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Abstract: The development of societies of human and machine agents should benefit from an understanding of human 
group decision processes. Political Scientist and Professor, Bruce Bueno De Mesquita has made significant 
claims for the predictive accuracy of his computational model of group decision making, receiving much 
popular press including newspaper articles, books and a television documentary entitled “The New 
Nostradamus”. Despite these and many journal and conference publications related to the topic, no clear 
elicitation of the model exists in the open literature. We expose and present the model by careful navigation 
of the literature and illustrate the soundness of our interpretation by replicating De Mesquita’s own results. 
We also discuss concerns regarding model sensitivity and convergence. 

1 INTRODUCTION 

There is little doubt that some of the greatest social 
challenges for the future of mankind include 
terrorism, war, climate change, poverty, and 
economics. So, the pursuit of an integrated theory 
capable of explanation and prediction of group 
decision outcomes is a worthy endeavour. Such 
efforts, often classed under the realm of 
computational political science, aim to form testable 
yet tractable models for human agency (Kollman et 
al, 2010). Bueno De Mesquita (herein abbreviated to 
BDM) has laid claims to such an achievement. An 
example prediction was “…the ability to dominate 
Iran’s politics resides with Khamenei and 
Rafsanjani. And between these two – though the 
contest is close – the advantage seems to lie with 
Khamenei.” (BDM, 1984, p. 233)  

The accuracy of this prediction is demonstrated 
by the fact that Khamenei succeeded Khomeinei as 
Supreme Leader of Iran in June 1989 and Rafsanjani 
became the fourth president of Iran in August 1989. 

BDM’s model of group decision making 
considers conflict and agreement, and is based on 
expected utility theory. BDM (1997) states: 

The model itself depicts a game in which 
actors simultaneously make proposals, and 
exert influence on one another. They evaluate 
options and build coalitions by shifting 

positions on the issue in question. The above 
steps are repeated sequentially until the issue 
is resolved. (p. 238) 

A New York Times article by Thomson (2009) gives 
some insight into why the model has never been 
fully disclosed: 

 

…Bueno de Mesquita does not publish the 
actual computer code of his model. (Bueno 
de Mesquita cannot do so because his former 
firm owns the actual code, but he counters 
that he has outlined the math behind his 
model in enough academic papers and books 
for anyone to replicate something close to his 
work.) 
 

At first BDM (1997) appears to offer the most 
promise in elucidating the model, however first 
impressions prove misleading. Significant errors and 
obfuscations become apparent to anyone who tries to 
replicate the model and results from this and later 
works. In the following, we carefully navigate and 
interpret earlier works to derive a working model 
and agent software that reproduces his published 
results to an adequate level of accuracy. 

2 EVOLUTION OF THE MODEL 

BDM’s  predictions  depend  on  two parts. First, his 

18 Scholz J., Calbert G. and Smith G..
UNRAVELLING BUENO DE MESQUITA’S GROUP DECISION MODEL .
DOI: 10.5220/0003121500180030
In Proceedings of the 3rd International Conference on Agents and Artificial Intelligence (ICAART-2011), pages 18-30
ISBN: 978-989-8425-40-9
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)



 

method of data collection and interpretation from 
human subjects; second, the computational model 
which he applies to that data.  

The first part is significant, but has not been 
described by BDM in the open literature and so 
evades current interpretation or analysis. The second 
part, the computational model we examine further.  

The model deals with a single ‘issue’ 
decomposed into a metric scale, with ‘position’ 
values (x) corresponding to states of the issue. BDM 
illustrates, “The term xi represents each nation’s 
preferred date, measured in years, by which 
emission standards should be applied to medium-
sized automobiles as revealed at the outset of 
discussions on the issue.” (BDM, 1994, p.77). We 
will continue with this example later in the results 
section. A number of ‘actors’ (i=1,2,…,n) exist, each 
of which hold a single ‘position’ (xi) with regard to 
the issue, represented by their assignment to a 
location. 

