BSS194

Threats from Outer Space

MAREK
DVORACEK
24. 3. 2020

Content

1)What is going on?
2)SST
3)NEOs
4) Weather
5)Others

What is going on?

Planetary and Stellar unintentional and natural threats
1608 - Hans Lippershey patent for refracting telescope

https://www.youtube.com/watch?v=odGrgsLkfUQ

Space situational Awareness

Space Surveillance and Tracking

Space Weather
Near-Earth Objects
Space Debris
Sun-related
Asteroids
Phenomena

Small LEO space population largely unknown

 LEO-crossing (0 to 2000 km) objectsestimated from debris surveys and events

Cislunar outer space is not an empty space. On the contrary it is becoming more „contested, congested, competitive"

Space Surveillance and Tracking (SST)

Small GEO space population especially unknown!

GEO-crossing (GEO $\pm 100 \mathrm{~km}$) objects estimated from debris surveys and events

634	$>5 \mathrm{~m}$
783	$>4 \mathrm{~m}$
960	$>3 \mathrm{~m}$
1188	$>2 \mathrm{~m}$
1378	$>1 \mathrm{~m}$
1406	$>90 \mathrm{~cm}$
1434	$>80 \mathrm{~cm}$
1479	$>70 \mathrm{~cm}$
1512	$>60 \mathrm{~cm}$
1557	$>50 \mathrm{~cm}$
1600	$>40 \mathrm{~cm}$
1650	$>0 \mathrm{~cm}$
1912	$>20 \mathrm{~cm}$
2179	$>10 \mathrm{~cm}$
2677	$>9 \mathrm{~cm}$
3143	$>8 \mathrm{~cm}$
3630	$>7 \mathrm{~cm}$
4120	$>6 \mathrm{~cm}$
470	$>5 \mathrm{~cm}$
5118	$>4 \mathrm{~cm}$
7190	$>3 \mathrm{~cm}$
17687	$>2 \mathrm{~cm}$
33239	$>1 \mathrm{~cm}$

Sources and Sinks of Space Debris

Sinks

Natural decay
(atmospheric drag, solar radiation pressure, lunisolar perturbations)

Active Removal (deorbit, non-propulsive maneuvers)

Enhanced SST capabilities

Iridium-33 and Cosmos-2251 collision (2009): 17\%

Evolution in All Orbits
increase of trackable objects

Debris Size	Similar in size to	Mass (g) aluminum sphere	Kinetic Energy ($\mathbf{J})$	Equiv. TNT (kg)	Energy similar to	Quantity	Trackable
1 mm	medium-grit sand or poppy seeds	0.0014	71	0.0003	Pitched baseball	Tens of millions	Can't be tracked
3 mm	smaller than BBs	0.038	1910	0.008	Bullets	Millions	Can't be tracked
1 cm	blueberries	1.41	70700	0.3	Falling anvil	Hundreds of thousands	Can't be tracked
5 cm	plum	176.7	8840000	37	Hit by bus	Tens of thousands	Most can't be tracked
10 cm	softball	1413.7	70700000	300	Large bomb	Tens of thousands	Most can be tracked
$>10 \mathrm{~cm}$	basketball to football field	1400 to $500,000,000$	Up to $1 \times 10^{\wedge 13}$	Up to 3,000,000	Very large bomb	Thousands	Tracked and cataloged by the space surveillance network

A summary of collision energies of various sized particles. Notice that tiny space debris can be deadly and are typically not trackable.
https://aerospace.org/story/space-debris-and-space-traffic-management

Why even care?

877,700 objects
larger than 1 cm
not catalogued

Nanosatellite launches with forecasts
http://www.unoosa.org/res/oo sadoc/data/documents/2019/ aac 105c 12019crp/aac 10 5c 12019crp 70 html/AC1 05 C1 2019 CRP07E.pdf

What to do now?

