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Online
Supplement 5
Loglinear models

This supplement draws primarily on Chapters 4, 7 and 17.

OS5.1 Loglinear models

A loglinear model is a generalized linear model that is closely related to both logistic and
Poisson regression. Used in its broadest sense, all models in which Y is an additive function
of a set of predictors and in which a logarithmic link function or transformation is employed are
loglinear models (Agresti, 1996). This includes both logistic and Poisson regression, but the term
loglinear model is most strongly identified with applications in which contingency tables are
modeled in terms of an additive function of the logarithm of the counts in each cell. As contin-
gency tables are widely used in medicine, psychology and other disciplines, this kind of loglinear
model (like logistic regression) is often learned in isolation, rather than as part of the general-
ized linear model. This is a shame, because loglinear models are in some ways more restrictive
than Poisson or logistic regression (e.g., being unable to incorporate continuous predictors).

The link between a loglinear model and analysis of contingency tables can be demonstrated
by considering a two independent group experiment with a dichotomous outcome. The usual
analysis in this situation is a χ2 test of independence, and the data are usually set out as a 2 × 2
contingency table:

A1 A2

B1 O1,1 O1,2 R1

B2 O2,1 O2,2 R2

C1 C2 n

If you assume independence of observations, the probability of any observation falling into a
given cell is its row probability multiplied by its column probability:

P̂ij =
Ri
N

× Cj

N
= P̂iP̂j Equation OS5.1
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Multiplying this by N produces the expected value of the cell counts under independence (and
gives the formula for the expected value of the cells in the χ2 test of independence).1 For present
purposes, what matters is that there is a multiplicative relationship between expected probabil-
ities of the marginals (row and column totals) and the expected probabilities of the cells. Taking
logarithms of both sides would give us an additive formula:

ln
(
P̂ij

)
= ln

(
P̂iP̂j

)
= ln

(
P̂i

)
+ ln

(
P̂j

)
Equation OS5.2

This in turn implies that a loglinear model can be used to predict cell probabilities from marginal
probabilities. This is the core of how a loglinear model of contingency table data works, except
that the modeling is done as a form of Poisson regression of the counts. This works because of
the links between the Poisson and multinomial distributions; k independent Poisson variables
will have a joint distribution that is multinomial. Thinking of it in terms of a Poisson model, there
are four counts to be modeled (one for each cell of the 2 × 2 table). The model can therefore
have, at most, four parameters when expressed in count form.

The independence model for a two-way contingency table between categorical variables A
and B, with I rows and J columns is:

ln
(
yij

)
= λ + λA

i + λB
j Equation OS5.3

The notation here is that commonly used for loglinear models (e.g., see Agresti, 1996). The
superscripts ‘A’ and ‘B’ in λA

i and λB
j are not exponents, they are just used as labels for the row

and column effects.2 Thus A might be the presence or absence of a drug and B might be the
subsequent health status of a patient (e.g., healthy versus unhealthy). The number of rows I
is the number of categories for the variable A, and the number of columns J is the number of
categories for the variable B. This model has three parameters: one for the intercept, one for the
row effect and one for column effect. This leaves 4 − 3 = 1 residual df.

The independence model might not be a good fit, and this can be assessed in relation
to a model with additional terms. The logical comparator is a model that also includes the
interaction between row and column effects (i.e., the A × B interaction):

ln
(
yij

)
= λ + λA

i + λB
j + λA×B

ij Equation OS5.4

This model will predict the observed counts perfectly and is therefore a saturated model. It has
four parameters and therefore 4 − 4 = 0 residual df. Any loglinear model that includes the inter-
cept, all marginal effects (i.e., row and column effects) and all interactions between marginal
effects will be a saturated model. Considered as a Poisson regression, a saturated loglinear
model has one parameter for each of the counts being modeled; in Equation OS5.4 there are
four parameters and four cells to be modeled. The perfect fit is therefore spurious, in that being
able to predict four observations from four parameters is trivial. If you are unsure why such
perfect fits are trivial, think about a simpler model such as that for a Pearson correlation. With
n data points it is always possible to obtain a perfect correlation by correlating a variable with
itself (or a linear function of it). The interaction term in a two-way contingency table represents
the residuals of the counts after the main effects have been stripped out, so the model being
fitted is equivalent to predicting the observed counts from themselves.