Each ‘actor’ is also considered to possess some 
‘capability’ (ci) with respect to the ‘issue’. 
‘Capability’ is sometimes interchangeably referred 
to as ‘power’ or ‘resources’ by BDM. Like 
‘position’, ‘capability’ is given a value on a metric 
scale. This value represents an actor’s level of 
influence with regard to the issue.  

Lastly, each ‘actor’ is also considered to possess 
some ‘salience’ (si) with respect to the ‘issue’. 
‘Salience’ is sometimes interchangeably referred to 
as ‘importance’, ‘priority’, ‘attention’ by BDM. Like 
‘position’ and ‘capability’, ‘salience’ is given a 
value on a metric scale. This value represents an 
actor’s level of energy with regard to the issue.  

Table 1 from BDM (1994, p. 78) illustrates.  

Table 1: Example input data for the computational model. 
The issue is ‘the date (years) of introduction of emission 
standards for medium-sized automobiles’. 

Actor (i) Capability 
(ci) 

Position 
(xi) 

Salience 
(si) 

Netherlands 0.08 4 80
Belgium 0.08 7 40
Luxembourg 0.03 4 20
Germany 0.16 4 80
France 0.16 10 60
Italy 0.16 10 60
UK 0.16 10 90
Ireland 0.05 7 10
Denmark 0.05 4 100
Greece 0.08 7 70

 

BDM’s model decomposes the social fabric into 
pairwise ‘contests’ between actors with support or 

otherwise of third-party alliances. Based on actor i’s 
perception of expected utility, actor i considers 
whether or not to challenge each other actor j, in an 
attempt to convince them to adopt i’s position. The 
expected utility includes an assessment of the level 
of third-party support for actor i’s challenge. If actor 
i’s expected utility of challenging actor j versus not 
challenging is greater than zero, actor i will 
challenge actor j, otherwise it will not. This model of 
mind or agency is confrontational and wholly self-
interested.  

Not surprisingly, BDM has adapted the model 
over the years. So it is necessary to clearly identify 
which version we are using when considering its 
form and results.   

BDM (1980) provides the earliest form, which is 
repeated in BDM (1981). The notation is later 
revised in BDM (1985), and includes a modification 
to include a risk exponent; however the basic 
expected utility calculations remain the same from 
1980 to 1985. We are readily familiar with the 
expected value of a random variable Z, with various 
states Zw each with probability Pw of occurring as:  

 

  
w

wwZPzE  

 

Expected utility follows the same structure in 
that the utilities of different contest outcomes are 
estimated along with the associated probabilities.  

An apparent motivation for BDM’s expected 
utility model was predicting the outbreak of war as 
per BDM (1981). It is thus not surprising to find a 
confrontational mentality to the basic form of the 
model. BDM considers an actor i to choose to 
‘challenge’ a rival or opponent actor j. Thereby the 
expected utility for i to challenge j is:  

 

    fiisiic
i UPUPUE  1  

 

Where Usi refers to the utility for actor i if it 
succeeds and Ufi is the utility for actor i if it fails.  

BDM (1985, p. 158) extends this with a third 
term relating to the third-party contribution to i’s 
expected utility (using BDM’s notation):  
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If actor i does not challenge j, i stays at the same 
position and j may either remain where it is (status 
quo) or j may move to a different position. If j 
moves, the utility of the outcome may prove either 
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better for i or worse for i. The expected utility for i 
not challenging is then, BDM (1985, p.158):  
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Where Qq refers to the probability of status quo and 
Qb refers to a switch (value either 1 or 0) depending 
on whether the outcome was better or worse. These 
and other issues will be explained fully later.  

