MUNI FSS

Nuclear Fuel Cycle

doc. PhDr. Tomáš Vlček, Ph.D.

tomas.vlcek@mail.muni.cz

1 Department of International Relations and European Studies

Contents

- Nuclear Fuel Cycle
- Mining
- Processing
- Conversion
- Enrichment
- Fabrication

History

- World reactor fleet
- Service part
- Back End

MUNI

FSS

Nuclear Fuel Cycle

⁴ Department of International Relations and European Studies

Nuclear Fuel Cycle

MUNI FSS

5 Department of International Relations and European Studies

Uranium 8.9 kg $U_{3}O_{8}$ Uranium \$ 68 per kg \$ 605 43% 7.5 kg U \$ 14 per kg \$105 Conversion 8% Front end fuel cycle Enrichment 7.3 SWU \$52 per SWU \$ 380 27% costs of 1 kg of uranium as UO₂ fuel \$ 300 per kg \$ 300 Fabrication 1 kg 22% (2017 costs, source: Total \$ 1390 100% WNA)

About 20 tonnes of enriched uranium for an average large reactor refuel is needed, the cost is thus about

MUNT

FSS

\$ 50 million.

Total front end world market is now worth about **\$ 25 billion** annually.

Source: Steve Kidd, World Nuclear Association

The reactor fuel buyers fight hard to save every last cent because this is cost they feel they can

influence. It has however minor role on the NPP operating costs.

Impact of 50 % increase in fuel costs on generating costs

 Source: Global Energy Decisions, ERI, Inc.; IEA WEO 2006; in Steve Kidd, 2010, Nuclear Fuel: Myths and Realities

Uranium

- Natural uranium is relatively abundant and evenly spread in the earth's crust. The occurrence is about 500 times higher than with gold.
- Granite (around 75% of the earth's crust) is less concentrated with uranium = 4 ppm (0,0001 %).
- Coal is more abundant with uranium, the concentration is around 100 ppm (0,01 %), in some fertilizers up to 400 ppm (0,04 %).
- If the concentration is high (0,03 % and more), the matter is called uranium ore and could be mined with profit.
 - Traditional mining (open mine pits, shaft mines)
 - In-situ methods

Figure 1.1. Global distribution of identified resources (<USD 130/kgU as of 1 January 2017)

Nuclear Energy Agency / International Atomic Energy Agency (2018): Uranium 2018: Resources, Production and Demand, p. 17

Uranium

Figure 1.2. Distribution of reasonably assured resources among countries with a significant share of resources

Figure 1.5. Uranium production in 2016: 62 071 tU

FSS

Nuclear Energy Agency / International Atomic Energy Agency (2018): Uranium 2018: Resources, Production and Demand, p. 26, 56

10 Department of International Relations and European Studies

Table 1: The largest-producing uranium mines in 2018

Mine	Mine Country Main owner		Туре	Production (tonnes U)	% of world
Cigar Lake	Canada	Cameco/Orano	underground	6924	13
Olympic Dam	Australia	BHP Billiton	by-product/ underground	3159	6
Husab	Namibia	Swakop Uranium (CGN)	open pit	3028	6
Inkai, sites 1-3	Kazakhstan	Kazaktomprom/Cameco	ISL	2643	5
Rössing	Namibia	Rio Tinto	open pit	2102	4
Budenovskoye 2	Kazakhstan	Uranium One/Kazatomprom	ISL	2081	4
Tortkuduk	Kazakhstan	Orano/Kazatomprom	ISL	1900	4
SOMAIR	Niger	Orano	open pit	1783	3
Ranger	Australia	Rio Tinto/ERA	open pit	1695	3
Kharasan 2	Kazakhstan	Kazatomprom	ISL	1631	3
Top 10 total				26,946	51%

Uranium mines operate in some 20 countries, though in 2018 some 51% of world production came from just ten mines in four countries (see Table 1). Source: WNA

