Cashflow Modelling for the Energy Industry (2)

James Henderson

April 2021

Outline of the course

Overall objective - understand how senior management use economic models to make investment decisions

1. Introduction to key themes in the global energy market
2. Introduction to financial modelling as a management tool
3. Understanding some key concepts
4. Starting two models for an oil and a gas field - revenues and prices
5. Inputting the costs - capital expenditure
6. Operating costs and paying the government
7. A power plant - a buyer and seller of energy
8. Calculating a discounted cashflow
9. Why is it important
10. How is it used to make decisions
11. Testing the investment decisions: running some numbers under different assumptions
12. Answering your questions

The Question

- Value an energy asset given specific assumptions
- Examples of a shale gas field and a power station
- Test the sensitivity of the model
- Provide an investment conclusion for senior management
- Detailed

> breakdown of company operating and financial performance

- Investment analysts are responsible for asking fundamental questions of senior management
- There is pressure to perform across a broad range of metrics
- A "Sell"
recommendation can have big implications

Petroleo Brasileiro S.A. (PBR)

Selected operating metrics
Upstream

Oil production $(000 \mathrm{~b} / \mathrm{d})$	$2,224.3$	$2,185.0$	$2,362.2$	$2,531.8$
Cas production $(000 \mathrm{cf} / \mathrm{d})$	$3,396.0$	$3,025.1$	$3,015.4$	$3,026.4$
Total production $(000 \mathrm{boe} / \mathrm{d})$	$2,790.3$	$2,689.2$	$2,864.7$	$3,036.2$
Realisations $(\$ / \mathrm{boe})$	37.5	61.3	74.9	71.4
Downstream				
Refining capacity $(000 \mathrm{~b} / \mathrm{d})$	N / A	N / A	N / A	N / A
Refining throughput $(000 \mathrm{~b} / \mathrm{d})$	$1,945.0$	$1,977.0$	$\mathrm{~N} / \mathrm{A}$	N / A

Share price determines market valuation

Share Price and Volume Graph for BP P.L.C. (BP Ordinary London) from 4 Apr 2015 to 3 Apr 2018

- Share price multiplied by number of shares in issue = market value
- Market value divided by profits gives "price to earnings ratio"
- Potential value can be derived by using multiples and future profit forecasts

Comparison with Peer Groups

Global peer valuation multiples

	MCap \$ bln	$\begin{array}{r} \mathrm{EV} \\ \mathrm{~S} \mathrm{bln} \end{array}$	EV/EbITDA			P/E		
			'20E	'21E	'22E	'20E	'21E	'22E
Global majors								
ExxonMobil	239	315	15.9	7.9	6.9	neg	19.5	14.7
Chevron	199	243	14.0	7.2	6.6	neg	20.6	17.2
Royal Dutch Shell	158	238	8.0	5.0	4.6	32.7	11.9	9.5
BP	87	151	12.5	5.3	4.8	neg	13.6	9.7
Average			12.6	6.4	5.7	neg	16.4	12.8
EU majors								
Total	126	170	10.2	5.8	5.2	31.0	13.1	10.6
ENI	44	64	6.1	3.9	3.4	neg	17.8	12.0
Equinor	64	80	5.9	3.4	3.2	>50	12.9	12.4
Average			7.4	4.4	3.9	31.0	14.6	11.7
EM majors								
Petrochina	115	209	4.6	4.2	4.2	42.9	29.0	17.4
Petrobras	57	120	4.3	4.0	3.8	8.8	7.9	7.3
Sinopec	76	124	5.3	4.1	3.8	16.1	9.5	9.2
Ecopetrol	27	41	8.9	5.5	5.1	45.5	11.5	9.6
ONGC	19	35	6.9	4.2	3.6	17.6	7.1	5.9
PTT E\&P	15	15	4.1	3.8	3.4	20.4	14.9	12.3
CNOOC	3	3	10.1	9.0	8.4	35.0	22.2	15.0
Saudi Aramco	1,885	1,990	16.6	10.5	9.4	40.3	22.7	19.5
Average			7.6	5.7	5.2	28.3	15.6	12.0
US majors								
Pioneer NR	35	38	16.3	7.6	6.2	>50	18.8	13.4
ConocoPhillips	71	81	14.7	6.1	5.6	neg	23.6	18.7
Apache	7	18	8.3	5.4	5.7	18.1	14.4	14.1
EOG	41	44	8.9	5.6	5.3	48.1	14.9	13.6
Average			16.2	6.5	6.1	neg	neg	14.9
Russia majors								
Lukoil	56	61	6.4	4.3	3.6	23.1	8.0	6.2
Rosneft	71	143	9.0	4.4	4.1	9.3	4.2	3.8
Gazprom Neft	24	32	6.3	3.8	3.2	12.1	4.4	3.7
Tatneft	18	18	7.0	4.5	4.1	11.5	6.7	6.1
Gazprom	72	113	5.7	3.7	3.2	9.7	4.1	3.6
Novatek	58	49	8.7	6.3	6.4	27.0	12.6	13.0
Average			7.2	4.5	4.1	15.4	6.7	6.1
Peer average			10.4	5.6	5.1	28.7	15.7	12.4
Peer median			8.9	5.4	5.1	31.0	14.6	12.4