The full form of the expected utility difference 
combines (1) and (2):  

 

     
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i
cij

i
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In BDM and Lalman (1986) a problem with the 
following term in (1) is identified: 
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The problem is described in BDM and Lalman 
(1986): 

 

Because of the manner in which third parties 
are treated in earlier studies (Bueno De 
Mesquita, 1981, 1985), the operational 
estimate of expected utility values for any 
decision maker could vary between (2N-2) 
and –(2N-2), where N is the total number of 
nations in the relevant international system. 
Variations in the size of the international 
community, then, affected the possible range 
of values in the expected utility models set 
out earlier. This is a serious shortcoming in 
that it makes comparison of a single nation’s 
utility scores in different years difficult. … 
The new formulation fixes the range of 
values, irrespective of system size, in a 
theoretically meaningful way. (p. 1119) 

 

BDM’s proposed solution involves removing the 
term (4) from (1) and incorporating a more complex 
form of calculation of the probability Pi. In BDM 

(1985, p.161) the probability iP refers to “Pi = i’s 

probability of succeeding in a bilateral contest with 
j”. 

From 1986 onwards, the definition of the 
probability is changed to account for multilateral 
contributions to the contest between i and j. The new 

form is denoted i
iP . This will be defined later. 

The form of the expected utilities as stated in 
BDM and Lalman (1986, p. 1118) are: 
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The notable change is the inclusion of salience sj and 
an extra term in the expected utility for challenge. 
Otherwise, notation changes are minimal.  

This latter structure remains throughout BDM 
(1994, 1997, and 2002). In BDM (2009b) a new 
structure of model is announced, however we do not 
consider this new model further. As a result of the 
multi-lateral scaling issue with the model in its pre-
1986 form, we focus on the model structure and 
results for 1986 and later, using the form from 
equations 5, 6 and 7.  

3 UTILITIES 

BDM (1997, p.242-243) uses equations (5), (6) and 
(7) though with different notation. The probability of 
status quo might be determined in a number of ways, 
however, a value of Q=1.0 is assumed in BDM 
(1985, p.161), corresponding to a stoic opposition 
and a value of Q=0.5 is assumed in both BDM and 
Lalman (1986, p.1122) and BDM (2009a, p.5), 
corresponding to a maximally uncertain outcome of 
whether the actor j will move or stay in position. No 
explicit value for Q is specified in other papers. 

3.1 Base Utilities 

To find the expected utility, we need to calculate the 
basic utilities: 
 

i
sq

i
wi

i
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i
fi

i
si UUUUU ,,,,  (8)

 

These utilities are a function of the policy position of 
actors, xi and xj. BDM (1997, p.264) tells us that “… 

i’s utility for kx , k
ixu , is a decreasing function of 

the distance between the proposal and i’s preferred 
resolution, so that    
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The notation j
ixu  is not the same as that used in (8), 

so some transformation is probably required. Thus 
we interpret (9) as the general class of model only. It 
is worth pointing out that a specific class is stated in 
BDM (1997, p.245):  

 

ir

jij
i xxxu *1   (10)

 

However, (10) is inconsistent with the more detailed 
earlier explanations, as the following will now 
reveal.  

One clue to the utility calculations is given in 
BDM (1994): 

 

Should i succeed, then i will derive the utility 
associated with convincing j to switch from 
its current policy stance to that supported by 
i. This is denoted by dxu j

i | , which equals 

)( ji
i xxu  . Should i fail, then it confronts 

the prospect of having to abandon its 
objectives in favour of those pursued by j, 
denoted by ).(| ij

i
j

i xxudxu   (p. 84) 
 

Once again, BDM introduces additional notation 

)( ji
i xxu   and )( ij

i xxu   which remains 

undefined. However, BDM (1985, p.158) gives 
utility for i’s success which is of the form of a 
difference between positions i and j: 
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Also, the utility for i’s failure, which is of the form 
of a difference between positions j and i: 
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Noting also in BDM (1985): 
 

The reason for the transformations by 2’s and 
4’s is to preserve the original scale of 
numbers while avoiding the generation of 
imaginary numbers. Because ri can be less 
than 1.0, the absence of transformations 
would mean that for negative values of, for 
instance Ufi, no real root would exist. This 
problem is eliminated with the introduction 
of these transformations. (p. 158) 
 

i
iiU and i

ijU are defined by BDM (1985): 
 

With i
iiU being equal to the value i attaches 

to his own policy portfolio (Both iiU and 

jjU are assumed to equal 1.0, with ijU and 

jiU ranging between possible values of 1.0 

and -1.0), and with i
ijU  being equal to the 

value i attaches to j’s policies as a function of 
their similarity to the policies of i. (p. 158) 
 

Thus, 
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And to satisfy the stated range requirement we 
propose,  
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Equation (14) is consistent with the statement and 

equation at (9). Note that -1≤ i
iiU ≤1. Where, 

xmax−xmin is the range of positions. Note the 
maximum value of +1 occurs when policy positions 
of i and j coincide and is at its minimum of -1 when 
the positions are maximally separated.  