The saturated model, although of little interest in its own right, is a natural standard of com-
parison for the independence model. Deviance for a loglinear model can be calculated using
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Equation 17.15. The likelihood ratio test of the independence model is therefore the differ-
ence in deviance between the saturated model (DS) and the independence model (DM). This is
another way of arriving at the likelihood chi-square statistic as G2 =DM −DS. As the deviance of
the saturated model is always zero, the comparison of the independence model with the satu-
rated model is in this case also the goodness-of-fit for the model (i.e., G2 = DM). The connection
between loglinear models for contingency tables and the χ2 test of independence extends to the
problems of approximating discrete outcomes with a continuous distribution. When data are
sparse, inferences from loglinear models can be problematic (see Chapter 17). Agresti (1996)
considers some alternative (e.g., exact approaches) for sparse tables, though the ideal solution
is to obtain a larger sample. An even more serious problem is if independence of counts is vio-
lated. Lack of independence is a major cause for concern, but can sometimes be dealt with using
the solutions suggested for Poisson and logistic regression (e.g., for dealing with overdispersion
or repeated measures).

Example OS5.1 The table below sets out a two-way contingency table for the dream data first
introduced in Example 17.1.

Ordinary Scary

No magical suggestion 25 1 26

Magical suggestion 14 7 21

39 8 47

Rather than calculate a χ2 by hand, it will be useful to work with the parameters estimated from
a fitted model. The parameter estimates will come out slightly differently depending on how the
categories represented by the rows (no magical suggestion versus magical suggestion) and columns
(ordinary versus scary dream) are coded. The two obvious choices are dummy coding and effect
coding. For effect coding3 the coefficients of the independence model ln

(
yij

) = λ̂ + λ̂
Group
i + λ̂Dream

j
fitted in R are:

Intercept (λ̂) 2.1727
No magical suggestion (λ̂Group = −1) 0.1068
Magical suggestion (λ̂Group = 1) −0.1068
Ordinary dream (λ̂Dream = −1) 0.7921
Scary dream (λ̂Dream = 1) −0.7921

As this is a form of loglinear model, the expected or predicted counts under independence can be
obtained by exponentiation. The expected count under independence of ordinary dreams in the no
suggestion group is:

e2.1727+0.1068+0.7921 = e3.0716 ≈ 21.58

This will be identical to the expected values of the chi-square test of independence:

E1,1 = R1 × C1

N
= 39 × 26

47
≈ 21.58
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We could get different, but equivalent, parameter estimates using dummy coding. This model,
fitted in SPSS, gives:

Intercept (λ̂) 1.274
No magical suggestion (λ̂Group = 1) 0.214
Ordinary dream (λ̂Dream = 1) 1.584

Here the intercept represents the estimate for the group coded zero on both dummy vari-
ables. The prediction for ordinary dreams in the no magical suggestion group is unchanged at
e1.274+0.214+1.584 = e3.072 ≈ 21.58. The parameter estimate for the group has been shifted by
a constant to reflect the difference in reference category. The effects of the row and column
marginals (main effects by analogy to ANOVA) are double the size of the effect estimates under
effect coding (because they are the estimated effect of a one-unit increase in the predictor on the
log odds).

The deviance for the independence model and therefore the likelihood ratio chi-square test
statistic is: G2(1,N = 47) = 7.67, p = .006, identical to the value in Example 17.1. The indepen-
dence model can be rejected in favor of a model that includes the group × dream interaction
term. The saturated model is therefore a better fit to the observed counts than the independence
model: the rate of scary dreams seems to differ between the two groups. Of course the inter-
action term requires an extra parameter with (r−1)(c−1) = 1 df. Even taking this into account
(e.g., using AIC or BIC), the saturated model including the two-way interaction term is pre-
ferred. Note that the df of a χ2 test of independence is therefore the 1 df difference between
the residual df of the independence model (residual df = 1) and the saturated model (residual
df = 0).

Predicted counts from the saturated model can also be obtained. The outcome may be slightly
different – depending on your software (because of how it deals with residuals equal to zero in
a perfectly fitted model). SPSS fits parameter estimates for the saturated model by adding 0.5 to
each count. The deviance is exactly zero and need not be computed. For the dummy coded model
(adding 0.5 to each cell) the parameter estimates are:

Intercept (λ̂) 2.015
No magical suggestion (λ̂Group = 1) −1.609
Ordinary dream (λ̂Dream = 1) 0.659
Interaction (λ̂Group×Dream = 1) 2.174

The predicted value of ordinary dreams in the no magical suggestion condition is now
e2.105+(−1.609)+0.659+2.174 = e3.239 ≈ 25.51. This (allowing for rounding error) is equal to the
observed count of 25 plus the 0.5 SPSS adds to deal with saturation. The interaction term
e2.174 = gives the estimated OR for the saturated model. Because SPSS adds 0.5 to each cell, this
is equal to the Haldane estimator for the OR (see Section 7.4.6). The OR can be estimated instead
directly from the observed values as (7/14)/(1/25) = 12.5. Thus the odds of a scary dream are 12.5
times higher in the magical suggestion than the no suggestion condition. The Haldane estimator
gives a more conservative estimate (probably too conservative) when some cells have small values.
Other software, such as R, fits the model by another route and will predict the exact count of 25 for
this cell. A final option would be to use logistic regression. This gives the interaction effect as 2.526
and e2.526 = 12.5.
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OS5.1.1 Interpreting k-way contingency tables