Ath on the

WE - MA

show at it

14.15% at

Uranium

Uranium Production Perspective

- Rising NPP capacity factors (10 % in 1990s)
- Rising enrichment levels (up to 5 % U235)
- Uranium price levels limit usable deposits exploration and extraction (proven reserves vs. pure guesses) U from oceans
- According to Red Book, there is 7.989 Mt of Identified resources of U, not counting resources with current production price above 260 USD/kg
- 400 junior uranium companies emerged recently (largely still in exploration stage)
- Stockpiles of natural and enriched uranium
- RepU (expensive U = pressure on reprocessing)
- P239 (Spent fuel, weapons)
- Down-blended weapons-grade uranium
- Re-enriched uranium tails assay (currently 0.25-0.3% U235)
- Higher enrichment (expensive U = pressure on higher enrichment/U235 extraction)
- Breeder reactors (U238 to P239)
- Fusion (?)
- Extreme short-term measures (lowering NPP production output means longer fuel campaigns)
- 25 Department of International Relations and European Studies

MUNI FSS

Processing

- The ore usually contains about 0.1% of uranium, sometimes even less.
- In this form it is unusable and any transport would be simply too expensive.
- Processing plants therefore usually surround the mine.
- First, uranium ore is freed from the so-called uranium tailings. The refined ore is then ground into mash. The mash is concentrated and then chemically leached by sulfuric acid. After drying the resultiis the uranium concentrate U₃O₈ (yellow cake).
- After drying, and usually heating, the uranium is concentrated to about 80% and filled into 200 liter barrels in which it is transported for further processing.
- The rest of the rock contains residues after dissolution and most of the radioactivity (natural uranium radioactivity is consisted largely of radioactive elements emerging due to uranium's natural decay, these remain in the uranium ore). These tailings are then placed back into the mine or tailing ponds, where they are artificially isolated from the environment.

Conversion

- Uranium enrichment can currently only happen in gaseous form
- Triuranium octoxide (U_3O_8) can be directly converted to uranium trioxide (UO_3) which can be directly used in specific reactors that do not require enriched fuel.
- For most reactors the uranium concentration in directly produced uranium dioxide is not sufficiently high. Thus U_3O_8 is converted into uranium hexafluoride (UF₆), which is normally in a gaseous state.
- Uranium hexafluoride is then pumped into large metal cylinders, where it solidifies, and transported to the enrichment plants.

Conversion (and Reconversion)

Table 3. Commercial UF₆ conversion facilities

Company	Nameplate capacity in 2018 (tU as UF ₆)	Share of global capacity (%)		
Atomenergoprom* (Russia)	18 000	31.3		
Comurhex** II (France)	15 000	26.0		
Cameco (Canada)	12 500	21.7		
ConverDyn*** (United States)	7 000	12.2		
CNNC (China)	5 000	8.7		
IPEN (Brazil)	100	0.1		
Total nameplate capacity	57 600	100		

Source: Euratom Supply Agency

China's capacity is expected to grow considerably in 2025 and beyond

MUNI

FSS

Plan to develop Ulba plant in Kazakhstan in 2020 (6,000 tU)

Enrichment

Source: Euratom Supply

Agency; WNA

SWU calculator:

http://www.wise-

uranium.org/nfcue.html

World enrichment capacity – operational and planned (thousand SWU/yr)

Country	Company and plant	2013	2015	2020
France	Areva, Georges Besse I & II	5500	7000	7500
Germany-Netherlands- UK	Urenco: Gronau, Germany; Almelo, Netherlands; Capenhurst, UK.	14,200	14,400	14,900
Japan	JNFL, Rokkaasho	75	75	75
USA	USEC, Piketon	0*	0	0
USA	Urenco, New Mexico	3500	4700	4700
USA	Areva, Idaho Falls	0	0	0
USA	Global Laser Enrichment, Paducah	0	0	0
Russia	Tenex: Angarsk, Novouralsk, Zelenogorsk, Seversk	26,000	26,578	28,663
China	CNNC, Hanzhun & Lanzhou	2200	5760	10,700+
Other	Various: Argentina, Brazil, India, Pakistan, Iran	75	100	170
	Total SWU/yr approx	51,550	58,600	66,700
	Requirements (WNA reference scenario)	49,154	47,285	57,456

Table 4. Operating commercial uranium enrichment facilities, with approximate 2018 capacity

	Company	Nameplate capacity (tSW)	Share of global capacity (%)
	TVEL (Russia)	28 416	45.0
	Urenco (UK/Germany/Netherlands/United States)	18 758	32.3
	Orano (France)	7 500	12.7
	CNNC (China)	5 210	9.8
u	Others* (CNEA, INB, JNFL)	188	0.3
	World total	60 072	100