Summarising, so far we have now accounted for 
(8) parts a and b, which simplify to:  
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Note the ranges 2)5.0(42  i
si

r Ui  and 

iri
fiU )5.0(422   are consistent with the 

diagram in BDM (1985, p.159).  

BDM (1985) does not explicitly define i
biU  or 

i
wiU , however, we are given in BDM (1985, p.158):  
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The subscripts t0 and tn are not defined, but in 
BDM (1981, p.48) these correspond to before and 
after j’s policy change, respectively. The utility 
subscript q is usually signifies status quo, but we 
believe this is an error in (17) and should instead 
refer to j making a policy change (or move) which 
gains or betters the situation for i. We are led to 
believe this by BDM (1981, p.47-48):  
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gained by succeeding in a bilateral conflict 
with j…  

0t
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may be lost by failing in a bilateral conflict 
with j… 
 

So we adopt the subscript, b indicating ‘better’ 
consistent with (8). Furthermore, we note a problem 
with scaling for (17), as it will become undefined 
(negative number raised to a power less than 1.0). 
Thus, corrections are also required to realign scaling. 
The result is as follows: 
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Similarly we expect that j’s movement may 
potentially result in a worse condition for i: 
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Note this adjusted scaling ensures 

2)5.0(42  bi
r Ui  and ir

wiU )5.0(422  .  

We are given a clue that some relation to the 
median voter position is important by 
“ ]||[ dxuanddxu j

i
j

i    are approximated by 

comparing the value actor i attaches to the current 
median voter prediction to the value i attaches to the 
median anticipated if i accepts j’s preferred 
outcome.” (BDM 1997, p. 248) 

 

BDM (2009a) expresses this most clearly: 
 

… they are anticipated to move towards the 
median voter position if they make an 
uncoerced move. This means that if B lies on 
the opposite side of the median voter from A, 
then A anticipates that if B moves 
(probability=0.5), then B will move in such a 
way as to come closer to the policy outcome 
A supports and so A’s welfare will improve 

without A having to exert any effort. If B lies 
between the median voter position and A, 
then whether A’s welfare improves or 
worsens depends on how far B is expected to 
move compared to A. The same is true if A 
lies between B and the median. (p. 6) 
 

We interpret this to mean that for no challenge 
(uncoerced), and B (or j) moves, that A (or i) 
expects B (or j) will move to the median position. 
The cases are illustrated in figures 1 to 4. 
 

i j j i  

Figure 1: Case 1:  between i and j utility for i gets 
better as a result of j moving. 

i j


j i


 

Figure 2: Case 2: j between i and utility for i gets worse 
as a result of j moving. 

j i


i j


 

Figure 3: Case 3A: i between j and  utility for i gets 
better as a result of j moving. 

j i


i j


 

Figure 4: Case 3B: i between j and  utility for i gets 
worse as a result of j moving. 

For any of these cases then we expect,  
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Substituting (20) and (21) into (18) yields:   
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Substituting (20) and (21) into (19) yields:   
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We note further, that these utilities must be applied 
in the appropriate cases. Thus if case 1 is true, then 
the probability of i’s utility improving is 1.0 and by 
implication the probability of i’s utility worsening is 
0.0. We believe this defines the probability T in 
equation (7), though no known publication by the 
author states this explicitly. So, cases 1 and 3A 
correspond to T=1 and cases 2 and 3B correspond to 
T=0. This helps explain the description in BDM 
(1986, p. 1122).   