Space Debris

man-made objects, including fragments and elements thereof, in Earth orbit or re-entering the

Mitigation

the action of reducing the severity, seriousness, or painfulness of something ${ }^{(2)}$ atmosphere, that are non-functional ${ }^{(1)}$

Space Debris Mitigation

the action of reducing the severity, seriousness, or painfulness of space debris

the ability to preserve and protect the outer space environment over long-term for use by future generations

Targets:

- To prevent the "Kessler Syndrome", i.e. global amount and density of space debris in Earth orbit growing to a point where random collisions occur between objects in space (cascade effect) making orbits not longer exploitable

References:

${ }^{(1)}$ IADC
(2) Oxford dictionary

Risk limitation

For risk relates to:

- fatality,
- injury or occupational illness,
- pollution of the environment, atmosphere or outer space,
- damage to public or private property.

Targets:

- To minimize the risk for human population and Earth environment and damages to assets associated to a re-entry
- To prevent in-orbit collisions by not polluting the outer space with debris

NEOs

Near Earth Objects

Asteroids or comets of sizes ranging from metres to tens of kilometres that orbit the Sun and whose orbits come close to that of Earth's. Of the more than 600000 known asteroids in our Solar System, more than 18000 are NEOs.
comprising natural objects that can potentially impact Earth and cause damage, and assessing their impact risk and potential mitigation measures

Less than 1% of NEOs ($15-40 \mathrm{~m}$) discovered
Average one impact every 10 years (Chelyabinsk type 20m)

Stuff from space

https://www.youtube.com/watch?v=9q3uNcJh4pc

meteorites are everywhere
There are probably more than 500000 fireballs a year (shooting star)
Bolide Events 1994-2013
(Small Asteroids that Disintegrated in Earth's Atmosphere)

2018

„Nearly 22.5 million observations of asteroids and comets had been collected in 2018 by the worldwide network of astronomical observatories, based in 41 countries. It also noted that the number of known nearEarth objects had exceeded 19574 as at 1 February 2019, of which 1837 had been discovered in 2018, with 1963 asteroids now catalogued whose orbits took them within 8 million kilometres of Earth's orbit."
http://www.unoosa.org/res/oosadoc/data/documents/2019/aac 105c
1l/aac 105c 1l 374add $20 \mathrm{html} / A C 105$ C1 L374Add02E.pdf

More Hunting to Do

NASA's NEO Observations Program (asteroid surveys) is responsible for over 90 percent of near-Earth asteroid and comet discoveries. The discovery rate averages about 40 per week.

NEO Observations Program - to discover 90 percent of the NEOs down to the much smaller size of 140 meters by the year 2020

These smaller asteroids may not present a threat of global catastrophe if they impact Earth, but they could still cause massive regional devastation and loss of life, especially if they occur near a metropolitan area
https://www.jpl.nasa.gov/news/news.php?feature=7194
https://www.youtube.com/watch?v=V eEXScLFBA
https://www.vox.com/xpress/2014/9/8/6118717/interactives-calculator-asteroid-meteoroid-meteorite-comet-destroy

Impacts

- Siljan ring - 375 mil. years ago, 52 km
- largest crater in Europe
- Chicxulub crater - 66 mil. years ago, 150km, 11-80km diameter
- killed dinosaurs
- Vredefort crater - 2 bil. years ago, 160 km
- largest confirmed known crater on Earth

Impact consequences

- instant destruction at the impact site
- firestorms, shockwave, tsunamis
- "impact winter" - dust and ash blocking sun
- drop in temperatures, no photosynthesis
- food chain collapse, extinction of species

Experience the Disaster that Wiped Out Dinosaurs

Impacts in the present

- Tunguska, 1908 - 30m in diameter
- 10 megaton equivalent airburst
- 80 mil trees damaged, no known victims
- Chelyabinsk, 2013-20m in diameter
- 440 kilotons of energy
- 1500 injured, thousands of buildings damaged
-Bering Sea, 2018
- 173 kilotons of energy, 11x Little Boy
- Remote area, unnoticed, ex-post
- small impacts and near misses are very common

Asteroid / Planetary Defence

- by impact
- kinetic
- nuclear
- deflection
- gravitational
- solar
- propulsion
- laser
- crucial element: monitoring and early warning

DEFENDING EARTH

With advanced planning and preparation, we could prevent a disastrous impact from an asteroid or comet. The Planetary Society breaks it down into these five steps for saving the world.