A typical spreadsheet summary of a cashflow model

DCF Valuation Calendar Years ending December 31	Projected Free Cash Flow					
	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
(S in thousands)						
EBITDA	\$8,954	\$9,898	\$10,941	\$12,093	\$13,367	\$13,367
Less D\&A	1,112	1,222	1,343	1,476	1,623	1,623
EBIT	7.842	8,676	9,598	10,617	11,745	11,745
Less: Cash Taxes (35\%)	$(2,745)$	$(3,037)$	$(3,359)$	$(3,716)$	$(4,111)$	$(4,111)$
Tax-adjusted EBIT	5,097	5,639	6,239	6,901	7,634	7,634
Pluss: D\&A	1,112	1,222	1,343	1,476	1,623	1,623
Less: Capital Expenditures	(1,750)	(1,750)	(1,750)	(1,750)	(1,750)	(1,750)
Less: Change in Net Working Investment	(318)	(350)	(384)	(423)	(465)	(465)
Unlevered Free Cash Flow	\$4,141	\$4,762	\$5,447	\$6,205	\$7,042	\$7,042
9,845 = \$4,141	\$4,762			56,205	\$7,04	
,	$(1+.11)$		11) ${ }^{3}$	$+.11)^{4}$	(1+.	

Time Value of Money

- Money available at the present time is worth more than the same amount in the future due to its potential earning capacity.
- This core principle of finance holds that, provided money can earn interest, any amount of money is worth more the sooner it is received
- Equally, money available now can buy more than a similar amount of money available in the future because inflation erodes the value of money over time

Time Value of Money Example

- If you had \$10,000 today, you could earn interest on it
- Its future value is $\$ 10,000 \times(1+\text { interest rate })^{\text {No. of years }}$
- If interest rate is 5%, then $\$ 10,000$ in 3 years is worth
$-\$ 10,000 \times(1+.05)^{3}=\$ 11,576$
- As a result, $\$ 10,000$ in 3 years is not worth $\$ 10,000$ now
- \$10,000 / ($1+.05)^{3}=\$ 8,638$
- Let's look at an example

Impact of inflation

- I have \$100
- A bar of chocolate costs \$1
- Inflation is 5\%
- In Year 1 I can buy 100 bars of chocolate

	Money in wallet	Cost of chocolate	Chocolate bars
Year 1	100	1.05	95
Year 2	100	1.10	91
Year3	100	1.16	86
Year 4	100	1.22	82
Year 5	100	1.28	78
Year 6	100	1.34	75

- In Year 2 the cost of a bar of chocolate has risen to $\$ 1.05$

Inflation and interest rates

- I have \$500
- Inflation is running at 4% per annum, and the interest rate is 5%
- I want to purchase printer ink, which costs \$5 per cartridge
- How many fewer cartridges can I buy in 7 years time than now if I just keep my \$500 in my wallet?
- If I put my $\$ 500$ in an interest bearing account, how many cartridges could I buy in 4 years time?