Lastly, for the situation of no change in policy 
(status quo) i does not challenge and j does not 
move, BDM (1985, p.158) defines:  
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We expect this corresponds to (8) part e. 
To determine the calculations for actor j, BDM 
(1985) notes: 
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f

j
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appropriate superscripts) are defined 
analogously. These terms vary as a function 
of whose estimate of expected utility is being 
calculated (i.e., who is the superscripted 
actor) by varying the risk exponent, so that 
for expected utility equations with a j 
superscript, j’s risk taking propensity is used 
to estimate what j perceives to be the value of 
success, failure, or no challenge for i in 
accordance with the equations delineated 
below. (p. 158) 
 

Thus, the two main equations become: 
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3.2 The Median Voter Position 

In the previous section, it became clear that the 
“median voter position” must be determined in order 
to calculate the utility terms in (22) and (23). 

BDM defines comparative votes in direct propor- 

tion to utility difference, capability and salience. The 
votes ‘cast’ by agent i in comparing positions 

jx and kx  is given as BDM (1997, p.239): 
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We emphasise, that these votes cast to k  may 
indeed be negative, if for example, agent i prefers j 
to .k  To map this notation to that used previously, 
we interpret: 
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Using (14) we get: 
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According to BDM (1997):  
 

The prospect that a proposal will succeed is 
assumed to depend on how much support can 
be mustered in its favour as compared with 
the feasible alternatives. This is calculated as 
the sum of “votes” across all actors in 
comparison between xj and xk . (p. 240) 
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In general, this pairwise determination is termed a 
Condorcet Method of voting. A Condorcet winner is 
the candidate whom voters prefer to each other 
candidate, when compared to them one at a time. 

Black’s Median Voter theory now comes into 
play, so “the decision adopted by the committee 
becomes determinant as soon as the position of the 
one optimum – which we can refer to conveniently 
enough as the median optimum – is given.” (Black, 
1948). 

That is, in a majority election where a voter’s 
attitude is represented as a point in one dimension, if 
all voters vote for a candidate closest to their own 
preference and there are only two candidates, then if 
the candidates want to maximise their votes they 
should commit to the policy attitude preferred by the 
median voter. 

The median voter’s ideal attitude is always a 
Condorcet winner (Congleton, 2003). Thus the 
median voter attitude index and the number of votes 
at the median attitude may be determined. 
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4 ALLIANCE PROBABILITY 

The probabilities of equations (25) are determined 
by the bilateral alliances. BDM determines these 
probabilities by combining across all pairs, an 
assessment of ‘who is with me’ (positive valued 
vote) versus ‘who is against me’ (negative valued 
vote) and normalising. BDM (1997, p.244) states the 
estimator as:  
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When more agents are ‘for’ than ‘against’, this raises 
the probability of winning the bilateral contest. As 
per previous derivation of votes, substitute and 
expand (31): 
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5 RISK PROPENSITY 

As seen in the previous section, utility calculations 
involve a risk exponent. This risk exponent is in turn 
derived from the expected utility. BDM (1985, 
p.157) is first to describe the basis for risk 
calculation, 

 

I define each nation’s security level as 


ij

jiUE )( . The greater the sum, the more 

utility i believes its adversaries expect to 
derive from challenging i. … as this sum 
decreases, i’s relative security increases, so 
that i is assumed to have adopted safe 
policies ... 
 

BDM (1985, p.157) goes on to define: 
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(32)

 

Note that BDM (1997, p.247) reverses the subscripts 
of the above, which is inconsistent with his 
conceptual basis of security. Further, BDM 
(1997,p.247) provides an inconsistent transformation 
formula which would not accommodate the range 

11  iR . Thus, we choose the earlier conversi- 

on formula from BDM (1985, p.157): 
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The purpose of the formula according to BDM 
(1985, p.157) is to ensure that ri ranges between 0.5 
and 2, noting that the divisor of 3 appears arbitrary, 
but effects curvature. Equation (33) is illustrated in 
figure 5. 