4. Deflect

2. Track

If we find a near-Earth object, how do we know if it will hit Earth? We need to map its orbit by taking repeated observations. A number of missions, observatories, and systems track the orbits of NEOs, and more are in development.

1. Find

Astronomers use ground- and spacebased telescopes to spot NEOs and have found 90% of the largest ones. Infrared imaging also helps find objects that are too dark to see from their reflected light.

Redirection Test + ESA Hera experiment

First precise measurement of deflection efficiency and Planetary Defence capability

First binary asteroid and smallest asteroid ever visited
First detailed measurement of small body cratering physics

First deep-space CubeSat for very close asteroid inspection

Space Weather

$\operatorname{sen} \mathrm{A}$ Per

I) A solar flare is an eruption of radiation emitted from the energy accumulated in the sun's magnetic fields as they become increasingly unstable
II) Coronal Mass Ejections are large expulsions of plasma and magnetic field originating from the Sun's coronal atmosphere
III) Solar Energetic Particles, are high energy charged particles accelerated by the Sun, a form of cosmic ray

Space Weather event

```
SWE event Description
Geomagnetic storms are strong disturbances in the Earth's magnetic field that occur when CMEs or solar wind streams interact with the geomagnetic field. As a
Geomagnetic Storm result of this interaction, the Earth's magnetic field adjusts to this jolt of energy and is altered.
Frequency: Most common during the solar maximum and during the declining phase, but can occur anytime during the solar cycle.
Duration: From a few hours to a few days
Solar radiation storm events occur when the near-Earth environment is immersed in large quantities of charged particles, primarily protons, which are accelerated by solar activity (solar flares).
Solar radiation storm
Frequency: Most common during the solar maximum years, but can occur at any stage of the solar cycle.
Duration: Proportional to the magnitude of the solar eruption and received spectrum - from hours to a week.
Radio blackouts are the consequence of solar flares causing enhanced electron densities that ionise the sun-side of the Earth-disrupting radio waves as they pass
Radio black out (Solar Flares)
Frequency: Very common - minor events occurring on average 2,000 times each solar cycle, most frequent during the peak years of the solar cycle, almost absent during solar minimum.
Duration: Minutes to hours.
```


Space Weather

- Carrington event (1859)
- extreme aurora visible in the Caribbean, Africa
- telegraph wires overloaded, fires, shocks, etc.
- SC 22 flare (1989, quite small)
- auroras in Texas, blackout in Quebec
- satellites failing, people panicking over WW3
- 2012 near miss, Carrington-sized
- we cannot really predict them

Space Weather

Modern society is totally dependent upon energy networks, and a repeat of the Carrington Event - a solar storm in 1859 that severely impacted the worldwide telegraph infrastructure - would have even more extreme consequences today
As a result of increased dependency on the systems that would be affected, with estimated losses of up to $\$ 2$ trillion in the US alone

Not IF, but WHEN, with a similar level (or worse) event likely within the next 50 years.
Contingency plans? Not yet. Duck and hope for the best.

L1-L5 ESA Project

The L1 point is "located in the solar wind "upstream" from Earth, so measurements at L1 provide information about the space weather coming toward Earth".

The L5 point, "located 60 degrees behind Earth, close to its orbit, will provide a way to monitor Earth-oriented coronal mass ejections (CMEs) from the 'side' so as to give more precise estimates of the speed and direction of the CME".

The primary objective of the L1 mission is "to provide in-situ observations of the interplanetary medium, including solar wind speed, density, temperature and dynamic pressure, as well as characteristics of the charged particle environment and the direction and strength of the Interplanetary Magnetic Field (IMF). The L1 mission will also monitor the solar disc and solar corona and measure solar energetic particles that may be associated with solar flares and the onset of coronal mass ejections".