Real and Nominal Figures

- Nominal cashflows include the impact of inflation
- They are called Money of the Day (MoD) because they reflect the actual worth in a certain year
- If we were forecasting the cost of a project, for example, we would need to add inflation to each year as we moved across the time horizon
- This is relevant for multi-year developments when parts are being purchased over time

Nominal Costs Example

	Year 1	Year 2	Year 3	Total
Cost of plant (today)	100	100	100	300
Cost of plant (MoD)	100	105	110	315

- Costs will rise over time because of inflation (in this example 5\% per annum)

Using "Real" figures makes life easier

- When making assumptions in nominal, every figure needs to take an inflation assumption into account
- This can make things very complex
- To make life easier, we can just assume that our model is in "today's money" - otherwise known as "in real terms"
- Generally, we would define all the figures as being in (e.g.) US\$2020
- All figures in the cashflow will be lower as a result, and so it is important to define how the model is considering inflation

Real and Nominal Figures

- Question 1
- The cost of a plant is $\$ 500 \mathrm{~mm}$ spent equally over 5 years in real (2020) terms
- Inflation throughout the period is forecast to be 2.5\% per annum
- What is the expenditure on the plant in nominal terms in Year 5 and what is the total nominal cost?
- Question 2
- We are assuming that the oil price is $\$ 30$ in real (2020) terms
- Inflation is assumed to be 2% per annum
- What is the real oil price in Year 5?
- What is the nominal price in Year 5?
- What is the real price in Year 5 if we assume that the oil price will rise at 1% above inflation?

Discounted Cashflow

A Simple Cashflow

- In Year 0 (today), I decide to invest $\$ 30 \mathrm{~mm}$ over 3 years in a plant that will run for 7 years, generating $\$ 20 \mathrm{~mm}$ per year
- The plant will then be dumped
- What is the value (worth) of this investment in today's terms?

The DCF Calculation as a foundation

- Management thought process is encapsulated in the DCF model
- Key assumptions include price, cost, tax, long-term outlook, short-term cashflow and the value of money
- Management must ensure at all times that the combined value of their assets remains NPV positive, and should aim to maximise the return on their assets

Discounted Cashflow Example

	Today	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9
Year 10										
Cashflow	0	-10	-10	-10	20	20	20	20	20	20
Discount factor	1	1.05	1.10	1.16	1.22	1.28	1.34	1.41	1.48	1.55
Discounted Cashflow	0	-9.52	-9.07	-8.64	16.45	15.67	14.92	14.21	13.54	12.89
Total Value	72.74								12.28	

- The further away that money is earned (or spent) the less worth (value) it has today
- We discount future cashflow by a factor reflecting the other options we had for using the initial funds
- If the total sum of negative and positive cashflow is positive then the investment is worth making

A Good Explanation from Harvard

- https://hbr.org/2014/11/a-refresher-on-net-present-value

Functionality in Excel

Real vs Nominal Cashflow and NPV

	2019	2020	2021	2022	2023
Cost of Plant (US\$2018)	100	100	100	100	100
Cost of Plant (MoD)	100	105	110	116	122
NPV (Real)	433				
NPV (MoD)	476				

- To make our lives easier, all our modelling will be carried out in real terms
- Our expectations of return should therefore be lower

Construct a simple cashflow model

- All figures in US\$2019 (Real)
- Capital costs - $\$ 600$ over 3 years
- Revenues - start in year $4, \$ 100$ per year from year 4 to year 20
- Operating costs - \$20 per year starting in year 4 until end of operations
- Discount rate 10%