0

0.5

1

1.5

2 

‐1  ‐0.6 ‐0.2 0  0.2 0.6 1

ri

Ri   

Figure 5: Scaling conversion formula. 

The following equation (34), expresses (32) 
more precisely: 
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(34) 

 

We still need to know, however, how to calculate the 
expected utilities in (25), which use a modified 
notation. BDM (1985) describes: 

 

Thus, the risk terms are calculated by 
manipulating the alliance portfolios used as 
the policy indicator through simulation to 
locate the best and worse portfolios for any 
given nation, where the best and worst are 
defined in terms of the sum of expected 
utilities of all others vis-à-vis the nation in 
question under the assumption that utilities 
are strictly a function of similarities in 
alliance commitments. (Note: That is, 
temporarily applying the expected utility 
equations (without risk or uncertainty taken 
into account) as developed in The War Trap, 
I identify the worst and best case alliance 
strategy for each nation each year, using the 
original, linear utility functions to define the 
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range of possible expected gains or losses for 
each nation. These, then, are utilized to 
measure risk propensities and thereby to 
introduce curvature into the utility functions.) 
(p. 167-168) 
 

This implies a process to first determine the 
expected utilities of equations (25) using ri=1, then 
apply (34) and (33) to estimate ri and lastly apply the 
ri estimates to re-estimate the expected utilities of 
equations (25). 

6 DECISION 

6.1 Offer Categories 

The expected utilities  ij
i UE  and  ji

j UE  are used 

to classify the ‘offers’ between all actor pairs into 
categories according to potential outcomes as 
illustrated in figure 6. An actor may expect to 
conflict, compromise, capitulate, or stalemate with 
another. Unfortunately no single publication by 
BDM explains how to quantify these.  

Confrontation +
j moves to i

Confrontation -
i moves to j

i’s Expected 
Utility

j’s Expected Utility

Compromise +
j moves part 

way to i

Compromise -
i moves part

way to j

Compel -
i moves to j

CONFLICTCONFLICT

STALEMATESTALEMATE

COMPROMISECOMPROMISE

COMPROMISECOMPROMISE

CAPITULATECAPITULATE

CAPITULATECAPITULATE

Status Quo
i stays put

Compel +
j moves to i

 ij
i UE

 ji
j UE

 

Figure 6: Classifying the outcome of challenges according 
to i’s viewpoint. 

Conflict. Actors i and j conflict if 0)( ij
i UE and 

0)( ji
j UE . So “If both i and j believe that they 

have the upper hand in the relationship, then conflict 
is likely and that conflict has an uncertain outcome.” 
BDM (1997, p.244) 

BDM (1984, p. 230) labels for the 
“Confrontation-” octant, “Challenger Favored” and 
for the “Confrontation+” octant “Favoring Focal 
Group”. We interpret this to mean i moves to j and j 
moves to i respectively, as shown in figure 6. 

 

Compromise. Actor i has the upper hand if 

0)( ij
i UE , 0)( ji

j UE  and )()( ji
j

ij
i UEUE  . 

Actor j has the upper hand if 

0)( ij
i UE , 0)( ji

j UE  and )()( ji
j

ij
i UEUE  . 

BDM (1997) describes: 
 

… both players agree that i has the upper 
hand. In this instance, j is expected to be 
willing to offer concessions to i, although the 
concessions are not likely to be as large as 
what i would like. The likely resolution of 
their exchange is a compromise reflecting the 
weighted average of i’s expectation and j’s. 
(p. 243-244) 
 

However, the weighted average is not clear. BDM 
(1994) states (presumably with regard to i having the 
‘upper hand’): 

 

… the concession is assumed to equal the 
distance on Ra between xi and xj multiplied by 
the ratio of the absolute value of  j’s expected 
utility to i’s expected utility. This treats the 
compromise as the weighted average of the 
perceived enforceability of the demand… (p. 
96) 
 

We might interpret this literally as: 
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Noting this relates only to the octant labeled 
“Compromise +” in figure 6. Considering the 
boundary conditions in this octant, if 

)()( ji
j

ij
i UEUE   then 0ˆ x  and actor j does not 

move from xj and if )()( ji
j

ij
i UEUE   then 

1ˆ x  and actor j moves from xj to xi. For the octant 
labelled “Compromise -” we use:  
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Acquiescence and Stalemate. The states for 
acquiescence and stalemate are illustrated in figure 6 
and require no further explanation.  