The L5 mission objective is "to complement measurements made from L1 by providing a view of the Sun away from the direct Sun-Earth line. This gives visibility of the propagation of plasma clouds emitted by the Sun toward Earth, as well as views of the solar disk before it rotates into view from Earth.

Development of SWE L5:

- Solar corona monitoring
- Heliospheric imaging
- Solar disc magnetic field
- EUV imaging
- In-situ measurements:
- solar wind
- magnetic field
- charged particles
- hot plasma
- Mission phases in SSA-P3
- A/B1
- Readiness for B2/C/D

The sun rotates with

Kp values* higher levels; aurora is commonly visible at high latitudes (northern Michigan and Maine)**.

$\mathrm{Kp}=8$, in- cluding a $9-$	100 per cy- cle (60 days per cycle) $)$

key assets from the grid.
Soacecraft operations: may experience surface charaing and tracking problems, corrections may be needed for orientation problems.
Other systems: induced pipeline currents affect preventive measures, HF radio propaqation sporadic, satellite naviqation degraded for hours, low-frequency radio navigation disrupted, and aurora has been seen as low as Alabama and northern California (typically 45° geomagnetic lat.)**.

Power systems: voltage corrections may be required; false alarms triqqered on some protection devices.
Spacecraft operations: surface charging may occur on satellite components, drag may increase on low-Earth-orbit satellites, and corrections may be needed for orientation problems.
Other systems: intermittent satellite navigation and low-frequency radio navigation problems may occur, HF radio may be intermittent, and aurora has been seen as low as Illinois and Oregon (typically 50° geomagnetic lat.)**.
Power systems: high-latitude power systems may experience voltage alarms; long-duration storms may cause transformer damage.
Spacecraft operations: corrective actions to orientation may be required by ground control; possible changes in drag affect orbit predictions.
Other systems: HF radio propagation can fade at higher latitudes, and aurora has been seen as low as New York and Idaho (typically 55° geomagnetic lat.)**.
Power systems: weak power grid fluctuations can occur. Soacecraft operations: minor impact on satellite operations possible.
Other systems: migratory animals are affected at this and tective system problems can occur, some grid systems may experience complete collapse or blackouts. Transformers may experience damage.
Spacecraft operations: may experience extensive surface charging, problems with orientation, uplink/downlink and tracking satellites.
Other systems: pipeline currents can reach hundreds of amps, HF (high frequency) radio propagation may be impossible in many areas for one to two days, satellite navigation may be degraded for days, low-frequency radio navigation can be out for hours, and aurora has been seen as low as Florida and southern Texas (typically 40° geomagnetic lat.)**
Power systems: possible widespread voltage control probPower systems: possible widespread voltage control probkey assets from the grid.
cycle)
$K p=7$

600 per cycle (360 days
per cycle)
$K p=5$
1700 per cy-
cle
(900 days
per cycle)

* The K-index used to generate these messages is derived in real-time from the Boulder NOAA Magnetometer. The Boulder Kindex, in most cases, approximates the Planetary Kp-index referenced in the NOAA Space Weather Scales. The Planetary Kpindex is not yet available in real-time.** For specific locations around the globe, use geomagnetic latitude to determine likely sightings

* Flux levels are 5 -minute averages. Flux in particles $\cdot \mathrm{s}^{-1} \cdot \mathrm{ster}^{-1} \cdot \mathrm{~cm}^{-2}$. Based on this measure, but other physical measures are also considered. ${ }^{* *}$ These events can last more than one day. ${ }^{* * *}$ High energy particle measurements ($>100 \mathrm{MeV}$) are a better indicator of radiation risk to passenger and crews. Pregnant women are particularly susceptible.

