BSSn4495: Qualitative research in security studies

Strategies for causal identification: experiments and QCA

April 6, 2021 Miriam Matejova, PhD

Agenda

- Why experiments/QCA?
- When should/can we use experiments/QCA?
- What are the advantages/disadvantages of the experimental/QCA method?

Spurious correlation

We may observe a **covariation (correlation)** between **C** and **E**.

BUT, this may be because **C** is NOT a cause of **E**, but because **Z** is a cause of BOTH **C** and **E**.

"Assignment" of Causes

- Causal claim: Attending University (X) Causes Higher Future Earnings (Y).
- Each case represents an individual (a potential student)
- How is Attending University (X) "assigned" across cases in the real world? X is typically chosen by individuals on the basis of some Z (e.g. ambition).

Here, only cases with High Z get X=> Spurious Correlation between X and Y

"Assignment" of Causes

But what if we let researchers assign X across cases in such a way that it does not depend on

Here Cases with High and Low Z are equally likely to be assigned X => No Spurious Correlation between X and Y

"Random Assignment"

"Random assignment" is a procedure for assigning X to cases that ensures that the difference in the value of the Zs between the cases that are assigned X and the cases that are not assigned X disappears as the number of cases gets large (law of large numbers)

This procedure works even if the researcher does not know what the Z variables are or cannot measure them

Limitations of "random assignment" in social sciences

- Cost and ethics
- Artificial intervention by the researcher vs. real world applicability
 - The problem of generalization
- Cannot study the effects of things that have already happened
- Can get biased result if inappropriately designed

Qualitative comparative analysis (QCA)

- A set-theoretic method
- QCA as an approach and a data analysis technique

Set-theoretic methods

- The data consist of set membership scores

 crisp, fuzzy, multi-value
- Relations between social phenomena modeled in terms of set relations

 necessity, sufficiency, etc.
- The focus is on causal complexity

 equifinality, conjunctural causation, etc.
- Cases are compared

- from 1 (process tracing) to many (QCA)

When do we use QCA?

- Causal complexity
 - Multifinality: same factor, different outcomes
 - Equifinality: different factors, same outcome
 - Asymmetric causality:
 - presence and absence of outcome have different explanations
 - economic growth \rightarrow democratization
 - clientelism \rightarrow non-democratization
 - Presence and absence of condition produce different outcomes
- Mid-sized N

QCA: Steps

- 1) Assemble the universe of cases
- 2) Collect raw data
- 3) Calibrate conditions sets and outcome sets
- 4) Search for necessary conditions
- 5) Represent empirical evidence in a truth table
- 6) Identify sufficient conditions by logically minimizing the truth table
- 7) Do within-case analyses in typical and deviant cases

Sets: necessary and sufficient conditions

What are sets?

- Establish qualitative, not quantitative, differences between cases
 - height \leftarrow not a set
 - tall person \leftarrow set

Sets vs. variables

	Sets	Variables
Labeling	Noun (object) and ad- jective (property of ob- ject): 'tall man'	Noun: 'height'
Data	Set membership scores (between 0-1)	Numbers (preferably unbound)
Information	Difference in type (qualitative differences)	Difference in degree
Data generation Operations	Calibration Formal logical rules	Measurement Standard math

Schneider 2017

Types of sets: crisp set

- Dichotomous sets
- Full member (1) vs. full non-member (0)
 - Establishes qualitative, not quantitative, differences between cases
 - E.g., set of big countries
 - China, Russia (1) vs. Hungary, Lichtenstein (0)

Types of sets: fuzzy sets

- Allow for degree of membership in set
- Partial membership in sets
 - Any value between 0 and 1
 - Three qualitative anchors (0, 0.5, 1)
 - Qualitative and quantitative differences
- NOT probabilities

CRISP VERSUS FUZZY SETS

Crisp set	Three-value fuzzy set	Four-value fuzzy set	Six-value fuzzy set	"Continuous" fuzzy set	
1 = fully in	1 = fully in	1 = fully in	1 = fully in	1 = fully in	
			.8 = mostly but not fully in	Degree of membership is more "in" than	
		.75 = more in than out	.6 = more or less in	"out"∶.5 < x _i < 1	
	.5 = neither fully in nor fully out			.5 = cross-over: neither in nor out	
		.25 = more out than in	.4 = more or less out	Degree of membership is more "out" than	
			.2 = mostly but not fully out	"in": 0 < x _i < .5	
0 = fully out	0 = fully out	0 = fully out	0 = fully out	0 = fully out	

Schneider 2017

QCA challenges

- Location of qualitative anchors
- Sometimes false impression of precision
- Resources, time, data availability