If a loglinear model is restricted to two-way contingency tables it makes sense to talk about the
marginals as being row and column effects. But loglinear models for two-way tables are not
very useful (as most of what they deliver can be achieved using the χ2 test of independence).
Loglinear models are most useful for exploring k-way tables where k > 2. For such data it is a
good idea to ditch talk of rows and columns. ANOVA terminology is often used in its place. The
marginal effects are termed main effects of predictors. Interaction effects can be added to the
model until a saturated model is achieved: this is a model in which all k-way and lower-order
interactions are present (in addition to the main effects and the intercept). Each interaction
effect incorporates non-independent effects of two or more main effects. Thus a four-way con-
tingency table that adds a B × C × D interaction estimates the expected counts for a model in
which the effects of B and C depend on categories defined by the variable D. Although the
terminology is borrowed from ANOVA there are some important differences.

Loglinear models are slightly unusual in two ways. First, it is trivial to fit the observed data
perfectly by including all the terms for a saturated model. This has led to the convention of
fitting models hierarchically (see Chapter 14), either by automatic selection methods such as
backwards elimination or by fitting the saturated models and removing interaction terms.4 The
objective is to find a plausible model for the data that is simpler than the saturated model. The
saturated model is, in effect, a prediction of the cell counts using the observed cell counts.
A good model should explain the data as well, or almost as well, as the saturated model. Null
hypothesis significance tests (NHSTs) for the models are therefore goodness-of-fit tests for the
simpler models relative to either the saturated model or some other competitor. Nested models
can be tested by comparing differences in deviance. For non-nested models, separate com-
parisons can be made with the saturated model. As it is not sensible to fit interaction effects
without also including lower-order effects (interactions, main effects and the intercept), non-
nested models only arise infrequently. Specifically, they arise when comparing models with only
some of the possible terms at a particular level (e.g., with only one two-way interaction for a
three-way table). Information criteria such as AICC, AIC or BIC provide alternatives for non-
nested models, and are increasingly preferred over NHSTs because they favor models with fewer
parameters.

The second way in which loglinear models are unusual is that there is no formal distinction
between predictors and outcomes among the categorical variables in the model. This character-
istic is also true of the χ2 test of independence. The cell counts are the response and, in a tech-
nical sense, all categorical variables act as predictors. This can confuse people, because it will
often appear as though one of the categorical predictors is acting as an outcome variable. For
instance, a researcher might collect data on preferences for different types of drink as a function
of gender and several different health promotion interventions (e.g., children might be offered a
choice of a low-sugar or high-sugar carbonated drink). It is natural to think of the type of drink
as the outcome and the interventions and gender as predictors. This is not technically a property
of the model, but can be a useful way to interpret it (though from time to time it might mislead).

OS5.1.2 Interpreting a three-way contingency table

The loglinear regression equation for k categorical predictors depends on the complexity of
the model that is fitted. Assuming a saturated model – with parameters for all effects – the
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equation becomes cumbersome when k is large because of the number of possible terms. The
key points can be illustrated clearly in terms of a three-way contingency table: a model with
three categorical variables A, B and C. This model is sufficiently complex to demonstrate how
a loglinear model would work for a realistic application. In fitting the model, it is common to
work backward from the saturated model. However, in explaining what’s going on it is easier
to work forward from the intercept-only model.

The intercept-only model estimates one parameter, the constant λ:

ln
(
yijk

)
= λ̂ Equation OS5.5

The subscripts i, j and k refer to the I, J and K categories within each categorical variable.
If I = J = K = 2 this is a 2 × 2 × 2 contingency table. The intercept-only model is equivalent to
fitting the grand mean of the cell count to all cells. The grand mean is the total N divided by the
number of cells (I × J × K). For a 2 × 2 × 2 table λ = N/8. The intercept-only model is sometimes
called an equiprobability model because it assumes an observation has an equal probability of
falling into any of the I × J ×K cells. Equiprobability models are only rarely of theoretical interest.
The marginals for one or more categorical variables are, in most studies, either fixed by design
or unrepresentative of the population of interest. This would make an equiprobability model of
little practical value; if you deliberately sampled equal numbers of males and females it would
be uninteresting that observations fell evenly between the two categories.

