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Online
Supplement 4
Pseudo-R2 and related
measures

This supplement draws primarily on Chapters 7, 12 and 17.

OS4.1 Variance explained measures for generalized
linear models

OS4.1.1 Pseudo-R2

The deviance for the observed model, null model and saturated model are useful quantities for
exploring the fit of a logistic regression. One slightly controversial application of the deviance is
to derive a pseudo-R2 measure from it, known as the loglikelihood or Hosmer and Lemeshow
R2 (Hosmer and Lemeshow, 1989).1 This is done by expressing the deviance of the model as
a proportion of deviance for the null model. If the deviance for the model in question is DM,
loglikelihood pseudo-R2 is:

R2
L = ln(�M) − ln (�0)

ln(�S) − ln (�0)
= D0 − DM

D0
= 1 − DM

D0
Equation OS4.1

This is termed a pseudo-R2 measure because there is no agreed equivalent to R2 in logistic
regression (or other generalized linear models). The problem stems mostly from the problem
that R2 can be defined in several ways. One definition is the improvement in fit from adding
predictors to a null model (which R2

L attempts to tackle). Another definition is in terms of the
square of the correlation between predicted and observed values (see Section OS4.1.3 below).
A further definition is in terms of the proportion of explained variation in the data (e.g., R2 can be
calculated by subtracting the unexplained variance from one). For a normal generalized linear
model with an identity link, these definitions coincide and lead to the same quantity, but they
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will not coincide for a generalized linear model. Applying the logic of the explained variance
measure leads to the Cox and Snell pseudo-R2:

R2
CS = 1 −

(
�0

�M

)2/N
= 1 − e−2/N[ln(�M)−ln(�0)] Equation OS4.2

For a normal generalized linear model this formula has a maximum of one, but for logistic
regression its maximum is .75 or lower. A correction known as the Nagelkerke pseudo-R2

(Nagelkerke, 1991) adjusts it to range between zero and one (by the simple expedient of dividing
it by its maximum possible value).2 The corrected formula is:

R2
N = R2

CS

1 − �
2/N
0

= R2
CS

1 − e2/N ln(�0)
Equation OS4.3

The first two measures are often similar (but rarely identical) in value. The Nagelkerke R2

measure will typically be substantially larger than the other two by virtue of the correction.
On the other hand, all pseudo-R2 measures produce low R2 values compared to those associ-
ated with good fits in least squares regression. For this reason it is inappropriate to compare R2

with pseudo-R2 measures (or to compare different pseudo-R2 variants). Comparisons between
pseudo-R2 must be restricted to the same measure within the same data set to be at all mean-
ingful. Menard (2000) argues that R2

L is the preferred measure for such comparisons for two
reasons: it is the most ‘intuitively reasonable’ interpretation and is insensitive to base rates
(a problem for the other two measures). However, Estrella noted that R2

L doesn’t necessarily
increase monotonically with the OR in a single predictor logistic regression model (Estrella,
1998; Zheng and Agresti, 2000).

R2
L may be useful within a given data set, though an alternative measure calculated from the

correlation or squared correlation between observed and predicted responses is also attractive
(Agresti, 1996; Zheng and Agresti, 2000). This measure is described in Section OS4.1.3. Its main
advantages are that it is readily adapted to other types of generalized linear model and that it has
a straightforward interpretation in terms of prediction within the sample. Remember, however,
there are serious problems with all these measures. A particular issue is that the homogeneity of
variance assumption implicit in any variance explained metric is highly implausible for gener-
alized linear models with a random component other than normal (and is implausible for many
normal models). Standardized effect size measures such as R2 are popular ways to assess the fit
of a least square regression model, but have important limitations (see Chapter 7). A pseudo-R2

measure not only shares these limitations, but introduces new problems that restrict its utility
when assessing model fit or comparing two models. They should be used with extreme caution
(if at all).

OS4.1.2 Percentage correct classification

For logistic regression it is also possible to classify predictive power in terms of the percentage
correct classification. This is a crude measure, but one with strong intuitive appeal (and is often
reported by logistic regression software). To assess correct classification, a cut-off or threshold
is applied to the predictive probability P̂i for each observation. A common choice is .5. If P̂i < .5
then the outcome is classified as zero (a failure) and if P̂i ≥ .5 then the outcome is classified as one
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(a success). The main drawbacks are that the proportion of correctly classified responses
depends on the chosen cut-off and that much of the potential information in the predictive
probabilities is ignored. Moreover, it is trivial to demonstrate that obviously incorrect mod-
els can obtain high percentage classification probabilities. Thus, if average P̂i = .76, a model
that predicts that all outcomes are successes (and is therefore untrue) will have 76% correct
classification. Further discussion of classification approaches can be found in Cohen et al. (2003).

OS4.1.3 Assessing the predictive power of a generalized linear model

The multiple correlation coefficient R can be considered as the correlation between the predicted
and observed values in a linear regression model. For a normal generalized linear model the
squared multiple correlation R2 will also equal the proportion of variance explained, but this is
not true of models with a different random component.

To generalize the predictive power to a wider range of models Zheng and Agresti (2000)
argue that it makes sense to define the predictive power as

RPP = rYi μ̂i Equation OS4.4

where Yi represents the observed outcomes on the untransformed scale and μ̂i is the predicted
mean of Yi (conditional on other predictors in the model). Thus μ̂i represents E (Y |X ), the expec-
tation or mean of Y for a particular set of predictor values. An important feature of this quantity
is that both the predictions and observed responses are on the same, untransformed scale. For
logistic regression, RPP is the correlation between the observed outcomes (zero or one) and the
predictive probability Pi for all N observations. Agresti (1996) prefers the statistic here labeled
RPP, but the squared correlation R2

PP can also be calculated and interpreted as a measure of
predictive power.

