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Online
Supplement 3
Replication probabilities
and prep

This supplement draws primarily on Chapters 2, 3, 4 and 11.

OS3.1 Replication probabilities

A number of researchers have attempted to estimate the probability of replicating an effect.
Greenwald et al. (1996) tried to estimate the probability that an identical replication of a
statistically significant finding would be statistically significant. Their approach begins with
the assumption that the original effect is indicative of the true effect. This assumption is
hard to justify and, as Greenwald et al. (ibid.) note, leads to overestimates of replicability.
Attempts to extend this approach have attracted heavy criticism (Macdonald, 2005; Froman and
Schneyderman, 2004). Froman and Schneyderman’s analysis is particularly insightful because
they show that replication probability (in the sense of obtaining statistical significance in an
identical study) is a relabeling of post hoc power. Treating the sample statistics as if they are pop-
ulation parameters (rather than estimates of population parameters) inevitably ignores some of
the uncertainty in the sample and leads to spurious certainty in the estimates of replication
probabilities. Froman and Schneyderman (2004) argue that this makes replication probabilities
unusable in practice.

Recent work by Killeen (2005) attempts to avoid some of these problems. His prep statistic
has been proposed as an alternative to a conventional p value. A central feature of Killeen’s
approach is to adopt a definition of replication that involves obtaining an effect in the same
direction as the original study. Thus prep is the probability that an identical replication obtains
an effect with the same sign. Figure OS3.1 shows the sampling distribution of a non-zero stan-
dardized mean difference (labeled δ1) in relation to its expected value under a null hypothesis
of no effect.

Killeen (ibid.) proposed that the probability of an identical replication equates to the shaded
area in this figure. A new effect sampled from the same population as δ1 (i.e., an identical
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Figure OS3.1 Replication probability (prep) in relation to the sampling distribution of the null
hypothesis (δ = 0) and the true effect (δ = δ1)

replication of the original study) should have the same sign as the original effect with probability
equal to the area of this region.

The precise value of the replication probability depends on δ1 (which is unknown). Following
Greenwald et al., Killeen argued that it can be estimated if the sampling distribution of δ1 is nor-
mal. The crucial quantity required to estimate prep is the variance of this sampling distribution.
Killeen employs an approximation for the sampling variance of a standardized mean difference
derived by Hedges and Olkin (1985):

σ̂2
δ = N2

n1n2(N − 4)
Equation OS3.1

This approximation works well for effects sampled from a normal distribution provided δ is
not too large (e.g., its absolute value is ≤ 1). Killeen (2005) argues that because the sampling
distribution of δ1 combines variability from both the observed effect and the replication attempt,
it can be estimated as twice this value (i.e., σ̂2

rep ≈2σ̂2
δ ). Determining prep involves calculating the

area of the shaded region of the δ1 curve in Figure OS3.1. As δ1 is a standardized mean difference
(estimated from δ̂ or g) this can be accomplished using a standard normal distribution where
z = δ̂/σ̂2

rep.
Because the smallest probability of obtaining the same sign in a replication (if there is no

observed effect whatsoever) is one half, it follows that .5 ≤ prep ≤ 1. Unlike p, it only makes
sense to calculate prep for effects with one degree of freedom (df ), and which can therefore be
considered directional (e.g., t tests and correlations). Nevertheless, prep is intimately related to
a conventional p value (and can be obtained from it). At one level, prep is merely a monotonic
transformation of p. The argument in favor of prep is that the transformation produces a statistic
that is more meaningful. This conclusion is hotly disputed.

Several methods exist for calculating prep, however some are problematic (Iverson et al.,
2009). Care must be taken even with software that calculates prep, because it is easy to obtain
output less than .5 or equal to one. For values less than .5 (indicating that prep has been calcu-
lated for the wrong tail of the distribution) the correct value should be one minus the calculated
value.
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Iverson et al. (ibid.), although highly critical of prep, provide one of the clearest explanations
of its correct calculation. The following formulas take one-sided p values as input. The Iverson
et al. formula is:

prep = Φ

[
Φ−1 (

max
{
p, 1 − p

})
√

2

]
Equation OS3.2

The quantity max
{
p, 1 − p

}
is the larger of the values p or 1 − p, where p is the one-sided p

from a t test, correlation or other 1 df test. The function Φ is the familiar cumulative distribution
function (cdf ) of the z distribution. Its inverse Φ−1 is the quantile function for z. The formula
therefore takes the larger of p or 1 – p and uses it to obtain the z score that cuts off the required
proportion of the standard normal distribution. This value is divided by

√
2. This last step comes

into play because the distribution of the replications incorporates a double dose of uncertainty
(from both the original study and its replication). The z distribution has σ = 1, and doubling
the variance will make σ = √

2. Diving by root 2 simply corrects the z score for this extra vari-
ability. The final step is to calculate the cumulative probability associated with the corrected z
score.

Example OS3.1 A published experiment might report an independent t test as t(50) = 2.68,
p = .01. The corresponding one-sided p value is therefore approximately .005. Subtracting .005
from one gives .995. As 1 − p is larger than p, it is entered into Equation OS3.2. The corresponding
z score is roughly 2.58 and so:

prep = Φ

[
Φ−1 (.995)√

2

]
= Φ

[
2.58√

2

]
= Φ (1.82) = .966

This matches the results of the p.rep() function in the R psych package, which returns prep =
.965726 for one-sided p = .005. Care needs to be taken using this function (e.g., it will return
‘impossible’ prep values (< .5) if one-sided p > .5).