The next model to consider is one that includes all main effects. This is the independence
model. For a three-way contingency table it is:

ln
(
yijk

)
= λ̂+ λ̂A

i + λ̂B
j + λ̂C

k Equation OS5.6

Each of the main effects represents the differences in marginal counts for the variables A, B
and C. If the marginal counts within each of the categorical variables A, B or C are identical,
these parameters take the value zero. If any of the categories within A, B or C are more numer-
ous than the others, this will be reflected in non-zero main effects. Main effects in loglinear
models therefore differ from ANOVA because they often reflect structural characteristics of the
sample (e.g., the fact that the size of the experimental and control groups differ). However, if
one of the categorical variables lends itself to being interpreted as an outcome variable (e.g.,
C is passing or failing a test) the main effect for this category may have a meaningful interpre-
tation. If so, it may be of theoretical interest to compare the independence model to a model
without that term (e.g., without λ̂C

k ).
If the independence model is a poor fit, then one or more interaction terms are required. The

model with all possible two-way interactions is:

ln
(
yijk

)
= λ̂ + λ̂A

i + λ̂B
j + λ̂C

k + λ̂A×B
ij + λ̂A×C

ik + λ̂B×C
jk Equation OS5.7

Each interaction term incorporates a specific departure from independence. A two-way inter-
action in a loglinear model implies that the probability of an observation falling into a cell is
different from that obtained by multiplying the marginal probabilities of the two categorical vari-
ables (collapsing over any other categories). λ̂A×B

ij thus represents a difference in the observed
counts from the independence model; the probability of observations falling into categories
defined by B differs across categories defined by A. If A were gender and B were treatment con-
dition (e.g., placebo or drug), this would suggest that the number of males and females in the
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different treatment conditions differed. If C defined the outcome of treatment (e.g., success or
failure) a B × C interaction would indicate that the proportion of successes differed between
drug and placebo conditions. For this type of situation (where C can readily be interpreted as an
outcome variable) two-way interactions in a loglinear model have an interpretation similar to
that of main effect effects in ANOVA. They indicate a difference in outcomes between categories
or groups. Models with only some of the two-way effects can be particularly useful in testing
theoretical predictions. Agresti (1996) shows how a two-way model dropping a term such as
λ̂A×B

ij assumes independence of A and C, controlling for the potential A-B and B-C associations.
It follows that in Equation OS5.7, where all two-way terms are present, the interaction between
any two variables is independent of the other (e.g., A × C is independent of B). This means that
the odds ratio for any two variables is the same for all values of the third. Agresti (ibid.) calls this
a homogeneous association model. In practical terms it implies that you can split the three-way
table into separate A × B, A × C and B × C tables to be interpreted independently.

The saturated model for a three-way table takes the form:

ln
(
yijk

)
= λ̂+ λ̂A

i + λ̂B
j + λ̂C

k + λ̂A×B
ij + λ̂A×C

ik + λ̂B×C
jk + λ̂A×B×C

ijk Equation OS5.8

This equation differs only in the addition of the three-way interaction term. A comparison of the
saturated model with all two-way effects indicates whether the three-way interaction should be
included in the model. Needing to include a λ̂A×B×C

ijk term implies that the homogeneous asso-
ciation implied by the model with all two-way effects is rejected; the odds ratios between two
variables (e.g., A and B) differ between categories defined by the third variable. In the example
where A is gender, B is treatment group and C is success of treatment, this would imply that
the difference in outcomes for the two treatment groups differs for males and females (e.g., the
drug is more effective for males than females). This ‘feels’ like the interpretation of a two-way
interaction in ANOVA (because C acts like an outcome measure).

In a 2×2×2 (and in general for 2k) contingency table each parameter has exactly 1 df (being
coded by one indicator variable). What happens if a categorical variable has more than two
categories? For each main effect (e.g., λ̂A

i ) this simply requires an additional parameter for each
extra category. As you might expect, it takes J − 1 df (for J − 1 indicator variables) to represent
J categories. Interaction effects require additional indicator variables and use up addition df.
A two-way interaction for variables with I and J categories requires (I − 1)(J − 1) df. A three-
way interaction requires (I −1)(J −1)(K −1) df. As the number of categories increases, excluding
interaction terms creates increasingly parsimonious models. The number of counts for a three-
way model is I × J ×K. This is maximum number of parameters that can be fitted. Fitting all these
parameters exhausts the df and defines the saturated model. The more categories there are per
variable, the greater the parsimony offered by dropping the highest-order interaction terms (e.g.,
in a 3×3×4 table the homogeneous association model releases 2×2×3=12 residual df relative
to the saturated model).

Example OS5.2 Appleton et al. (1996) describe data taken from a 20-year follow-up study of
1314 women from the North-East of England. Among the variables were smoking status at the start
of the study (smoker or non-smoker), age and survival at 20 years. Subsequent examples will refer
to this data set as the smoking data. An obvious, but ultimately unwise, analysis is to use a χ2 test of
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independence to compare the proportions of smokers and non-smokers who survived for 20 years.
The raw data set out in contingency table form are:

Non-smoker Smoker

Dead 230 139 369

Alive 502 443 945

732 582 1314

The test of independence for this contingency table is statistically significant, χ2(1,N = 1314) =
9.12, p = .0025. A similar result is obtained from the likelihood ratio test, G2 (1,N = 1314) = 9.2,
p = .0024, AIC = 1048.5. Given the sample size, statistical significance is not surprising, but the
direction of the effect is. Of the smokers 443/582 = .761 (76.1%) are alive after 20 years, but only
502/732 = .686 (68.6%) of the non-smokers survived. Although the difference is small the null
hypothesis of independence can be rejected by this NHST or by other methods (e.g., �AIC relative
to the independence model is 1055.7 − 1048.5 = 7.2).