34 Department of International Relations and Eur

Enrichment

Uranium Enrichment and Uses

Enrichment

Supply source:	2000	2010	2015	projected 2020
Diffusion	50%	25%	0	0
Centrifuge	40%	65%	100%	93%
Laser	0	0	0	3%
HEU ex weapons	10%	10%	0	4%

SWU calculator:

http://www.wise-uranium.org/nfcue.html

Nuclear Fuel Cost Calculator:

http://www.wise-uranium.org/nfcc.html

FSS

Difference to every other step:

- 1) Fabrication is a highly specialised service rather than commodity (barrier for newcomers enetring the market)
- 2) TVEL offers full front end process as a product (i.e. fuel) vs. steps in the fuel cycle
- 3) Main technology (NPP) suppliers are also main fuel producers
- 4) Fuel is manufactured according to public tenders specifing the product in details
- 5) VVER technology was developed paralelly with western technology (legacy of cold war)
- 6) Markets were opened 25 years ago with no experience on both sides
- 7) The nuclear fuel quality is critical for NPP production. The financial implications of reduced plant performance would quickly outweigh any benefit from potentially lower fuel prices

41 Department of International Relations and European Studies

54 Department of International Relations and European Studies

Nuclear Fuel Cycle

55 Department of International Relations and European Studies

When and where took the first chain reactions in nuclear reactor place?

When and where was the first nuclear reactor connected to the electricity grid?

When and where was the world's first privately owned commercial power plant opened?

MUNI

FSS

When and where took the first chain reactions in nuclear reactor place?

December 20, 1951; Experimental Breeder Reactor EBR-I, Arco, Idaho, USA (0.2 Mwe, 14% efficiency)

When and where was the first nuclear reactor connected to the electricity grid?

– June 26, 1954; Obninsk, USSR, APS-1 (5 MWe, 17% efficiency)

When and where was the world's first privately owned commercial power plant opened?

FSS

– October 17, 1956; Calder Hall, Sellafield, UK (46 MWe, 23% efficiency)

Sources: WNISR, with IAEA-PRIS, 2019

Sources: WNISR, with IAEA-PRIS, 2019

Source: IEA, World Energy Outlook 2014; IAEA PRIS; World Nuclear Association (for 2014-15 data)

Argentina

Slovenia

Amenia

Netherlands

2017

2018

Historic Maximum

1998 Historic Maximum Year

WNISR - MYCLE SCHNEIDER CONSULTING

China

India

Brazil

Netherlands

2018

2011

198/

2001

Iran 2017

Source: IAEA-PRIS, 2019

Nuclear Reactors "Under Construction" as of July 2019

Age of World Nuclear Fleet as of 1 July 2014

World Reactor Fl	Country	Units	Capacity (MW net)	Construction Starts	Grid Connection	Units Behind Schedule
	China	10	8 800	2012 - 2017	2020 - 2023	2-3
	India	7	4 824	2004 - 2017	2019 - 2023	5
	Russia	5	3 379	2007 - 2019	2019 - 2023	3
	UAE	4	5 380	2012 - 2015	2020 - 2023	4
	South Korea	4	5 360	2012 - 2018	2019 - 2024	4
	Belarus	2	2 218	2013 - 2014	2019 - 2020	1-2
	Bangladesh	2	2 160	2017 - 2018	2023 - 2024	0
Age of World Nuclear Fleet as of 1 July 2014 21-30 years 146 31-40 years 133 11-20 years 37 Nean Age: 28.5 Years 39	Slovakia	2	880	1985	2020 - 2021	2
	USA	2	2 234	2013	2021 - 2022	2
	Pakistan	2	2 028	2015 - 2016	2020 - 2021	0
	Japan	1	1 325	2007	?	1
	Argentina	1	25	2014	2021	1
	UK	1	1 630	2018	2025	0
	Finland	1	1 600	2005	2020	1
	France	1	1 600	2007	2022	1
	Turkey	1	1 114	2018	2024	0
	Total	46	44 557	1985 - 2019	2019 - 2025	27-29

Note Department of International Relations and European Studies 63

Sources: Compiled by WNISR. 2019

This table does not contain suspended or abandoned constructions.