Calculating prep this way is instructive. First, the calculations are relatively easy (but fiddly). Sec-
ond, prep values for statistically significant effects (using the conventional criterion of α = .05) range
from about .917 to .999. (prep is a monotonic function inversely related to p if p < .05.) This is quite
a narrow range. When prep statistics were widely reported in place of or in addition to p values (e.g.,
for a few years in the journal Psychological Science), values in the range .85 to one were considered
evidence of replicability. Its practical impact was largely to replace α = .05 with a somewhat looser
threshold (as prep = .85 roughly equates to one-sided p = .075).

OS3.2 Criticisms of prep

There are good reasons to be cautious of using prep. Some of these arise from the practical
difficulty of interpreting the statistic. Unlike p, its interpretation is restricted to effects that
are directional. This is not a major obstacle, because there are reasons to prefer directional
tests and 1 df effects. More problematic is the narrow range of prep values. The narrow range
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makes it appear that prep = .90 is not dissimilar to prep = .98. It would be better to represent the
‘replicability’ in terms of the odds of obtaining an effect with the same sign:

Orep = prep

1 − prep
Equation OS3.3

Switching to odds makes it clearer that prep = .90 and prep = .98 are not that similar.
The corresponding odds of the same sign in an identical replication would be 9 and 49.
Odds would also make prep values close to .5 appear less impressive (e.g., for prep = .59,
Orep = 1.4).

Another difficulty is the variability of prep scores. Both those critical of (e.g., Iverson et al.,
2009) and those generally supportive of prep (Cumming and Fidler, 2009) have pointed out that
it is, at best, a very imprecise estimate of the true replicability of the direction of an effect.
Cumming and Fidler (ibid.) demonstrate this by comparing the variability of prep with that of p
and the width of a CI (see Figure 11.2). Furthermore, prep is closely related to the controversial
concept of post hoc power (see Maraun and Gabriel, 2010).

However, the strongest attacks on prep are on theoretical grounds (see Macdonald, 2005;
Iverson et al., 2009; Iverson et al., 2010). One criticism in particular is fundamental. Several com-
mentators (e.g., Macdonald, 2005; Iverson et al., 2009) have noted that Killeen’s estimate of prep

implicitly makes the assumption that the true size of the effect could take any value. This criti-
cism is related to Bayesian criticisms of NHST reviewed later in the chapter. For most research
questions, extremely large true effects (in either direction) are very unlikely.1 For example, stan-
dardized effect sizes such as δ = .8 or 1.5 occur infrequently, but effects such as δ = 10 or δ = 100
are implausible (most published findings probably being in the range −1 < δ̂ < 1). In addition,
true effects close to δ = 0 may be particularly common (e.g., in experimental research where H0

is plausible).
The practical impact of this assumption is that the probability of obtaining an effect in the

same direction as the original effect is overstated. This is explained in detail by Iverson et al.
(2009), and happens because prep under-weights the chance of small effect sizes. It there-
fore implicitly assumes the true effect is quite a bit larger than it probably is. Assuming the
effect is quite large increases the estimate of the probability that a future study will find an
effect in the same direction. Iverson et al. (2009) argue that prep provides an estimate of the
upper limit of the probability of a same-sign replication. The true value could be substantially
lower.

Although prep is an interesting idea, it requires additional assumptions about the distribu-
tions of true effects to get accurate replication probabilities. Even if these assumptions can
be justified, the variability of prep as a statistic (see Figure 11.2) and the compressed range
of values it can take make it impractical as a decision tool. Although using replication odds
might solve the latter problem, the former problem is inherent in the formulation of the statis-
tic. Recent criticisms of prep have explored confusion about its precise definition and suggest
that it is not an accurate estimate of the true replication probability (Maraun and Gabriel,
2010; Trafimow et al., 2010). There appears to be no simple short cut to obtaining the prob-
ability of a replication. Nor is the probability of a replication, whether accurate or inaccurate,
an adequate substitute for replicating an effect in a new study (Maraun and Gabriel, 2010;
Serlin, 2010).
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OS3.3 R code for Online Supplement 3

OS3.3.1 Calculating prep (Example OS3.1)

The exact one-sided p value for a t statistic of 2.68 with 50 df can be obtained directly from
software output or from the pt() function:

p.obs <- pt(2.68, 50, lower.tail = FALSE)

p.obs

This returns the value .004971346. To get prep from the observed one-sided p value it is possible
to use the pnorm() and qnorm() functions:

pnorm(qnorm((1 - p.obs))/sqrt(2))

The psych package also includes a p.rep() function. Care needs to be taken, as it will happily
return prep values less than .5. Rounding the p value to .005 has little impact on the result:

library(psych)

p.rep(p.obs)

p.rep(.005)

Proofing the statistic against p values greater than .5 is also possible:

p.obs <- .62

if(p.obs > .5) p.new <- 1 - p.obs

p.rep(p.new)

OS3.3.2 R packages

Revelle, W. (2011) psych: Procedures for psychological, psychometric, and personality
research. R package version 1.0-95.

OS3.4 Note

1. This assumption of prep is by no means obvious. At first glance you might think that it
assumes a normal distribution of true effect sizes (and thus that effects close to zero are
more likely). In fact, it assumes only that the sampling distributions of the observed effect
and the replication (reflecting sampling error) are normal. The distribution of true effect sizes
is assumed to be uniform, extending from −∞ to ∞.
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