This analysis ignores some of the available information (the age of the women in the sample at
the start of the study). Exact ages are not available, but Appleton et al. report separate contingency
tables for each of seven age groups. The percentage survival for smokers and non-smokers at each
age group are summarized in Table OS5.1. Looking carefully at Table OS5.2 it should be possible
to see that the smokers have lower percentage survival in every age group except 75+ and 25–34.
This suggests the opposite pattern to that observed for the 2 × 2 table.

A loglinear analysis can help make sense of this discrepancy. The data set out by age group
can be described in terms of a three-way contingency table defined by smoking (smoker versus
non-smoker), age (from 18–24 through to 75+) and survival (alive or dead).

Table OS5.1 Percentage survival and sample size by age group for the smoking data

Smokers Non-smokers

Age group Survival (%) n Survival (%) n

18–24 96.4 55 98.4 62
25–34 97.6 124 96.8 157
35–44 87.2 109 94.2 121
45–54 79.2 130 84.6 78
55–64 55.7 115 66.9 121
65–74 19.4 36 21.7 129

75+ 0.0 13 0.0 64

With only three predictors, it makes sense to take a hierarchical approach. We’ll start by fitting a
model with three-way and lower effects: smoking ∗ age ∗ survival. The model of the cell counts is:

ln
(
yijk

)= λ̂ + λ̂
smoking
i +λ̂

age
j +λ̂survival

k +λ̂
smoking×age
ij +λ̂

smoking×survival
ik +λ̂

age×survival
jk +λ̂

age×smoking×survival
ijk

In practice, there is no real need to fit this model, as it is a saturated model of all the predictors and
has 2 × 7 × 2 = 28 parameters (one for each count being modeled). Residual deviance and df will
both be zero. R reports AIC as 190.2.
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The next step is to determine whether the model with all two-way interactions is a reasonable
fit relative to the saturated model. Dropping the three-way smoking × age × survival interaction
releases (2 − 1)(7 − 1)(2 − 1) = 6 df with residual deviance of 2.38. The two-way model is therefore
not a poorer fit according to a deviance test, G2 (6,N = 1314) = 2.38, p = .88. The AIC is 180.6 and
the AIC reduction of 9.6 suggests the two-way model is to be preferred (LRAIC = 121.5 in favor of
the simpler model).

Only one further term is worth dropping from the model to test its effect. There is no need for
a statistical test to decide to keep the age × survival term in the model; it can be assumed a priori
that the older you are at the start of the study the less likely you are to survive 20 years. The age ×
smoking term also needs to stay in the model. If the smokers are older (or younger) than non-
smokers in the sample at the start of the study, this is a confounding variable that needs to be
controlled for. The term that needs testing is survival × smoking. Dropping this term provides a test
of the hypothesis that survival differs between smokers and non-smokers. Keeping age × smoking
and smoking × survival in the model ensures that the confounding influence of age is accounted
for. Dropping survival × smoking frees up 1 df and increases deviance by 5.95 and AIC by 3.94.
This indicates a worse fit with the likelihood ratio test, G2 =5.95, p < .05, or with AIC (LRAIC =7.2 in
favor of the model including the interaction).

Because age has seven categories, the model with all two-way interactions has a large number of
parameters (20). Rather than interpret all 20, we’ll focus on a few key parameters:

Term λ SE
Intercept 0.246 0.595
Smoker 0.297 0.253
Age (45–54) 2.203 0.617
Survival 3.860 0.594
Smoker × age (45–54) 0.565 0.236
Survival × age (45–54) −2.113 0.612
Survival × smoker −0.427 0.177

Positive parameters indicate higher cell counts. As being alive and being a smoker are coded one
and because the reference category for age is 18–24, the intercept is the predicted value of λ for
non-smokers in the youngest age group who are deceased. This is e0.246 = 1.28 and is close to the
observed count of one. The smoker main effect merely indicates the relative counts of smokers and
non-smokers (there are more non-smokers in the sample and so it is slightly positive). In a balanced
design this parameter would be zero. The various age coefficients indicate the numbers at each age
group in the sample. Here the 45–54 age group is fairly numerous and has a large coefficient. A high
coefficient for the survival main effect just indicates that many more of the sample survived for 20
years than did not. The smoking × age coefficients indicate greater or fewer numbers smoking at
each age group, and so the positive coefficient for the 45–54 group reflects the disparity between
numbers of smokers (130) and non-smokers (78) in this subgroup. The survival × age coefficient
captures the different survival prospects of older and younger people. As the 45–54 age group is at
the older end of the sample, its members’ survival prospects are worse than the reference category
(the 18–24-year-olds). Putting this together, the predicted count for a 45–54-year-old smoker alive
after 20 years is:

Ŷ = e0.246+0.297+2.203+3.860+0.565−2.113−0.427 = e4.631 = 102.6

The observed value is 103.
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Returning to the initial question, is it the case the smokers live longer? This simple answer is
that the smokers in this sample do live longer; however, the loglinear model indicates that this
not because they are smokers. Smoking is associated with worse life expectancy: the smoking ×
survival coefficient is negative. At −0.427 this is equivalent to a decrease of 100 × (1 − e−0.427)% or
a 35% decrease in survival. The 95% CI for the counts is [0.46, 0.92], equivalent to a decrease in
survival of between 8% and 64%. The original χ2 analysis not only failed to detect this effect, but
it suggested the reverse. This phenomenon is known as Simpson’s paradox.5 The apparent paradox
occurs when collapsing data over one category (in this case age group) obscures or distorts the
relationship between other variables (in this case smoking and survival). The smokers live longer
because the original sample contained a higher proportion of older non-smokers than smokers
(e.g., 314 versus 164 in the three oldest categories). Simpson’s paradox is surprisingly common.
If it seems familiar, this may be because it is related both to Lord’s paradox and to suppression in
multiple regression (Lord, 1967; Darlington, 1968). Tu et al. (2008) argue that all three are examples
of a broader phenomenon (a reversal paradox) arising for continuous (suppression), categorical
(Simpson’s paradox) or a mixture of continuous and categorical variables (Lord’s paradox). Ignoring
a theoretically important variable can distort or reverse the direction of an effect.

Appleton et al. (1996) note that this analysis probably underestimates the impact of smoking on
mortality. They point out that the apparent bias in sampling younger non-smokers probably arose
because of the relative scarcity of older smokers in the population. Because they smoked, a greater
proportion would have died young or have been too ill to enroll in the study. A final statistical
concern is that the survival data appear to be underdispersed (ϕ̂ = 0.40). In an underdispersed
model the SEs will be too large and inferences too conservative. This could be corrected (e.g.,
using a quasipoisson model) and would lead to increased confidence in the conclusions regarding
smoking and survival.

OS5.1.3 When should you choose a loglinear model?

For two-way tables the χ2 test of independence or a CI for the OR will often be sufficient. For
three-way, four-way or higher-order tables a loglinear model is preferable to traditional χ2 anal-
yses and provides a richer set of hypotheses to test or models to compare. Nevertheless, it is
probably also sensible to consider two alternative approaches: logistic regression and Poisson
regression. All three approaches will be identical under certain circumstances (e.g., for a 2 × 2
table). It is worth discussing these connections in more detail.

Logistic regression and loglinear models may be equivalent when all predictors in the logis-
tic regression are categorical. If continuous predictors are present a loglinear model is not
applicable. Not all loglinear models are equivalent to logistic regressions with categorical pre-
dictors. A logistic regression with k categorical predictors is equivalent to a loglinear model
in which one of the predictors is dichotomous and can be considered the outcome. This cate-
gorical predictor is the variable that defines success or failure in the logistic regression. Fitting
a loglinear model with a saturated model of the remaining predictors (those not defining the
dichotomous outcome) produces models that are exact equivalents to a logistic regression
model. For instance, in a model with three dichotomous categorical variables: gender (G), treat-
ment (T) and mortality (M), mortality can be modeled as a dichotomous outcome in a logistic
regression:



Loglinear models 59

ln
(
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= b0 + b1Gi + b2Ti

This would be equivalent to the following loglinear model:

ln
(
yijk

)
= λ + λG

i + λT
j + λM

k + λG×T
ij + λG×M

ik + λT×M
jk

Provided the same coding scheme is employed, the coefficients and deviance of the fitted
model should match. The key distinction is that a loglinear model provides a more flexible
set of hypotheses to test than a logistic regression. In the latter it is not possible to model the
interrelationships between predictors.

For this reason logistic regression should be preferred when there is an unambiguous
dichotomous outcome variable. If the ‘outcome’ is not dichotomous, multinomial logistic
regression can be used (and will be equivalent to a loglinear model with a saturated model
of the categorical predictors from the multinomial logistic regression). With respect to Poisson
regression, a loglinear model has fewer advantages. The main one is the clear link to anal-
ysis of two-way contingency tables. As contingency tables are familiar to many researchers,
it may be convenient to present a Poisson model with categorical predictors as a loglinear
model. There are also some extensions to loglinear models that make them useful for particular
applications (e.g., see Agresti, 1996). On the other hand, Poisson regression is more versatile,
can incorporate continuous predictors and be readily extended to cope with zero-inflated and
overdispersed data.