6.2 Offer Selection 

Given that each actor has chosen who to challenge 
and to remain silent for those not to be challenged, 
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then each actor will have received ‘challenge offers’ 
from other actors. How does an actor come to a 
decision on it which challenge offer it should 
accept? BDM (1997) elucidates:  

 

Each player would like to choose the best 
offer made to it and each proposer enforces 
its bid to the extent that it can. Those better 
able to enforce their wishes than others can 
make their proposals stick. Given equally 
enforceable proposals, players move the least 
that they can. … When the players finish 
sorting out their choices among proposals, 
each shifts to the position contained in the 
proposal it accepted. (p. 251-252) 
 

If all offers are equally enforceable, we would 
propose to order these according to an actor’s 
preferred choice as follows, so that actor i moves 
‘the least that it can’. Thus, summarising the order 
of decision choice for actor i is as follows: 

1. Actor i conflicts with actor j and actor j (or with 
some chance actor i) acquiesces. 

2. Actor i compromises to actor j. Actor i loses 
some ground. 

3. Actor i acquiesces to actor j. Actor i loses most 
ground. 

4. Actor i stalemate with actor j. Actor i status quo. 
 

Thus, for example if actor i is in conflict with 
several other actors, each of which have greater 
expected utility than i, then the agent will need to 
concede to the one that allows i to move the least.  

If all offers are not equally enforceable, then we 
might expect an actor to be more likely to concede 
to the most powerful actor. Thus, in the prior 
example, actor i concedes to the actor with highest 
expected utility.  

7 RESULTS 

BDM (1994) provides an example. The data for this 
was introduced in table 1. BDM (1994) provides 
three graphs of results. These compare expected 
utility for Belgium versus the others, France versus 
the others and the Netherlands versus the others.  

Figures 7 and 8 compare the result using our 
interpretation of the algorithm as given in section 6, 
compared directly with the results published in 
BDM (1994, p.91). No value for Q was given. We 
chose Q=1.0.  
 
 

 

 

Figure 7: Comparison of results for BDM (1994) (top) and 
our interpretation (bottom), view from Belgium. 

Note that some countries are not shown on 
BDM’s graphs. In figure 7, our expected utility 
results for Ireland and Greece were (0,0) and in 
figure 8, UK and Italy were at (0,0).  

As a result of the fact that BDM does not 
explicitly plot the point locus of the expected 
utilities, we can only reasonably assume the 
quadrants where the names are labelled corresponds 
to the location of each locus. The correspondence of 
our results to this level of accuracy (within a 
quadrant) is 100%. We note that if the expected 
utilities were derived randomly, the probability of 
getting any one of these points located in the correct 
quadrant is one in four. In order to get all nine 
results in the correct quadrants for any one graph of 
the two graphs above would constitute a probability 
of (1/4)9 ~ 4x 10-6. We therefore assert that BDM’s 
results have effectively been reproduced.  
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Figure 8: Comparison of results for BDM (1994) (top) and 
our interpretation (bottom), view from France. 

We came across an issue with trying to 
reproduce the result given by BDM for the 
Netherlands as compared in figure 9. We assert that 
the result published by BDM was in error. Our result 

showing ‘Others’ as  ji
j UE  against  ji

i UE  for 

i=Luxembourg is compared with BDM’s quoted 
result in figure 10. This shows 100% 
correspondence in terms of quadrant accuracy as for 
the previous two results. 
BDM (1994) summarises the final result: 

 

The dominant outcome would be, as 
indicated above, a lag of 8.35 years. 
However, if the participants were prepared to 
bear the costs of slightly prolonged 
negotiations, then the model’s predicted 
dominant outcome rises to 9.05 years and 
stabilizes at that point. … The actual 
resolution was for a delay of 8.833 years. 
(p.98) 

We found the median voter position at the end of 
the first round to be 8.4 years. At the end of the 
second, third, fourth and fifth rounds the median 
voter position was for each 9.9 years.  
 