NOAA Space Weather Scale for Radio Blackouts ${ }^{307}$				
Radio Blackouts			GOES X-ray peak brightness by class and by flux*	Number of events when flux level was met; (number of storm days)
R 5	Extreme	HF Radio: Complete HF (high frequency**) radio blackout on the entire sunlit side of the Earth lasting for a number of hours. This results in no HF radio contact with mariners and en route aviators in this sector. Naviqation: Low-frequency navigation signals used by maritime and general aviation systems experience outages on the sunlit side of the Earth for many hours, causing loss in positioning. Increased satellite navigation errors in positioning occur for several hours on the sunlit side of Earth, which may spread into the night side.	$\begin{aligned} & \mathrm{X} 20 \\ & \left(2 \times 10^{-3}\right) \end{aligned}$	Fewer than 1 per cycle
R 4	Severe	HF Radio: HF radio communication blackout on most of the sunlit side of Earth for one to two hours. HF radio contact lost during this time. Navigation: Outages of low-frequency navigation signals cause increased error in positioning for one to two hours. Minor disruptions of satellite navigation possible on the sunlit side of Earth.	$\left\lvert\, \begin{aligned} & \mathrm{X} 10 \\ & \left(10^{-3}\right) \end{aligned}\right.$	8 per cycle (8 days per cycle)
R 3	Strong	HF Radio: Wide area blackout of HF radio communication, loss of radio contact for about an hour on the sunlit side of Earth. Navigation: Low-frequency navigation signals degraded for about an hour.	$\left\lvert\, \begin{aligned} & X 1 \\ & \left(10^{-4}\right) \end{aligned}\right.$	175 per cycle (140 days per cycle)
R 2	Moderate	HF Radio: Limited blackout of HF radio communication on the sunlit side, loss of radio contact for tens of minutes. Navigation: Degradation of low-frequency navigation signals for tens of minutes.	$\begin{array}{\|l\|} \hline \text { M5 } \\ \left(5 \times 10^{-5}\right) \end{array}$	350 per cycle (300 days per cycle)
R 1	Minor	HF Radio: Weak or minor degradation of HF radio communication on the sunlit side, occasional loss of radio contact. Navigation: Low-frequency navigation signals degraded for brief intervals.	$\begin{aligned} & \text { M1 } \\ & \left(10^{-5}\right) \end{aligned}$	2000 per cycle (950 days per cycle)

* Flux, measured in the 0.1-0.8 nm range, in $\mathrm{W} \cdot \mathrm{m}^{-2}$. Based on this measure, but other physical measures are also considered.
** Other frequencies may also be affected by these conditions.

others

- Supernovas
- Gamma-ray burst
- our Sun will turn into red giant in about 5 e 9 years
- Milky Way will collide with Andromeda in 4 e 9 years
- Earth will become too hot in 1 e 9 years (billion)

- heat death of the universe in 1e100 years
- ALIENS!

IM NOT SAYINGiIT WAS AUENS

Aliens

If aliens do exist, theoretical physicist Dr. Michio Kaku posits, why would they want anything to do with us? It would be like a hunter talking to a squirrel, he suggests. Hollywood and science fiction novels have conditioned us for years to believe that aliens either want to hang out on our intellectual level and learn from us... or destroy us.

If alien life really does have the technology and know-how to make it all the way here, perhaps we should just play it cool and not assume that we are the top species in the universe. Mankind's biggest folly, Kaku suggests, might just be in its insistence that we are an exceptional species.

- Arrival, Annihilation, Expanse, Stanislaw Lem...

Some other video sources

https://www.youtube.com/watch?v=itdYS9XF4a0\&t=308s
https://www.youtube.com/watch?v=OfvkKBNup5A
https://www.youtube.com/watch?v=Ez609kf49y8
https://www.youtube.com/watch?v=HJfy8acFaOg
https://www.voutube.com/watch?v=fu3645D4ZII
https://www.youtube.com/watch?v=qXXZLoq2zFc

sources

Planetary Defense: Global Collaboration for Defending Earth from Asteroids and Comets
http://www.jwc.nato.int/images/stories/ news items /2017/SPACESU PPORT NATO ThreeSwordsJuly17.pdf
https://espi.or.at/news/new-espi-report-european-space-weatherservices
https://espi.or.at/publications/espi-public-reports/send/2-public-espi-reports/371-security-in-outer-space-rising-stakes-for-europe
https://esamultimedia.esa.int/multimedia/publications/BR-338/BR338.pdf