Example OS5.3 The surgical checklist analysis, run earlier as a Poisson or negative binomial
regression (with mortality or mortality rates as the outcome), could also be run as loglinear model.
This would be a Poisson model with cell count (alive or dead) as the outcome. The predictors
would be the hospital, mortality (alive or dead) and time (pre or post checklist). In this model the
effects of key interest are the time × mortality and the hospital × time × mortality interactions.
The model with all two-way effects (AIC = 240.0) is marginally preferred to the three-way model
(AIC=240.6). The three-way model suggests that the checklist may be more effective at preventing
deaths in some hospitals than others. The model is also overdispersed, but less so than the earlier
models (ϕ̂ = 1.47). Just to be safe, results for a quasipoisson model will be reported, rather than the
usual Poisson model. The estimate of the interaction effect is 0.64. This suggests that mortality was
e0.64 = 1.9 times higher before the checklist was introduced than after its introduction. The profile
likelihood 95% CI for the time × mortality interaction in the quasipoisson model (on the untrans-
formed count scale) is [1.12, 3.30]. So a conservative estimate would be a 10% or 11% reduction
in surgical deaths after the introduction of the checklist (as 1/1.12 = 0.89).

This analysis could also be run as a logistic regression with mortality as a binary outcome and
7688 cases. The loglinear model is easier to set up (because it has only 32 cases) but should give
identical results. The loglinear model here is superior to the earlier Poisson regression, though this
stems from the way that the model structures the data. It isn’t an intrinsic property of the analysis
(as both are forms of Poisson regression).
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OS5.2 R code for Online Supplement 5

OS5.2.1 Loglinear models for two-way tables (Example OS5.1)

Example OS5.1 shows how to re-analyze the dream data as a loglinear model. This can be done
using a loglinear modeling function such as loglm() in MASS. The table() function from the
base package can be used to turn the categorical predictor group and the dichotomous outcome
scary into a contingency table:

group <- c(rep(0,26), rep(1,21))

scary <- c(1, rep(0,25), rep(1,7), rep(0,14))

sub09 <- table(group, scary)

The loglm() can take either dimension names of the table or integers that stand as short-hand
for the 1st, 2nd, 3rd or greater dimensions of the table. The following models are equivalent,
and fit a saturated model to a two-way contingency table. No outcome (Y) variable is required
(because loglinear models treat the cell counts as outcomes).

library(MASS)

loglm(∼ 1∗2, sub09)

loglm(∼ group ∗ scary, sub09)

A model with main effects only, dropping the two-way interaction, tests the independence of
the two predictors and reports both the Pearson and likelihood or deviance chi-square.

loglm(∼ group + scary, sub09)

The parameters for predictors under effect coding are:

loglm(∼ group∗scary, sub09)$param

It is possible to fit a loglinear model using Poisson regression also. In this case the counts and
predictors need to be specified as vectors. This also makes it easy to switch to dummy coding:

count <- as.vector(sub09)

gp <- c(0,0,1,1)

sc <- c(0,1,0,1)

glm(count ∼ gp + sc, family=poisson)

Fitting the model using different functions may (as here) produce different loglikelihood, AIC
and so forth (because the arbitrary constant has changed). However, the inferences should be
identical. For instance, compare differences in AIC for these models:

AIC(glm(count ∼ gp ∗ sc - gp:sc, family=poisson)) -

AIC(glm(count ∼ gp ∗ sc, family=poisson))

loglm(∼ group + scary, sub09)[[1]]-2



Loglinear models 61

The coefficients for the dummy coded saturated model in count and odds ratio form are:

glm(count ∼ gp∗sc, family=poisson)$coef

exp(glm(count ∼ gp∗sc, family=poisson)$coef)

The CIs are also easy to obtain this way:

confint(glm(count ∼ gp∗sc, family=poisson))

exp(confint(glm(count ∼ gp∗sc, family=poisson)))

While this does demonstrate the basics of loglinear modeling, only rarely will it be useful to
model a two-way table in this way. Loglinear modeling is best reserved for tables with three or
more categorical variables.

