30.04.22 1 Updated Timeline Date 18.2. Institutions 25.2. Institutions II 4.3. Classical Institutionalism and New Institutional Economics 11.3. Property rights and resource regimes, Commons 18.3. Doughnot Economics: From Planetary Boundaries to thinking how an economy can be regenerative by design (Claudio Cattaneo) 25.3. Application of the doughnut at the city scale with Barcelona as an example (Claudio Cattaneo) 1.4. Ecological Resource Economics 8.4. Applications: water, forests, fisheries 15.4. 22.4. Canceled 29.4. System Dynamics 6.5. The Water–Energy–Food Nexus in India 13.5. Presentations I 20.5. Presentations II, Debate, Open Space, Experiment 1 Østart writing early Øwrite to/for yourself 2 30.04.22 2 Dynamical systems: population growth 3 https://6a13c5b2fc59e0f5cc2d-504d68e748ee944d3fccba00fd5e2fd4.ssl.cf1.rackcdn.com/Logistic/index.html 3 Dynamical systems: Lotka-Volterra (Pred-Prey) 4 http://715049d7e26a0358afde-504d68e748ee944d3fccba00fd5e2fd4.r16.cf1.rackcdn.com/Lotka_demo/index.html 4 30.04.22 3 5 Dynamical systems: Agent-based Predator-Prey 6 https://6a13c5b2fc59e0f5cc2d-504d68e748ee944d3fccba00fd5e2fd4.ssl.cf1.rackcdn.com/Predpreygrass/index.html 6 30.04.22 4 NetLogo: Agent-based models 7 http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation 7 Dynamical systems: Predator-Prey 8 https://doi.org/10.1111/ele.13979 8 30.04.22 5 Dynamical systems: Prudent predation? 9 https://theconversation.com/animals-have-evolved-to-avoid-overexploiting-their-resources-can-humans-do-the- same-176092 9 Dynamical systems: Agent-based SIR model 10 https://6a13c5b2fc59e0f5cc2d-504d68e748ee944d3fccba00fd5e2fd4.ssl.cf1.rackcdn.com/AgentSIR/index.html 10 30.04.22 6 A common-pool resource 11 11 Theory 12 1. Renewable resource economics (bioeconomics) (e.g. Gordon 1954, Schaefer 1957) 2. Dynamic (differential) game theory (Clemhout and Wan 1979, Clark 1980, Levhari and Mirman 1980, Dutta and Sundaram 1993, Dockner and Sorger 1996) 3. Ecological economic theory 12 30.04.22 7 A renewable resource model 13 Logistic growth function, Schaefer (1957) model: 0" 20" 40" 60" 80" 100" 0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" Resource size (in %) Time (years) Carrying capacity Ø Key parameters: Carrying capacity (K) resource growth rate (g) Ø fisheries, forests, grasslands, groundwater, climate (e.g. Brander and Taylor 1998, 2009, Clark 2010) 13 Simulation: Two options, two users 14 Defection: Maximize Profit? Cooperation: Half of the Maximum Sustainable Yield? !1000$ !500$ 0$ 500$ 1000$ 1500$ 2000$ 2500$ 0$ 5$ 10$ 15$ 20$ 25$ Revenues$ Costs$ Profit$ 14 30.04.22 8 0" 20" 40" 60" 80" 100" 0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 0" 20" 40" 60" 80" 100" 0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 0" 20" 40" 60" 80" 100" 0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" DD: both defect Simulation: Three scenarios 15 CC: both cooperate CD/DC: one defects (model parameter values: α = 0.5, β= 1/0, q = 0.03, p = 10, c = 1, S0 = 80%) Development of the used resource over time: Time (years) Resource size (in %) 15 Results: Dynamic game payoffs 16 Net Present Value (NPV) for each strategy pair: 0" 100" 200" 300" 400" 500" 600" 700" 0.0%" 2.0%" 4.0%" 6.0%" 8.0%" 10.0%" CC" DC" CD" DD" NPV (€) iDiscount rate: 16 30.04.22 9 Results: Dynamic game payoffs 17 Net Present Value (NPV) for each strategy pair: 0" 100" 200" 300" 400" 500" 600" 700" 0.0%" 2.0%" 4.0%" 6.0%" 8.0%" 10.0%" CC" DC" CD" DD" NPV (€) AP PD Mutual defection / Resource dilemma i Ø Forest harvest model (β= 0): DD destroys the resource after few years but dominant strategy with i > 4%! 17 18 30.04.22 10 19