 

 

Figure 9: Comparison of results for BDM (1994) (top) and 
our interpretation (below), view from Netherlands. 

8 DISCUSSION 

As identified earlier, we chose Q=1.0 to reproduce 
the results above. We observed that a value of Q=0.5 
produces very different results. The following figure 
11 provides an illustrative example. 

In figure 11, the positions of Greece and 
Belgium change entire quadrants if Q=1 or Q=0.5 is 
chosen.  

Recalling that Q relates to the probability of a 
status quo and is an arbitrary parameter, it is not 
desirable for results to be so sensitive.  

We examined the applicability of the 
interpretation to other examples from later papers. 
Despite the fact that BDM (1994) and BDM (1997) 
differ only in the detailed example used, it is 
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perplexing that we were unable to reproduce the 
results from the 1997 paper. Indeed attempts to 
apply this algorithm (using either Q=0.5 or Q=1.0) 
to the 1997 “Sultan” problem yielded wildly 
different results to those published. 
 

 

 

Figure 10: Comparison of results for BDM (1994) ‘view 
from Netherlands’ and our interpretation, view from 
Luxembourg. 

Further insight on the evolution of the median 
voter position over rounds is also warranted. This is 
shown in table 2. 

Table 2 shows that the median appears to 
stabilise, but then continues to change. Calculation 
of the mean voter position provides insight. The 
coarseness of the median voter position becomes 
evident. Indeed given the fact that the “compromise” 
state allows for intermediate valued positions (as per 
equation 36) it is surprising that BDM would want to 
continue with median over mean values. In general 
the results do not stabilise. There is no reason from 
examining the algorithm to expect that they should. 

 

 

Figure 11: Example for Netherlands comparing results 
using Q=1.0 (top) and Q=0.5 (bottom). 

Table 2: Evolution of the median and mean voter positions 
for ‘the date of introduction of emission standards for 
medium-sized automobiles’ problem in BDM (1994).  

Round 1 2 3 4 5 6 7 8 

Median 8.4 9.9 9.9 9.9 9.9 7.4 8.8 9.6 

Mean 7.4 7.5 7.6 7.3 7.3 7.4 7.5 7.6 

9 CONCLUSIONS 

The algorithm outlined (and summarised in the 
Appendix) has for the first time exposed and 
provided independent means of replicating the 
results of BDM’s computational model. This opens 
BDM’s model, method and claims to scientific 
discussion. 

The correctness of the interpretation was 
illustrated using the example from BDM (1994). We 
note the chance of replicating to this level of 
accuracy by random selection would be much less 
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than one in one million. This fulfils Bueno De 
Mesquita’s own prediction that enough material is 
available so that “anyone (may) replicate something 
close to his work”! 

Concerns with regard to the model’s sensitivity 
and convergence have been identified.  

Given these concerns, we conclude that adoption 
of BDM’s model for agent development would be 
premature at this time. 
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APPENDIX 

The following summarises the full procedure. 

1. Given i=1,2,…,n actors, initial positions for each actor 
xi(t=0), ci, si and number of rounds=. 

2. Let ri=1 

3. Calculate the pairwise votes: 
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Then find the maximum value which corresponds to 
the Condorcet winner position or median = .  

 

4. Calculate basic utilities, 
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5. Calculate probabilities: 
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6. Let Q=0.5 (or 1.0).  

7. Calculate: 
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If second pass (used the calculated values of ri) then, 
go to step 11. 

8. Calculate: 
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9. Calculate: 
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10. Go to step 4, using calculated values of ri.   

11. Determine new position decisions x, based on rules in 
section 5 for octant of Eij(i) vs Eji(j). 

12. Increment the rounds, t=t+1 

13. If t=  then stop. 
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