Agresti (ibid.) notes that, like all correlation measures, the value of RPP depends on the range
of values in the model (i.e., it will be distorted by range restriction). Furthermore, it has similar
drawbacks to pseudo-R2 measures such as R2

L. It might even decrease as model complexity
increases, though it usually behaves well (Zheng and Agresti, 2000). Likewise, it should only
be used to compare models of the same data (and can’t be used to compare models fitted with
different random components). Its chief advantage is its ease of interpretation in terms of the
predicted outcomes, and it is more likely to match what a researcher is interested in than some
competing measures. While using the observed outcomes in the calculation is a strong point in
its favor, it does mean that the measure can be sensitive to outliers (though in this respect it is
no different from R). Zheng and Agresti (2000) also explore methods for bootstrapping CIs for
predictive power.

Example OS4.1 The simple Pearson correlation between majority and problem for the expenses
data (introduced in Example 17.2) is r = .146, 95% CI [.070, .221]. In this normal, linear model the
size of the majority accounts for about .0215 or 2.15% of the sample variance. The loglikelihood
pseudo-R2 for the logistic regression of the expenses data is:

R2
L = 1 − DM

D0
= 1 − 841.6

855.5
= 13.9

855.5
= .0162
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Note that 13.9 is the value of the G2 statistic in the likelihood ratio test of the model. The Cox
and Snell pseudo-R2 is:

R2
CS = 1 − e−2/N[ln(�M)−ln(�0)] = 1 − e−2/646[(−420.8)−(−427.7511)] = .0213

To scale it with a maximum of one requires the Nagelkerke version:

R2
N = R2

CS

1 − e2/N ln(�0)
= .0213

1 − e2/646×(−427.7511)
= .0290

What about predictive power? R2
PP is obtained by squaring rYi μ̂i , the correlation between the

observed outcome (problem) and the predictive probabilities from the model. rYi μ̂i = .146 and so
R2

PP = .0214. These values are very similar to the squared simple correlation between majority and
problem (but this won’t always be true).

Given the similarity in values, R2
PP is preferable because it is simple to interpret and easy to

generalize, though Zheng and Agresti (2000) advocate reporting it in raw correlation form (e.g.,
RPP = .146). A major difficulty is that all these measures ‘underplay’ the value of the logistic regres-
sion model. Proportion of variance explained measures make more sense for continuous outcomes
than discrete ones. A much better way of dealing with explanatory power is through graphical sum-
maries. Even relatively simple ones such as those in Figure 17.4 are useful, but it is important to use
scales that your audience will understand (e.g., odds and predictive probabilities are better than log
odds).

OS4.2 R code for Online Supplement 4

OS4.2.1 Calculating Pseudo-R2 (Example OS4.1)

The Pearson correlation between majority and expenses problem for the expenses data can be
used to give a crude, but potentially misleading, R2 estimate for the logistic regression of the
expenses data.

expenses <- read.csv(’expenses.csv’)

with(expenses, cor(majority, problem)∧2)

Attempts to get R2 from the logistic regression produce one of several pseudo-R2 indices. The
loglikelihood R2 is based on the reduction of residual deviance (obtained after refitting the
models for the analysis of the expenses data):

majority.10k <- expenses$majority/10000

model.10k <- glm(problem ∼ majority.10k, family=’binomial’,

data = expenses)
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model.null <- glm(problem ∼ 1, family=’binomial’, data =

expenses)

m.dev <- model.10k$deviance

n.dev <- model.null$deviance

ll.R2 <- 1 - (m.dev/n.dev)

ll.R2

The Cox and Snell pseudo-R2 uses N and the loglikelihood directly (not deviance):

N <- length(expenses$majority)

m.ll <- logLik(model.10k)[1]

n.ll <- logLik(model.null)[1]

cs.R2 <- 1 - exp(-2/N ∗ (m.ll - n.ll))

cs.R2

The Nagelkerke R2 rescales this to have a maximum of one.

n.R2 <- cs.R2/(1 - exp(2/N ∗ n.ll))

n.R2

An alternative with a very simple interpretation is the predictive power measure of Agresti and
Zheng (which also generalizes very easily to other models).

pp.R2 <- cor(model.10k$fitted, expenses$problem)∧2
pp.R2

These measures tend to underestimate the impact of predictors on discrete outcomes (relative
to the R2 for continuous outcomes using normal linear models). None of these measures are
particularly appealing, but the predictive power measure is probably easiest to interpret.

OS4.3 Notes on SPSS syntax for Online Supplement 4

OS4.3.1 Pseudo-R2 measures

The logistic regression commands in SPSS provide Cox and Snell pseudo-R2 and Nagelkerke
pseudo-R2.

SPSS data file: expenses.sav

LOGISTIC REGRESSION VARIABLES problem

/METHOD=ENTER majority

/SAVE=PRED

/PRINT=CI(95).

Note that the percentage correctly classified is also reported.
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Predictive power can be obtained as R or R2 from a logistic regression of the saved
predictions from the previous analysis and the outcome:

REGRESSION

/STATISTICS R

/DEPENDENT problem

/METHOD=ENTER PRE_1.

OS4.4 Notes

1. Although often referred to as Hosmer and Lemeshow R2, the measure appears to have been
derived earlier, possibly independently, by several authors (see Zheng and Agresti, 2000;
Menard, 2000). It is also sometimes referred to as the McFadden R2. This appears to be
another instance of Stigler’ law.

2. This measure appears to have been first derived by Cragg and Uhler (1970). Likewise, Cox
and Snell’s measure appears in earlier work by Maddala (see Menard, 2000).
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