Source: IAEA PRIS

Service part

Nuclear power plants in commercial operation or operable

Reactor type	Main countries	Number	GWe	Fuel	Coolant	Moderator
Pressurised water reactor (PWR)	US, France, Japan, Russia, China	292	275	enriched UO ₂	water	water
Boiling water reactor (BWR)	US, Japan, Sweden	75	73	enriched UO_2	water	water
Pressurised heavy water reactor (PHWR)	Canada, India	49	25	natural UO ₂	heavy water	heavy water
Gas-cooled reactor (AGR & Magnox)	UK	14	8	natural U (metal), enriched UO ₂	C0 ₂	graphite
Light water graphite reactor (RBMK & EGP)	Russia	11 + 4	10	enriched UO ₂	water	graphite
Fast neutron reactor (FBR)	Russia	3	1.4	PuO_2 and UO_2	liquid sodium	none
	TOTAL	448	392			

65 Department of International Relations and European Studies

Source: IAEA

PWR Reactors

MUNI

FSS

66 Department of International Relations and European Studies

PWR Reactors

BWR Reactors

Typical Boiling-Water Reactor

MUNI

FSS

PHW Reactor

71

- Generally the same structure as PWR
- Heavy water (not radioactive, but posionous) absorbs less neutrons, thus is able both to moderate nuclear reaction and secure criticality = non-enriched fuel can be used

Back End

- Fission chain reaction consumes only uranium isotope 235U.
- Used fuel contains approximately a quarter of the original value of this isotope, thus still remains enriched to about 1% 235U.
- The fuel consists of more than 96% uranium dioxide (UO2) and newly developed plutonium dioxide (PuO2) in an amount of about 1%, and other compounds (3%), while most of the fission products are radioactive isotopes.

FSS
Composition of Conventional Nuclear Fuel

(17x17 Westinghouse, 3% enr., 1100 day irrad, 33000 MWD/MTU, discharge composition, Origen Arp analysis)

MUNI FSS

MOX Fuel

- Mixed oxide (MOX) fuel provides almost 5% of the new nuclear fuel used today.
- MOX fuel is manufactured from plutonium recovered from used reactor fuel, mixed with depleted uranium.
- MOX fuel also provides a means of burning weaponsgrade plutonium (from military sources) to produce electricity.
- Mixed uranium oxide + plutonium oxide (MOX) fuel has been used in about 30 light-water power reactors in Europe and about ten in Japan.

World mixed oxide fuel fabrication capacities (t/yr)

	2017
France, Marcoule	195
Japan, Tokai-Mura	5
Japan, Rokkasho-Mura (from 2022)	130
Russia, Zheleznogorsk	60
India, Tarapur	50
Total for LWR	440

MOX Fuel

MUNI

Fast Neutron Reactors

- About 400 reactor-years of operating experience have been accumulated to the end of 2010.
- A fast neutron reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons.
- Such a reactor needs no neutron moderator, but must use fuel that is relatively rich in fissile material when compared to that required for a thermal reactor.
- Fuel consists of U-235, Pu-239 (products of fission with higher radiation) that produce more fast neutrons = waste from Gen II and III reactors is used

Generations of Nuclear Energy

MUNI FSS

 In the <u>first phase</u>, the fuel is actively cooled in a pool next to the reactor. After five-ten years they are put into dry containers and passively cooled in interim storages.

- The dry interim storage facility is constructed to store fuel for about 80 years.
- The **second phase**, i.e. transport phase, is/will be provided by rail.
- The <u>third phase</u> is the underground geological repository

79 Department of International Relations and European Studies

MUNI FSS

Is it safe to swim in the spent fuel?

Is it safe to swim in the spent fuel?

84 Department of International Relations and European Studies

- Surface storage is needed for at least 40-50 years, after which the temperature and the radioactivity drops to a level that is acceptable for underground geological repository with limited or no access of cooling.
- Geological surveys and technical plans are fairly advanced in Sweden and Finland, which have a defined location. U.S. repository should be built at Yucca Mountain in Nevada, but the decision was postponed.

- Variants of Storage

- Underground
- Space
- Long-term surface storage

Why I think Nuclear Power Plants are Evil.

Thank you for your attention.

MUNI