese, reziduum, prediktor, závislá a nezávislá proměnná, zdroje variability, stanovení regresní přímky metodou nejmenších čtverců, regresní rozptyl a reziduální rozptyl, koeficient determinace jako ukazatel úspěšnosti regrese, homoskedascita, mnohočetná (mnohonásobná) regrese, logistická regrese Literatura: [DH] kap. 9, [HC] kap 8; [JH] 277 – 290 7. Statistická indukce, intervalové odhady Vzorek(výběr), statistiky vs. parametry, estimační vlastnosti popisných statistik, výběrová rozložení, centrální limitní teorém, směrodatná chyba (průměru), výběrové rozložení průměru, relativní četnosti, rozptylu, bodové vs. intervalové odhady. Literatura: [DH] kap. 4, + s.192-195 v kap 7, [HC] kap 9, 11, 37; Hendl 156–181 8. Testování hypotéz Statistická (nulová) hypotéza, výzkumná (alternativní) hypotéza, jednostranná vs. oboustranná hypotéza (test); Bayesovský přístup k testování hypotéz vs. Fisher-Pearson-Neymanovský (tradiční) přístup, úroveň (hladina) statistické významnosti, chyba I. a II. typu a jejich pravděpodobnost, (statistická) síla testu, jednovýběrový t-test, dvouvýběrový t-test (pro nezávislé výběry), párový t-test (z-test), Levenův test, testování korelačního koeficientu, velikost efektu, Cohenovo d, transformace z d na r a naopak. Literatura: [DH] kap. 4, 7, [HC] kap 10, 12, 13, 16, 17, 34; Hendl 181–196; 213–230; 245; 417–441; 252–253; 413–419; Osečtí 1-36; Cohen 1992, 1994; Arbuthnott; Baron[1] 9. Testy pro nominální a ordinální proměnné Parametrické vs. neparametrické testy, znaménkový test, test relativních četností, test dobré shody (c^2), závislost kategoriálních proměnných (c^2, Cramerovo V, koeficient shody pozorovatelů k), Wilcoxonovy testy (jednovýběrový, dvouvýběrový), Mann-Whitney U. Literatura: [HC] kap 14,18; Hendl 197–204; 230–244, 307–338 10. Analýza rozptylu Problém s prováděním většího počtu testů, rybaření v datech, Bonferroniho korekce, princip analýzy rozptylu, rozptyl mezi skupinami (SS, MS), rozptyl uvnitř skupin (SS, MS), statistika F (F-test), analýza rozptylu s jedním faktorem (one-way), předpoklady analýzy rozptylu, post-hoc testy (S-N-K, Scheffe, LSD), velikost účinku (h^2, w^2), interakce faktorů Literatura: [HC] kap 19, 20 Hendl 204–206, 347–360 ČASOvÁ OSNOVA Datum Téma přednáškového setkání Téma semináře Důležité termíny 20. 2. Proměnné, zobrazování dat, četnosti, distribuce tvorba datové matice Žádosti o uznání 27. 2. Míry centrální tendence a variability četnosti, zobrazení rozložení 6. 3. Normální rozložení míry centrální tendence a variability 13. 3. Pravděpodobnost normální rozložení, z-skóry 20. 3. Korelace PP1, pravděpodobnost 27. 3. Lineární regrese korelace 31.3. alternativní téma seminární práce 3. 4. Pořadové korelace, shrnutí regrese 10. 4. Statistická indukce, intervalové odhady PP2, pořadové korelace 17. 4. Testování hypotéz intervalové odhady 24. 4. Přehledy testů, síla testu PP3, t-testy, volba testu, 1. 5. (svátek) 8. 5. (svátek) 8.5. 1. seminární práce 15. 5. Testy pro nominální a ordinální proměnné, Analýza rozptylu chíkvadrát ________________________________ [1] Velmi ceněná učebnice. Přeskakuje základy a jde přímo na věc se SPSS. Hlavní učebnice navazujícího kurzu PSY252. [2] Vynikající, jednoduchý zdroj o grafickém zobrazování dat. [3] Původní hlavní ideový zdroj kurzu, mohu zapůjčit. [4] Dostupné ve studijních materiálech [5] Starý, ale čtivý text. Dobrý jako popularizační úvod do statistiky. Je v několika výtiscích v knihovně FSS. [6] Příběh toho, jak se psychologie a statistika společně vyvíjely. [7] Jedno až dvoustránková zamyšlení nad statistikou v každodenním životě. Zdaleka není tak stará, jak vypadá.