OS5.2.2 Modeling counts in three-way tables (Examples OS5.2 and OS5.3)

The data in Example OS5.2 are from Appleton et al. (1996). These can be loaded in from the
SPSS data file smoking.sav.

library(foreign)

smoking <- read.spss(’smoking.sav’, to.data.frame=TRUE)

The structure of the data frame lends itself to an analysis using Poisson regression. The like-
lihood ratio test and AIC for models with and without the two-way interaction are given by
drop1() or anova().

glm(count ∼ smoker∗survival, family=poisson, data=smoking)

drop1(glm(count ∼ smoker∗survival, family=poisson,

data=smoking), test=’Chisq’)

A better analysis includes the age group as a predictor in a three-way model. The following
commands fit a saturated three-way model, a model with all two-way effects or lower. Age
group is coded by the numbers one to seven, so it is necessary to specify that it should treated
as a factor.

smok.sat <- glm(count ∼ smoker ∗ survival ∗ factor(age_group),

family = poisson, data=smoking)

smok.2way <- glm(count ∼ (smoker + survival +

factor(age_group))∧2, family=poisson, data=smoking)

The drop1() function can compare the fits of these two models or they can be compared directly
using AIC.

drop1(smok.sat, test=’Chisq’)

AIC(smok.sat) - AIC(smok.2way)
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There is little reason to keep the three-way term, but dropping any of the two-way terms results
in a worse fit.

drop1(smok.2way, test=’Chisq’)

The parameter estimates for the model can be easily listed using summary().

summary(smok.2way)

The CI (on the count scale) for the smoking by survival interaction is given by:

exp(confint(smok.2way, 10))

(Although R reports several warnings about the CIs, the profile CIs are very similar to the Wald
CIs and it would be reasonable to report either.) Checking the quasipoisson fit shows that the
data appear to be underdispersed:

smok.q <- glm(count ∼ (smoker + survival +

factor(age_group))∧2, family = quasipoisson, data=smoking)

summary(smok.q)

Example OS5.3 demonstrated that the checklist data analyzed in several earlier examples could
also be considered as a three-way loglinear model. This requires a restructured data set to be
loaded:

checklist.tab <- read.csv(’checklist_tab.csv’)

The three-way and two-way models can then be fitted.

mort.3way <- glm(count ∼ factor(hospital)∗post∗survival,
data=checklist.tab, family=poisson)

mort.2way <- glm(count ∼ (factor(hospital) + post +

survival)∧2, data=checklist.tab, family=poisson)

The model with only two-way effects provides a pretty good fit given that it has seven fewer
parameters, but none of the two-way effects should be dropped:

drop1(mort.3way, test=’Chisq’)

drop1(mort.2way, test=’Chisq’)
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To allow for overdispersion, either a negative binomial regression or a quasipoisson
regression could be fitted:

mort.2way.q <- glm(count ∼ (factor(hospital) + post +

survival)∧2, data=checklist.tab, family=quasipoisson)

mort.2way.nb <- glm.nb(count ∼ (factor(hospital) + post +

survival)∧2, data=checklist.tab)

Both models produce similar parameter estimates though the quasipoisson, but not the negative
binomial, produces more conservative CIs for the effect of the checklist on surgical deaths:

exp(confint(mort.2way, 25))

exp(confint(mort.2way.q, 25))

exp(confint(mort.2way.nb, 25))

OS5.2.3 R packages

R-core members, DebRoy, S., Bivand, R., et al. (2011). foreign: Read Data Stored by Minitab, S,
SAS, SPSS, Stata, Systat, dBase. R package version 0.8-42.

Venables, W. N., and Ripley, B. D. (2002) MASS: Modern Applied Statistics with S. (4th edn)
Springer: New York.

OS5.3 Notes on SPSS syntax for Online Supplement 5

OS5.3.1 Loglinear models

SPSS can fit loglinear models via several routes (and often the generalized linear model com-
mands for Poisson regression will be a sensible choice). The GENLOG command provides a
specific loglinear model command. The syntax below fits a saturated model to the smoking
data:

SPSS data file: smoking.sav

GENLOG age_group smoker survival

/MODEL=POISSON

/PRINT=FREQ

/PLOT=NONE

/CRITERIA=CIN(95).

This can be compared to a simpler model such as this one that includes all two-way or simpler
effects by adding a /DESIGN subcommand.
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GENLOG age_group smoker survival

/MODEL=POISSON

/PRINT=FREQ RESID

/PLOT=NONE

/CRITERIA=CIN(95)

/DESIGN age_group∗smoker age_group∗survival smoker∗survival.

The deviance for this model is the residual deviance (the change in deviance from the saturated
model) and a test of the three-way interaction effect.

OS5.4 Notes

1. You may wish to refresh your memory about the χ2 of independence at this point, as it may
make later material easier to follow (see Chapter 4).

2. A notation more consistent with that used earlier would be ln
(
Yij

)
= b0 + b1A1i + b2B2j. The

notation for loglinear models is more compact. This is useful for models involving many
interaction terms.

3. These parameter estimates were obtained using either a sigma-restricted or overparameterized
model that produce coefficients equivalent to effect and dummy coding respectively.

4. As loglinear models tend to have relatively few categorical predictors, automatic selection
methods are not as dangerous as for regressions with many predictors. Hierarchical com-
parison of a subset of theoretically interesting models (e.g., using information criteria) is
nevertheless the preferred approach here.

5. Another victory for Stigler’s law; it was observed earlier by both Karl Pearson and Yule.
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